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Abstract We propose a new gradient method for quadratic programming, named
SDC, which alternates some steepest descent (SD) iterates with some gradient iterates
that use a constant steplength computed through the Yuan formula. The SDC method
exploits the asymptotic spectral behaviour of the Yuan steplength to foster a selective
elimination of the components of the gradient along the eigenvectors of the Hessian
matrix, i.e., to push the search in subspaces of smaller and smaller dimensions. The new
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542 R. De Asmundis et al.

method has global and R-linear convergence. Furthermore, numerical experiments
show that it tends to outperform the Dai–Yuan method, which is one of the fastest
methods among the gradient ones. In particular, SDC appears superior as the Hessian
condition number and the accuracy requirement increase. Finally, if the number of
consecutive SD iterates is not too small, the SDC method shows a monotonic behaviour.

Keywords Gradient methods · Yuan steplength · Quadratic programming

1 Introduction

We are interested in designing efficient gradient methods for the solution of the convex
quadratic problem

minimize
x∈�n

f (x) ≡ 1

2
xT Ax − bT x, (1.1)

where A ∈ R
n×n is symmetric positive definite and b ∈ R

n . This problem, possibly
with the addition of bound constraints, is of practical importance, since it arises in
many applications, e.g., in compressed sensing and image processing [16,23], and
in machine learning and data mining [25]; further applications are listed in [21,26].
Moreover, since the theoretical basis of gradient methods for general unconstrained
optimization derives from the minimization of convex quadratic functions, problem
(1.1) is a simple setting to design effective methods for more general problems. In
addition, problem (1.1) allows to study the relevance of the eigenvalues of the Hessian
of the objective function to the algorithms we consider.

Gradient methods generate a sequence {xk} as follows:

xk+1 = xk − αk gk, k = 0, 1, 2, . . . (1.2)

where gk = ∇ f (xk) and the steplength αk > 0 depends on the method under consid-
eration. In particular, in the classical steepest descent (SD) method [5] αk is chosen
as

αSD
k = argmin

α
f (xk − αgk) = gT

k gk

gT
k Agk

. (1.3)

It is well known that, although based on exact line searches, the SD method behaves
poorly in most cases, because the sequence {xk} tends to zigzag between two orthogo-
nal directions and this usually deteriorates convergence [1]. Therefore, the SD method,
despite of the minimal storage requirements and the very low computational cost per
iteration, has long been considered very bad and ineffective.

However, in the last years there has been a renewed interest for gradient methods,
starting from the innovative approach of Barzilai and Borwein [2], who proposed two
novel choices for αk (k > 0):

αB B1
k = ‖sk−1‖2

sT
k−1 yk−1

, αB B2
k = sT

k−1 yk−1

‖yk−1‖2 ,

where sk−1 = xk − xk−1, yk−1 = gk − gk−1, and ‖ · ‖ is the L2 vector norm.
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Global and R-linear convergence of the gradient method using the Barzilai–
Borwein (BB) steplengths was proved in [9,28]. However, despite these steplengths
cannot guarantee a decrease in the objective function at each iteration, they turned
out to be, in practice, much more efficient than (1.3). Actually, some authors argued
about the relationship between the non-monotonicity and the surprising computational
performance of the BB methods for strictly convex quadratic programming (see, e.g.,
[18] and the references therein).

It is interesting to note that αB B1
k is equal to αSD

k−1, i.e., the SD steplength at the
previous iteration, while αB B2

k is equal to αMG
k−1 , where

αMG
k = argmin

α
‖∇ f (xk − αgk)‖ = gT

k Agk

gT
k A2gk

is the so-called minimal gradient steplength. Therefore, αB B1
k and αB B2

k can be seen
as steplengths with one-step delay. In [21] the use of larger delays has been proposed
in the gradient methods with retards, extending convergence results that hold for the
BB methods. In [24] it is pointed out that the use of larger delays increases non-
monotonicity and hence may speed up convergence, but it also increases the loss of
precision which is observed in the intermediate computations of the method. Such a
drawback can be reduced by using an adaptive strategy to choose the retard, but this
still cannot guarantee monotonicity.

Effective extensions of the BB methods to general optimization problems were
proposed by Raydan in [29] and then by several authors (see [3] and the references
therein). In these cases, a nonmonotone line-search strategy, such as the one presented
in [22], is applied to guarantee global convergence, whereas the constraints are dealt
with by using classical gradient projection techniques (see, e.g., [12] and the references
therein).

The advantage of retaining monotonicity has been pointed out by several authors
(see [19] and the references therein), especially when dealing with non-quadratic
problems. Several works have been recently devoted to design faster gradient methods
[6,10,11,14,19,31,32], many of which are monotone, whose common basic idea is to
combine Cauchy steps with other steplengths.

