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Abstract

Motivation: The importance of RNA protein-coding gene regulation is by now well appreciated.

Non-coding RNAs (ncRNAs) are known to regulate gene expression at practically every stage, rang-

ing from chromatin packaging to mRNA translation. However the functional characterization of

specific instances remains a challenging task in genome scale settings. For this reason, automatic

annotation approaches are of interest. Existing computational methods are either efficient but non-

accurate or they offer increased precision, but present scalability problems.

Results: In this article, we present a predictive system based on kernel methods, a type of machine

learning algorithm grounded in statistical learning theory. We employ a flexible graph encoding to

preserve multiple structural hypotheses and exploit recent advances in representation and model

induction to scale to large data volumes. Experimental results on tens of thousands of ncRNA se-

quences available from the Rfam database indicate that we can not only improve upon state-of-

the-art predictors, but also achieve speedups of several orders of magnitude.

Availability and implementation: The code is available from http://www.bioinf.uni-freiburg.de/

~costa/EDeN.tgz.

Contact: f.costa@exeter.ac.uk

1 Introduction

In the early 2000s, a systematic analysis of transcription in human

cells (Willingham and Gingeras, 2006) found a significant discrep-

ancy between the observed transcriptional activity and the activity

predicted for protein-coding genes. It was shown that up to 90% of

the genome was being transcribed, but that only a minor portion of

RNA transcripts (1.5%) was encoding for protein open reading

frames. This finding was suggesting the presence of a ‘hidden layer’

of regulatory elements within the human and other eukaryal gen-

omes: the set of such RNA sequences was termed non-coding RNAs

(ncRNAs). Today it is known that there exist many types of

ncRNAs that have catalytic functions (like enzymes) or that play key

roles in both normal cellular processes and disease states. mapping

ncRNAs with The functional annotation of ncRNAs, either by in

silico or by experimental approaches, has since become a fundamen-

tal task in bioinformatics and biology. The identification of ncRNAs

is however a harder task than gene identification since one cannot

rely on the presence of strong statistical signals such as protein open

reading frames. In addition, the conservation of sequence informa-

tion in ncRNAs is subject to a lower evolutionary pressure than in

proteins. A significant component of the functionality of a ncRNA is

in fact due to its folding structure (Tinoco and Bustamante, 1999).

As a consequence ncRNAs evolve with a characteristic substitution

pattern that preserves base-pair interactions, resulting in compensa-

tory double substitutions (e.g. AU into GC) and compatible single

substitutions (e.g. AU into GU). To tackle the problem of ncRNA

identification and structural characterization we can however ex-

ploit both curated resources and experimentally determined
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secondary structure collections. The European Bioinformatics

Institute currently maintains the RFam database (Burge et al., 2013)

that gathers information about several thousands ncRNA families

defined on the basis of a shared common ancestor. Protocols like

SHAPE (Wilkinson et al., 2006) can then be exploited to improve

structure prediction tools (Deigan et al., 2009) as they offer, for a

single RNA sequence, in vitro evidence for the binding state of each

nucleotide. Although currently no technique exist that can extract

all functionally active ncRNA elements in a cell, there are protocols,

like hiCLIP (Sugimoto et al., 2015), that can identify double

stranded RNAs at transcriptome level. Crucially this information

can be used to uncover trans-acting regulation of ncRNAs and cis-

regulatory motives.

The amount of information on functional RNA structures will

likely keep on growing at ever increasing speed. There is therefore a

need for computational methods that can help characterize and or-

ganize ncRNAs at large and very large scale. In this article, we con-

sider the problem of building an in silico classifier to automatically

annotate a large set of putative ncRNA sequences. Tackling this

problem requires to address several key issues, among which that of

(i) efficiency, (ii) flexibility and (iii) robustness, that we detail in the

following.

We say that an approach is efficient if it can exploit large num-

bers (from thousands to hundreds of thousands) of RNA sequences

annotated with structural information in training and if it can be

applied to genomes or transcriptomes in their entirety.

We say that an approach is flexible if it can make use of inde-

pendent sources of information on ncRNAs structural properties. In

particular, it should be possible to model secondary structure infor-

mation derived from in vivo or in vitro experiments and/or derived

from computational approaches. Flexible solutions should ideally be

able to accommodate multiple structural hypotheses, uncertainty on

the hypothesis and complex information such as the presence of

pseudo-knots.