Yuan supports this approach through a theoretical and computational analysis lead-
ing to the conclusion that “a good gradient method would use at least one exact line
search (the Cauchy step) in every few iterations” [32]. In particular, in [31] he proposed
the following interesting formula for the steplength:

αY
k = 2

⎛
⎝

√√√√
(

1

αSD
k−1

− 1

αSD
k

)2

+ 4
‖gk‖2

(
αSD

k−1‖gk−1‖
)2 + 1

αSD
k−1

+ 1

αSD
k

⎞
⎠

−1

; (1.4)

this steplength was determined by imposing finite termination for two-dimensional
quadratic problems and satisfies the inequalities

(
1

αSD
k−1

+ 1

αSD
k

)−1

< αY
k < min{αSD

k−1, α
SD
k }. (1.5)
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Based on (1.4), Dai and Yuan [11] designed some methods which appear very com-
petitive with the BB method. These methods alternate exact line searches with one or
more steplengths defined by (1.4).

In the same line, but through a quite different theoretical approach, in [14] De
Asmundis et al. proposed the steplength

α̃k =
(

1

αSD
k−1

+ 1

αSD
k

)−1

. (1.6)

They presented a monotone gradient method, named SDA, which combines (1.6) and
the Cauchy steplength, and showed that it tends to align the search direction with the
eigendirection corresponding to the smallest eigenvalue of A. As a consequence, the
search is asymptotically reduced to the one-dimensional subspace spanned by that
eigendirection. More generally, De Asmundis et al. suggested that a better under-
standing of some new gradient methods can be achieved through a deeper analysis of
asymptotic spectral properties of the steplength rules used by those methods. In this
context, they also showed how the behaviour of the relaxed SD method in [30] can
be better understood, and its surprising computational performance further improved.
The relevance of the eigenvalues of A to a deeper and more satisfying understanding
of the gradient methods was also pointed out in [11,17,18], by explaining the effec-
tiveness of the BB and related methods in terms of the relationship between steplength
and Hessian eigenvalues, rather than of decrease in the objective function.

We note that although the conjugate gradient (CG) method is still the method of
choice for convex quadratic programming, numerical experiments have pointed out
some circumstances under which BB and other new gradient methods may be com-
petitive with CG. This is the case, e.g., when low accuracy is required in the solution
of the problem, or single rather than double precision is used in the computations, as
pointed out in [15,18,21]. Gradient methods become even more competitive with the
CG method when applied to more general problems than (1.1), e.g., when used with
projection techniques in box-constrained problems or applied to non-quadratic objec-
tive functions, as in [4,7,8]. Furthermore, one of the main reasons which stimulates
the research about gradient methods is their successful use in some applications, such
as image deblurring and denoising, where they show a smoothing, regularizing effect,
and where a “strict” optimal solution is not necessary (see, e.g., [23]).

Motivated by the previous considerations, in this paper we propose a new gradient
method for problem (1.1), which exploits the Yuan steplength (1.4). Specifically, we
first analyse the asymptotic behaviour of the Yuan steplength, showing that it tends to
approximate the reciprocal of the largest eigenvalue of the Hessian matrix A. Then,
based on this theoretical result, we propose a gradient method, named SDC, in which,
cyclically, a certain number of SD iterates is followed by a certain number of gradient
steps that use a constant steplength computed through the formula (1.4). We note that
our scheme is different from the one in [11] and so is the motivation of our method. Its
main computational feature is to foster the reduction of the gradient components along
the eigenvectors of A in a selective way, in order to reduce the search in subspaces of
smaller and smaller dimensions, and hence to deal with problems having better and
better condition numbers.
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The paper is organized as follows. In Sect. 2 we report some results that provide the
theoretical basis for the analysis carried out in the sequel of the paper. In Sect. 3 we
study the asymptotic behaviour of the steplength (1.4), highlighting its relationship
with (1.6), and then, based on this study, we introduce the SDC method. We also
illustrate the behaviour of this method through numerical experiments on a selected
test problem, confirming the properties entailed by the theoretical results. In Sect. 4
we establish the R-linear convergence of our method. In Sect. 5 we analyse through
numerical experiments the performance of SDC and make a comparison with the the
most efficient Dai–Yuan (DY) method presented in [11], showing that SDC tends to
outperform it. Finally, in Sect. 6, we draw some conclusions.

In the rest of the paper we denote by κ(A) the spectral condition number of the
Hessian matrix A, by {λ1, λ2, . . . , λn} the eigenvalues of A, and by {d1, d2, . . . , dn} a
set of associated orthonormal eigenvectors. We also make the following assumptions:

Assumption 1 The eigenvalues λ1, . . . , λn are such that

λ1 > λ2 > · · · > λn > 0.

Assumption 2 Any starting point x0 considered in this work is such that

gT
0 d1 �= 0, gT

0 dn �= 0.

Furthermore, we denote by μk
i , i = 1, . . . , n, the component of gk along di , i.e.,

gk =
n∑

i=1

μk
i di . (1.7)

We point out that the above assumptions are not restrictive. For the first one see, e.g.,
[19, Section 2]; concerning the second one, we note that it is equivalent to state that
the components of g0 along d0 and dn , i.e., μ0

1 and μ0
n , are both nonzero at the starting

point. More generally, if g0 �= 0, there exist i1 and in , with 1 ≤ i1 ≤ in ≤ n, such
that gT

0 di1 �= 0, gT
0 din �= 0 and gT

0 di = 0 for i < i1 and i > in . Then, as observed at
the end of Sect. 2, for i < i1 and i > in the components of the gradient along di will
be equal to zero at each iteration, and all the results presented in the sequel will hold
with the indices i1 and in in place of 1 and n, respectively.

2 Preliminary results

We now recall some theoretical results that will be useful to the analysis in Sect. 3.
The next theorems summarize results in [1,27] about the behaviour of the sequences
{μk

i }, {αSD
k }, and {‖gk‖} generated by the SD method (see [27, Lemmas 3.3 and 5.5,

and Theorem 5.1]).

Theorem 2.1 Consider the SD method applied to problem (1.1), starting from any
point x0, and suppose that Assumptions 1–2 hold. Then
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lim
k→∞ αSD

2k = 1 + c2

λn(1 + c2κ(A))
, (2.1)

lim
k→∞ αSD

2k+1 = 1 + c2

λn(κ(A) + c2)
, (2.2)

where c is the constant such that

c = lim
k→∞

μ2k
1

μ2k
n

= − lim
k→∞

μ2k+1
n

μ2k+1
1

. (2.3)

Furthermore,

lim
k→∞

(μk
i )

2

∑n
j=1(μ

k
j )

2
= 0 for 1 < i < n.

Theorem 2.2 Consider the SD method applied to problem (1.1), starting from any
point x0, and suppose that Assumptions 1–2 hold. Then

lim
k→∞

‖g2k+1‖2

‖g2k‖2 = c2(κ(A) − 1)2

(1 + c2κ(A))2 ,

lim
k→∞

‖g2k+2‖2

‖g2k+1‖2 = c2(κ(A) − 1)2

(c2 + κ(A))2 ,

where c is the same constant as in Theorem 2.1.

As a consequence of Theorem 2.1, in the SD method eventually

gk ≈ μk
1d1 + μk

ndn,

i.e., the SD method asymptotically reduces its search in the two-dimensional subspace
spanned by d1 and dn , zigzagging between the two directions without being able to
eliminate any of them.

In [14] the authors show how, moving from some theoretical properties of the SD
method, second order information provided by the steplength (1.3) can be exploited
to dramatically improve the usually poor practical behaviour of the Cauchy method,
achieving computational results comparable with those of the BB method. A key issue
in their reasoning is the following result [14, p. 1422].

Theorem 2.3 Consider the SD method applied to problem (1.1), starting from any
point x0, and suppose that Assumptions 1–2 hold. Then

lim
k→∞

(
1

αSD
2k

+ 1

αSD
2k+1

)
= λ1 + λn . (2.4)
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They also show that a gradient method with constant steplength

α̂k = 1

λ1 + λn
(2.5)

tends to align the search direction with the eigendirection of A corresponding to the
minimum eigenvalue λn (see Proposition 3.2 in [14]), thus forcing the search in the
one-dimensional subspace spanned by the eigendirection dn . By combining this result
with Theorem 2.3, they propose a modified version of the SD method, called SDA
(SD with Alignment), in which a constant steplength computed using (1.6) is used at
selected iterations.

We finally report some known formulas, which hold for any gradient method (1.2).
We have

gk+1 = gk − αk Agk =
k∏

j=0

(I − α j A)g0, (2.6)

and then

gk+1 =
n∑

i=1

μk+1
i di , (2.7)

with

μk+1
i = μ0

i

k∏
j=0

(1 − α jλi ). (2.8)

Formulas (2.6)–(2.8) are significant in the study of gradient methods, since they allow
to analyse convergence in terms of the spectrum of the matrix A. If at the k-th iteration
μk

i = 0 for some i , it follows from (2.7)–(2.8) that for h > k it will be μh
i = 0, i.e.,

the component of the gradient along di will be zero at all subsequent iterations. We
notice that the condition μk

i = 0 holds if and only if μ0
i = 0 or α j = 1/λi for some

j ≤ k. Furthermore, from (2.6) it follows that the SD method has finite termination if
and only if at some iteration the gradient is an eigenvector of A.