Finally, we say that an approach is robust if it can cope with un-

certainty on the ncRNA specification, in particular it should be able

to deal with imprecise boundaries, i.e. when the start and end of the

ncRNA is not known precisely. This issue is due to noise in the next

generation sequencing mapping phase which is a common and es-

sential step in the quantification of RNA expression. Imprecise

boundaries are known to cause folding algorithm to yield signifi-

cantly different structures (see Will et al., 2012).

In this work, we propose a machine learning based approach to

address all the aforementioned issues. Our method is efficient as it

exploits recent advances in representation (Costa and De Grave,

2010; Da San Martino et al., 2012b, 2016; Shervashidze et al.,

2011) and model induction (Bottou, 2010) to scale to large data vol-

umes. The system is flexible as it is operates via a kernel on a graph

representation that can encode arbitrarily complex information. We

guarantee robustness using a windowed approach that jointly con-

siders subsequences of different sizes and different starting positions.

Finally the method is precise and it can reliably distinguish among

sequences that belongs to known ncRNA families and sequences

that do not belong to any family, a key property when annotating-

omics datasets.

This article organized as follows: in Section 2 we review a variety

of approaches for the in silico prediction of ncRNAs functions; in

Section 3 we present our approach, explaining the various strategies

to extract structural information and how to encode it in a graphical

format suitable for processing by an efficient graph kernel; finally in

Section 4 we empirically investigate the sensitivity/specificity trade

off and compare the proposed approach to strong popular baselines.

2 Related works

Amongst the most prominent approaches to model functionally

related ncRNA sequences we can distinguish those that need to per-

form comparative genome analysis (Parker et al., 2011), and those

that require in input only sequences of nucleotides. In this work we

consider the latter case. Amongst these we can identify approaches

that are based exclusively on sequence information, only on struc-

tural conformations or that can take both sources of information

into account.

Sequence-based approaches have the advantage of being compu-

tationally efficient, but they are not suited to detect evolutionarily

distant homologies, as they cannot relay on the more conserved

structural information, and suffer therefore from elevated false

negative error (Will et al., 2007; Wilm et al., 2006).

Purely structural approaches are based on the folding structure

topology and ignore the nucleotide composition information. In

Childs et al. (2009), the authors extract a number of graph proper-

ties, defined over the graph representation of the minimum free en-

ergy (MFE) conformation. These approached have the advantage of

being applicable to highly dissimilar sequences, but, in addition to

being computationally expensive, they incur in a high false positive

error as sequence-specific clues are ignored (as an example just con-

sider miRNA families which cannot be distinguished since they all

form a single hairpin). For these reasons we do not discuss further

these approaches.

Approaches that combine both structural and sequential infor-

mation try to reach a better compromise between sensitivity and spe-

cificity. These methods range from more sophisticated graph kernels

(Sakakibara et al., 2007) to the state-of-the-art INFERNAL

(Nawrocki et al., 2009). Often these approaches have a strong mod-

eling bias. INFERNAL for example does not cope well with variable

sub-structure sizes (Mosig et al., 2009) and suffers from severe scal-

ability problems as it requires (i) the pre-computation of the align-

ment of all the input sequences and (ii) a computationally expensive

calibration phase; graph-kernel-based methods commonly require

the pairwise evaluation of a similarity notion between structures,

yielding a computational complexity of Oðn2Þ which prevents appli-

cations to large scale settings.

2.1 Sequence-based methods
The most popular sequence identification method is BLAST

(Altschul et al., 1990) that compares a sequence of interest q to a

large database of sequences, to yield the closest matches. To do so,

BLAST identifies compatible k-mers (subsequences of length k) and

then expands the matching regions to find increasingly larger k þ i-

mers until maximal matching regions are found. BLAST can be used

to predict family membership by using the similarity notion it de-

fines in a k-nearest neighbors predictive system. With respect to the

characteristics of efficiency, flexibility and robustness: BLAST is

relatively efficient (linear complexity although with high constant

factors due to the k-mer approximate matching); it is not flexible as

it does not consider structural information; it is robust as it will try

to find locally matching cores within the larger query sequence.

2.2 Sequence-structure-based methods
Predictive power is increased when considering structure informa-

tion, but the computation of the true secondary structure of an RNA

sequence is not an easy task. Even the most accurate predictors,

based on experimentally tabulated energy models, when predicting

the optimal MFE structure do not always obtain accurate results

(Ding and Lawrence, 2003). Rather than considering a single answer
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one could allow for multiple hypothesis to co-exist. The true struc-

ture is in fact likely to be among the set of the best sub- optimal

structures. However, considering the whole ensemble of alternatives

incurs in exponential costs (Hofacker and Schuster, 1999), which

would negatively impact efficiency.