3 A new gradient method

In this section we study the asymptotic behaviour of the Yuan steplength (1.6). Moti-
vated by our analysis, we propose a modification of the SD method that combines
Cauchy steplengths and Yuan steplengths, in a different way from the Dai and Yuan
methods in [11], but similarly to the SDA method in [14].

To find a relationship between the asymptotic behaviour of αY
k and the eigenvalues

of the matrix A, we provide a different expression of it, which also highlights some
connections between αY

k and α̃k .
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Lemma 3.1 The Yuan steplength (1.4) can be written as

αY
k = 2

(̃αk)−1 + √
(̃αk)−2 − 4ρk

= 2α̃k

1 + √
1 − 4ρk (̃αk)2

, (3.1)

where α̃k is defined in (1.6) and

ρk = 1

αSD
k−1α

SD
k

− ‖gk‖2

‖gk−1‖2

1(
αSD

k−1

)2 . (3.2)

Proof We first observe that

αY
k = 2

⎛
⎝

√√√√
(

1

αSD
k−1

− 1

αSD
k

)2

+ 4
‖gk‖2

(
αSD

k−1‖gk−1‖
)2 + 1

αSD
k−1

+ 1

αSD
k

⎞
⎠

−1

= 2

⎛
⎝

√√√√
(

1

αSD
k−1

+ 1

αSD
k

)2

− 4
1

αSD
k−1α

SD
k

+ 4
‖gk‖2

(
αSD

k−1‖gk−1‖
)2 + 1

αSD
k−1

+ 1

αSD
k

⎞
⎠

−1

.

Then, the thesis trivially follows from the definition of α̃k . �

We are now ready to analyse the asymptotic behaviour of αY
k .

Theorem 3.1 Let {αSD
k } and {gk} be the sequences generated by the SD method

applied to problem (1.1), starting from any point x0, and suppose that Assumptions
1–2 hold. Then,

lim
k→∞ αY

k = 1

λ1
, (3.3)

lim
k→∞ ρk = λ1λn, (3.4)

where αY
k and ρk are defined in (1.4) and (3.2), respectively.

Proof By Theorems 2.1 and 2.2 we have

lim
k→∞

1

αSD
k αSD

k−1

= λ2
n(κ(A) + c2)(1 + c2κ(A))

(1 + c2)2 ,

lim
k→∞

‖gk‖2

(αSD
k−1‖gk−1‖)2

= λ2
nc2(κ(A) − 1)2

(1 + c2)2 ,
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where c is the constant in (2.3), and therefore

lim
k→∞ ρk = λ2

n

(1 + c2)2

[
(κ(A) + c2)(1 + c2κ(A)) − c2(κ(A) − 1)2

]
= (3.5)

λ2
n

(1 + c2)2

(
κ(A) + c4κ(A) + 2c2κ(A)

)
= λ1λn . (3.6)

By Lemma 3.1 and Theorem 2.3, we get

lim
k→∞ αY

k = 2

λ1 + λn + √
(λ1 + λn)2 − 4λ1λn

= 1

λ1
.

�

It trivially follows from Theorem 3.1 that, under Assumptions 1–2, the largest and the
smallest eigenvalues of A can be approximated through αY

k , α̃k and ρk . More precisely,

lim
k→∞

1

αY
k

= λ1, lim
k→∞ ρkα

Y
k = lim

k→∞
1

α̃k
− 1

αY
k

= λn . (3.7)

In other words, Theorem 3.1 shows that the SD method asymptotically reveals some
second order information, which can be conveniently exploited to speed up the con-
vergence.

In Sect. 2 we observed that, for any gradient method, if at the k-th iteration αk =
1/λi for some i , then the component of the gradient along the eigenvector di of
A will be zero at all subsequent iterations. In particular, if we take the steplength
αk = 1/λ1, the component of the gradient along the corresponding eigenvector of A
will be eliminated. Furthermore, a decrease in the objective function is guaranteed by
this choice of αk , since 1/λ1 ≤ αSD

k . Of course, computing the exact value of λ1 is
unrealistic, but (3.7) suggests how to get an approximation of it.

The approach we propose is based on the idea of using a finite sequence of Cauchy
steps with a twofold goal: forcing the search in a two-dimensional space and getting a
suitable approximation of 1/λ1 through αY

k . Once a “good” approximation of 1/λ1 is
obtained, the Yuan steplength providing such approximation is used, with the aim of
driving toward zero the component μk

1 of the gradient along d1. Of course, μk
1 cannot

generally vanish, but it follows from (2.8) that if the approximation of 1/λ1 is accurate
enough, then taking the same value of αY

k for multiple steps can significantly reduce
μk

1. We also note that, in the ideal case where the component along d1 is completely
removed, the quadratic problem reduces to a (n − 1)-dimensional problem and a new
sequence of Cauchy steps followed by some steps with a constant value of αY

k can drive
toward zero the component along the eigenvector d2. Therefore, a cyclic alternation
of SD steplengths and constant Yuan steplengths can be performed with the aim of
eliminating the components of the gradient, according to the decreasing order of the
eigenvalues of A. In other words, our strategy is aimed at reducing the search in
subspaces of smaller and smaller dimensions, and forcing the gradient method to deal
with problems with better and better condition numbers. The use of SD steplengths
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should also help in reducing the components of the gradient that are not addressed by
the current Yuan steplength.

The above strategy for the choice of the steplength can be formalized as follows:

αSDC
k =

⎧⎨
⎩

αSD
k if mod (k, h + m) < h,

αY
s otherwise, with s = max{i ≤ k : mod (i, h + m) = h},

(3.8)

where h ≥ 2 and m ≥ 1 (the superscript SDC indicates that SD steplengths are
alternated with Constant ones, computed through the Yuan formula). In other words,
we make h consecutive exact line searches and then, using the last two SD steplengths,
we compute the Yuan steplength to be applied in m consecutive gradient iterations. It
is clear that the two parameters h and m play complementary roles. Large values of
h, which provide more accurate approximations of 1/λ1, are likely to work well with
small values of m. Conversely, rough approximations of 1/λ1, due to small values of
h, should be balanced by large values of m.

We note that the approach described so far is similar to the one in the SDA method
presented in [14], where a sequence of SD steplenghts is combined with a sequence
of steplengths of the form (1.6) in order to force the search into the one-dimensional
subspace spanned by dn , i.e., to asymptotically eliminate the gradient components
along the remaining eigenvectors. We also observe that the steplength (3.8) generally
differs from the one proposed in [11], i.e.,

αDY
k =

⎧⎨
⎩

αSD
k if mod(k, h + m) < h,

αY
k otherwise,

(3.9)

since in the latter case αY
k is recomputed at each iteration.

A possible drawback of a gradient method with steplength (3.8), henceforth called
SDC, could be the non-monotonicity, which is more likely to show up when small
values of h and/or large values of m are adopted. Therefore, it is interesting to devise
some strategy aimed to force monotonicity, to have a better picture of the effect of
non-monotonicity on the performance of SDC. The most straightforward way to force
the method to generate a decreasing sequence { f (xk)} is to impose that the steplength
does not exceed 2αSD

k , as in the SDA method. The resulting method, called SDC
with Monotonicity (SDCM), uses a steplength αSDC M

k that is obtained from (3.8) by
substituting αY

s with

min
{
αY

s , 2αSD
k

}
.

Note that SDCM can be seen as a special case of the relaxed steepest descent method,
whose convergence is stated in [30]. In the next section we also prove the convergence
of SDC, showing that it can be placed in the very general algorithmic framework
proposed in [6].

To illustrate and support our approach, we apply the SDC and SDCM methods to
a test problem of type (1.1), with 1,000 variables and A diagonal, defined as follows:
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Fig. 1 Problem (3.10): convergence history of the sequences
{∣∣∣αY

k − 1/λ1

∣∣∣
}

and {‖gk‖} for the first 100

iterations of the SD method

Aii = 1

i
√

i
, bi = 0. (3.10)

The starting point x0 is such that

Ax0 = e, e = (1, 1, . . . , 1)T ,

and the following stopping condition is used:

‖gk‖ < tol ‖g0‖, (3.11)

where tol = 10−3, 10−6, 10−9, 10−12. The experiments are performed by using
Matlab. We notice that the SD method takes 5954 iterations to satisfy (3.11) with
tol = 10−3.

In Fig. 1 we plot, on a log scale, the values of
∣∣αY

k − 1/λ1
∣∣ and ‖gk‖, for

k = 1, . . . , 100, against the number of iterations. It is evident that a quite accurate
approximation of λ1 is achieved after few iterations, despite the very slow convergence
of the SD method. Therefore, we expect that a small value of h can be effectively used
to build the Yuan steplength needed to selectively reduce the eigencomponents of the
gradient.

In Tables 1 and 2 we report the results obtained by running the SDC and SDCM
methods on the selected problem, with 9 possible choices for the pair (h, m), obtained
by varying h and m in {2, 8, 16} and {2, 4, 6}, respectively. These tests are aimed
at understanding whether and how h and m affect the methods, in terms of number
of iterations and spectral properties. For each run we show the overall number of
iterations and, for SDC, also the number of non-monotone steps, i.e., the steps where
the objective function increases. For comparison purposes, in Table 1 we also report
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Table 2 Problem (3.10): number of iterations of the SDCM method

tol SDCM (h, m)

(2, 2) (2, 4) (2, 6) (8, 2) (8, 4) (8, 6) (16, 2) (16, 4) (16, 6)

10−3 1,039 591 579 879 633 505 1,154 851 684

10−6 1,275 1,079 1,053 1,471 1,149 1,025 1,781 1,249 1,249

10−9 1,951 1,753 1,467 2,526 1,689 1,451 2,393 1,781 1,631

10−12 2,401 2,179 1,961 2,869 2,145 1,969 2,879 2,229 2,223

Fig. 2 Problem (3.10): values of the eigencomponents μk
i (i = 1, . . . , 20) of the gradient at the solution

computed by SDC, for h = 2 and m = 2 and for h = 2 and m = 6

the number of iterations required by the DY method using (3.9) with h = 2 and m = 2,
which corresponds to the most effective choice in [11].