2.2.1 INFERNAL

Among the methods that consider the secondary structure informa-

tion, the most popular one is INFERNAL (Nawrocki et al., 2009).

The tool is based on a variant of profile stochastic context-free

grammars called covariance models (CMs). INFERNAL starts from

an alignment and a pre-computed consensus structure, i.e. a second-

ary structure shared by sequences in the same family. CMs are

closely related to profile Hidden Markov Models (HMM) (Yoon,

2009), as they both capture position-specific conservation informa-

tion. However, in a profile HMM each position of the profile is

treated independently, while in a CM base-paired positions are

inter-dependent. Indeed, for many of these base-pairs, it is not the

specific nucleotides that make up the pair that is conserved by evolu-

tion, but rather the fact that the pair maintains Watson-Crick base-

pairing. With respect to the requirements of efficiency, flexibility

and robustness, INFERNAL does not scale to large settings, both in

training, since alignments of more than a few hundred sequences do

not generally yield meaningful results, and in testing (see the

Experimental sections); it is not flexible as it implements its own

folding algorithm and hence cannot take experimental folding clues

or multiple folding hypothesis into consideration; it is not robust

since it relies on a global alignment procedure that usually breaks if

sequence boundaries are misspecified.

2.2.2 Kernel methods

In the last decade, progress has been made in the Machine Learning

and Data Mining community to extend the input data type from

fixed size vectors to more flexible formats, ranging from sequences,

to trees and finally to graphs. A successful paradigm has emerged in

the field of supervised learning that makes use of linear models with

good generalization properties (i.e. support vector machines [SVM];

Boser et al., 1992) which can be easily extended both to structured

input and to a non-linear setting using the so-called kernel-trick

(Aizerman et al., 1964), i.e. an implicit mapping into a very high-

dimensional space (referred as feature space) expressed via a suitable

dot product between two examples.

To deal with entities represented as graphs, a variety of graph

kernels have been proposed in literature. Different notions of simi-

larity are obtained choosing diverse types of substructures to con-

sider, ranging from paths to small subgraphs.

Stem kernel. Stem kernel (Sakakibara et al., 2007) is a natural

extension of the all-subsequences string kernel (Shawe-Taylor and

Cristianini, 2004) for RNA sequences. The feature space of the all-

subsequences string kernel is defined as all the possible subsequences

of the input string, both the contiguous and non-contiguous ones.

For example, two RNA sequences CUG and CAU have four com-

mon subsequences: � (the empty string), C, U and C-U, where - rep-

resents the bond between two nucleotides. Note that the characters

in a subsequence do not need to be contiguous. The all-

subsequences kernel calculates the inner product of the feature vec-

tors by counting all common subsequences (considering gaps). The

Stem kernel is a simple kernel for RNA secondary structures that

maps them in a feature space representing all the possible base pairs.

The kernel calculates the inner product in the feature space impli-

citly, starting from RNA sequences, thus no additional information

about the secondary structure is needed. The computational com-

plexity of calculating the Stem kernel between two RNA sequences

of length n is Oðn4Þ.
Marginalized kernel on RNA sequences. Karklin,Y. et al. (2005)

proposed the application of marginalized kernel to RNA sequences

represented as a labeled dual graph. In this representation, every

node represents helical regions (sequences of paired nucleotides) and

the edges represent the loops (sequences of non-paired nucleotides).

This representation uses only the information about the pairing of

the nucleotides in the sequence, discarding the information about

the type of structure (stems, hairpins, bulges and internal loops) and

resort to an implicit way to encode it in final graph. A marginalized

kernel (a kernel that counts the common random walks between

two graphs) is then applied on these graphs. The computational

complexity on RNA sequences of length n is Oðn3Þ. With respect to

the requirements of efficiency, flexibility and robustness, marginal-

ized graph kernels do not scale, both because of the high per-

sequence cost and because of the quadratic cost of a pairwise simi-

larity evaluation; they are not very flexible as they commit to a spe-

cific way to compute all structures and cannot easily take into

account experimental evidence to bias structural hypothesis; finally,

they are not robust since the structure computation yields signifi-

cantly different structures when boundaries are misspecified.

3 Materials and methods

In this section, we detail how to derive a sparse vector representa-

tion for ncRNAs using an explicit graph kernel (Costa and De

Grave, 2010; Da San Martino et al., 2016) that can then be used dir-

ectly for classification tasks e.g. by efficient Stochastic Gradient

Descent SVMs.