SDC appears very competitive with DY, regardless of the choice of the parameters.
However, the role of h and m is not negligible in the numerical behaviour of SDC. For
the smallest value of h, the performance strongly improves as m increases, while this
tendency is less evident for larger values of h. Making several consecutive exact line-
searches (h = 16) fosters monotonicity, but the overall number of iterations tends to
increase, due to the slow convergence of the SD method. Conversely, the monotonicity
of the method deteriorates as m grows, especially when few SD steps are performed.
Since the effectiveness of the BB methods has been related to their non-monotonicity
[18], we wonder if non-monotonicity also plays a critical role in determining the nice
behaviour of the SDC method. A comparison between the results in Tables 1 and 2
seems to suggest that forcing the monotonicity does not deteriorate the performance
too much, and actually it may also lead to some improvement (see, e.g., the case h = 8
and m = 6).

To gain further insight into the behaviour of the SDC method, we also analyze how
the eigencomponents of the gradient are affected by m. In Fig. 2, we plot the values
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Fig. 3 Problem (3.10): convergence history of { f (xk )} in the SDC and SDCM methods (top and bottom,
respectively), for h = 2 and m = 2 and for h = 2 and m = 6

of the first 20 eigencomponents of the gradient at the solution computed by SDC with
tol = 10−9, for h = 2 and m = 2, 6 (the smallest value of h is considered to better
highlight the effects produced by different values of m). It clearly emerges that the
order of magnitude of the eigencomponents is much smaller for m = 6, and, in this
case, the first eigencomponents are practically zero. This confirms the role played
by multiple constant Yuan steplengths in driving toward zero the eigencomponents
corresponding to the largest eigenvalues.

Finally, in Fig. 3 we compare the convergence histories of the objective function
in the SDC and SDCM methods with tol = 10−9, for h = 2 and m = 2 and for
h = 2 and m = 6. The oscillating behaviour of SDC for m = 6 clearly appears,
as well as its faster convergence with respect to SDCM for both values of m. The
figure also confirms that imposing monotonicity does not yield a severe deterioration
of convergence.
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4 Convergence analysis of the SDC method

We study the convergence of the SDC method following the approach proposed by
Dai [6] to establish the global and R-linear convergence of the alternate step gradient
method. According to this approach, we assume without loss of generality that

A = diag(λ1, λ2, . . . , λn) (4.1)

and that λn = 1. From (4.1) and Assumption 1 it trivially follows that μk
i is the i-th

component of gk in the standard basis. Furthermore, we define

G(k, l) =
n∑

i=l

(
μk

i

)2
.

Extending convergence results in [9,21,28], Dai [6] establishes a convergence the-
ory for gradient methods with steplengths satisfying the following property:

Property A There exists a positive integer m0 and positive constants M1 and M2,
with M1 ≥ λn, such that

(i) λn ≤ α−1
k ≤ M1;

(ii) for any l ∈ {2, . . . , n} and any ε > 0, if G(k − j, l) ≤ ε and
(
μ

k− j
l−1

)2 ≥ M2ε

hold for j ∈ {0, . . . , min{k, m0}}, then α−1
k ≥ 2

3
λl−1.

Dai’s convergence theorem can be stated as follows.

Theorem 4.1 Consider any gradient method (1.2) applied to problem (1.1) and
assume that the matrix A satisfies (4.1) and Assumption 1 with λn = 1. If the steplength
αk has Property A, then, for any starting point x0, either gk = 0 for some k or the
sequence {‖gk‖} converges to zero R-linearly.

As pointed out in [6], Property A holds for many gradient methods. In the next
theorem we show that it holds for the SDC method too. Then, the global and R-linear
convergence of SDC follows from Theorem 4.1.

Theorem 4.2 Consider the SDC method applied to problem (1.1) and assume that
the matrix A satisfies (4.1) and Assumption 1. Then the steplength αSDC

k satisfies
Property A.

Proof Since the SD steplength αSD
k is such that

(
αSD

k

)−1 ∈ [λn, λ1] and the Yuan
steplength αY

k satisfies (1.5), condition (i) holds for M1 = 2λ1. To prove that condition
(ii) holds, we take m0 = m, where m is the number of consecutive constant Yuan
steplengths in the SDC method, and M2 = 2. Now we assume that

G(k − j, l) ≤ ε,
(
μ

k− j
l−1

)2 ≥ M2ε, (4.2)
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for j ∈ {0, . . . , min{k, m0}}, l ∈ {2, . . . , n} and ε > 0. It follows from (1.5) that

α−1
k ≥

(
αSD

r

)−1
,

where r = max
{
i ≤ k : αi = αSD

i

}
, i.e., r is the index of the last iteration in which

the steplength was computed by using (1.3). Then, by recalling (1.7) we have

α−1
k ≥

(
αSD

r

)−1 = gT
r Agr

gT
r gr

=

n∑
i=1

(
μr

i

)2
λi

n∑
i=1

(
μr

i

)2

≥

l−1∑
i=1

(
μr

i

)2
λi

l−1∑
i=1

(
μr

i

)2 +
n∑

i=l

(
μr

i

)2

≥
λl−1

l−1∑
i=1

(
μr

i

)2

l−1∑
i=1

(
μr

i

)2 + ε

= λl−1

1 + ε/

(
l−1∑
i=1

(
μr

i

)2

) .

(4.3)

Since r ∈ {max{k − m0, 0}, . . . , k}, because of the second inequality in (4.2) we get

l−1∑
i=1

(
μr

i

)2 ≥ (μr
l−1)

2 ≥ 2ε,

and from (4.3) it follows that

α−1
k ≥ 2

3
λl−1.

This completes the proof. �

Remark 4.1 By reasoning as in the previous theorem we can prove the global and
R-linear convergence of a variant of the SDA method proposed in [14], obtained by
removing the requirement that the steplength not be greater than 2αSD

k .

5 Numerical experiments

In order to provide a clearer picture of the numerical behaviour of the SDC and
SDCM methods, we performed extensive numerical experiments, especially aimed
at verifying whether and how h and m affect the behaviour of the method, and if
monotonicity can be enforced without significantly degrading performance.

We considered two sets of test problems of type (1.1), with A diagonal, b = 0 and
dimension n = 104. For each set we defined

A11 = ξ, Ann = 1,
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with ξ = 104, 105, 106, and built the remaining diagonal entries of A so that κ(A) = ξ .
In the first set of problems, referred to as RAND, the diagonal matrix entries A j j , with
j = 2, . . . , n − 1, were randomly generated in [A11, Ann], while in the second set,
referred to as NONRAND, they were set as follows:

A j j = 10
ncond
n−1 (n− j),

with ncond = log10 ξ = log10 κ(A). For each problem, 10 starting points were
randomly generated with entries in [−5, 5]. We note that the RAND problems, as well
as the starting points, are those used in [11] to compare different gradient methods
(actually, larger condition numbers are considered here). However, we also decided
to use the NONRAND problems in order to test our methods on a class of quadratic
problems on which the SD method exhibits very slow convergence (by running the
SD method on an instance of the RAND and NONRAND problems with condition
number κ(A) = 106, we got, for tol = 10−6, 3321 iterations in the first case, and
more than 100,000 iterations in the second case).

The SDC and SDCM methods were run with different values of h and m, i.e., all
the combinations of h = 10, 20, 30, 40, 50 and m = 2, 4, 8. We neglected smaller
values of h to avoid too strong non-monotonicity. For comparison purposes, the DY
method considered in the previous section was also run. We did not run other gradient
methods, since their performance is usually not superior than the one of the DY
method [11,14]. The stopping criterion (3.11) was used by all the methods, with
tol = 10−6, 10−9, 10−12; a maximum number of 25,000 iterations was also set, but
it was never reached in our experiments.

All the methods were implemented in Matlab (v. 8.0 - R2012b). The random diag-
onal entries of the matrix A in the first set of problems, as well as the starting points,
were generated by using the Matlab rand function.

In Tables 3 and 4 we report the number of iterations performed by the SDC and
DY methods on each RAND and NONRAND problem, averaged over the 10 runs
with different starting points. The last row in each table is obtained by adding up the
iterations performed on all the problems. We see that SDC exhibits a quite surprising
monotonic behaviour for all the selected combinations of h and m (i.e., SDC and
SDCM coincide), except h = 10 and m = 8. In the latter case, the number of SDCM
iterations, reported in brackets, is comparable with the number of SDC iterations.

As expected, the RAND problems are easier to solve than the NONRAND ones.
However, SDC does not perform as bad as SD on the NONRAND problems, and
actually the number of total iterations increases by at most a factor of 2.2 when moving
from the RAND to the NONRAND problems. For the SDC method, the overall worst
performance occurs for h = 10, which is likely to produce a Yuan steplength providing
an approximation of 1/λ1 that is not accurate enough. In this case the choice of m
appears crucial, as we can see by comparing the results for m = 2, 4 with those for
m = 8. The largest value of m is able to make up for the effects of using a small
value of h, though producing non-monotonicity. For the other values of h, m = 8
is often less favorable than the other values of m, especially if high accuracy in the
solution is required. This is in line with the previous observation that a large value
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of m is unnecessary, or even counterproductive, when a sufficiently large value of h
is selected. Our conjecture is that once a Yuan steplength has been able to eliminate
a gradient eigencomponent, a further use of such steplength (which is likely to be
smaller than the values of 1/λi corresponding to the remaining eigencomponents) can
only slow down the method. For h ≥ 20, setting m = 2, 4 leads to comparable results,
with differences of less than 10 % in the total number of iterations; using m = 8
generally does not pay, especially for the NONRAND problems. The largest value of
h generally becomes more effective on the most ill-conditioned problems when high
accuracy is required in the solution. On the other hand, when the condition number
is not too large and the accuracy requirement is not too high, smaller values of h
seem to be preferable. We believe that, when the problems are “easy” (i.e., they just
require a few hundred iterations), a large value of h is unnecessary to get a suitable
Yuan steplength, and actually it tends to increase the overall number of iterations. In
order to support this argument, we define a SDC sweep as the sequence of h SD steps
followed by m gradient steps with constant Yuan steplengths, and analyse the number
of sweeps required by the SDC method with different values of h. For instance, on the
RAND problem with κ(A) = 106 and tol = 10−6, SDC performs, on average, 5.8
sweeps for h = 50 and m = 4, and 7.3 sweeps for h = 30 and m = 4. However, the
number of SDC iterations is much larger in the first case (315 vs 249). In other words,
increasing h increases the number of iterations despite the reduction of the number of
sweeps.

Further experiments carried out on test problems with different dimensions (not
reported here for the sake of brevity) are consistent with the previous findings. In
particular, they show that the performance of SDC can seriously deteriorate only if
very small values of h are used with large problems and high accuracy requirements.On
the other hand, choosing m = 2 or m = 4 appears to be quite effective, independently
of the problem dimension.

Concerning the comparison between the DY and SDC methods, we note that SDC
performs worse than DY when the lowest accuracy is required. In the remaining cases,
SDC tends to outperform DY for h ≥ 20, with a saving in the number of iterations
which increases significantly with the condition number and the accuracy requirement.
This is a remarkable result, since the literature shows that, among the gradient methods,
DY exhibits the best overall numerical performance [11,14].

We conclude this section by observing that the ability of the SDC method to elim-
inate the eigencomponents corresponding to the largest eigenvalues, already pointed
out in Sect. 3, is confirmed by the experiments on the RAND and NONRAND prob-
lems. A clear picture of this feature of SDC is provided in Fig. 4, where the scalars

βk
i =

√√√√
i∑

j=1

(
μk

j

)2
, i = 1, . . . , n,

are plotted at the last iteration of the SDC method, with h = 30 and m = 8, applied
to specific instances of the RAND and NONRAND problems with κ(A) = 106 and
tol = 10−12. Such ability is especially apparent for the RAND problem, for which
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Fig. 4 RAND and NONRAND problems with κ(A) = 106: values of the scalars βi , i = 1, . . . , n, at the
last SDC iteration (tol = 10−12)

the size of the gradient at the last iteration (‖gk‖ � 10−5) is mainly determined by
the eigencomponents μk

i associated with few smallest eigenvalues.

6 Conclusions

We introduced a new gradient method, named SDC, for convex quadratic program-
ming, in which some SD iterates are alternated with some gradient iterates that use
a constant steplength based on the Yuan formula. The use of this constant steplength
is justified by its spectral properties, which dramatically speed up the convergence
of the SD method, by forcing a selective elimination of the eigencomponents of the
gradient (i.e., the components of the gradient along the eigenvectors of the Hessian),
starting from the one relative to the eigenvector with largest eigenvalue and proceeding
toward the eigencomponents associated with smaller eigenvalues. This behaviour is
quite different from that of other fast gradient methods, where the ability to reduce all
the eigencomponents at the same rate has been experimentally observed and consid-
ered as one of the main reasons for the effectiveness of such methods [11]. Actually,
such ability has been fostered by alternating long steplengths with short steplengths
[18,20,33]. This is in contrast with the behaviour of the SDC method, because the Yuan
formula tends to approximate the inverse of the largest eigenvalue of the Hessian, and
hence to produce quite small steplengths. In our opinion, such feature may provide a
twofold advantage to the method. Firstly, the monotonicity is quite naturally satisfied
if the number of SD iterates is not too small, as confirmed by our numerical results.
Secondly, it may improve the smoothing and regularizing effect observed for the SD
method used for certain ill-posed inverse problems [13].

Current work is devoted to extend the SDC method to box-constrained quadratic
problems and more general nonlinear optimization problems.
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