3.1 Graph kernel
We adopt the recently introduced (Costa and De Grave, 2010) fast

kernel called Neighborhood Subgraph Pairwise Distance Kernel

(NSPDK), since this kernel is suitable for large datasets of sparse

graphs with discrete vertex and edge labels. Here, to increase effi-

ciency, we choose an explicit version that materializes all the fea-

tures in a sparse vector representation. The NSPDK kernel considers

as features, all pairs of small subgraphs (neighborhood subgraphs up

to radius r�) that can be connected by a shortest-path of length at

most d�. The hyper parameters r� and d� are user-defined and in

practice are small integers (<10). The type of features that the

NSPDK is considering, when considering graphs encoding RNA

structures, is depicted in Figure 2. The NSPDK kernel between two

graphs is defined as the sum of the products between the counts of

matching features (for all radii and distances). Note that this compu-

tation requires to solve the (rooted) graph isomorphism problem.

Since running an exact isomorphism test is computationally expen-

sive, the authors propose to substitute the test with a more efficient

graph invariant computation (see Costa and De Grave, 2010 for fur-

ther details).

More formally, let G ¼ ðV;EÞ be a graph, with VG being the set

of vertices and E ¼ fðu; vÞju; v 2 Vg the set of edges. Two vertices

are adjacent if there is an edge connecting them. A path is an alter-

nating sequence of vertices and edges, starting and ending at a ver-

tex, in which each edge is adjacent in the sequence to its two

endpoints. The shortest-path distance between two vertices u and v

is the number of edges in the shortest path connecting them. The

neighborhood of radius r of a vertex v 2 VðGÞ is the set of vertices

at a distance less than or equal to r from v. In a graph, an induced
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subgraph of a set of vertices W is the graph that have W as vertices,

and contains every edge of the original graph whose endpoints are in

W. The neighborhood subgraph of radius r of a vertex v is the sub-

graph induced by the neighborhood of radius r of v. It is denoted by

Nv
r ðXÞ. Two graphs G and G0 are said to be isomorphic if it exists a

bijection f : VðGÞ ! VðG0Þ such that ðu; vÞ 2 EG if and only if

ðf ðuÞ; f ðvÞÞ 2 VG0 .

We define a relation Rr;dðAu;Bv;GÞ between two rooted graphs

Au, Bv and a graph G to be true if both Au and Bu are in fNv
r jv 2

VðGÞg (where the set inclusion is up to isomorphism) and the

shortest-path distance between u and v in G is exactly d. In other

words, the relation is true for all pairs of neighborhood graphs of ra-

dius r whose roots are at distance d in a given graph G. We define

the NSPDK kernel as:

Kr�;d�ðG;G0Þ ¼
Xr�

r¼0

Xd�

d¼0

X

Av;Bu 2 R�1
r;d ðGÞ

A0v;B0u 2 R�1
r;d ðG0Þ

dðAv;A0vÞ d ðBu;B0uÞ

where d is the Kronecker delta function. The computational com-

plexity of the kernel is OðjVjjVr� jjEr� j log jEr� jÞ, where jVr� j and jEr� j
are the maximum number of nodes and edges, respectively, among

the subgraphs of radius at most r�.

3.2 Explicit feature representation
The idea here is to materialize the implicit feature encoding which is

key to obtain linear efficiency in the classification phase. Differently

from (Costa and De Grave, 2010), we here make use of the integer

code for the invariant graph encoding as a feature indicator (Da San

Martino et al., 2012a; Frasconi et al., 2014). In this way we can in-

terpret the integer associated to each feature (i.e. each pair or neigh-

borhood subgraphs of radius r whose roots are at distance d) as the

feature key and the (normalized) count of occurrences as its value.

This allows us to obtain an explicit feature encoding for a given

graph G as a sparse vector in Rm (with a very high dimensionality

m). The feasibility of the approach lies in the fact that the encoding

does not produce an exponential number of features, as it would

happen with most graph kernels that enumerate all possible general

subgraphs. Instead NSPDK limits the number of non-zero features

to Oðr�d�jVðGÞj2Þ, i.e. one feature for each pair of vertices times

each possible combination of values for the radius and the distance.

Note that typically r� 2 ½0; 5� and d� 2 ½0; 10� and hence the multi-

plicative factor is �5� 50. Moreover for sparse graphs the number

of vertices that are reachable within fixed small distance is typically

small (depending on the average degree) so that the dependency on

the vertex set size can be more tightly approximated by OðjVðGÞjÞ.
As a result each graph is mapped into a sparse vector that lives in a

very high-dimensional feature space but that has a number of non-

zero features which is a small multiple of the number of the graph’s

vertices.

3.3 Multiple structures representation
There are several ways to represent RNA secondary structures,

including the bracketed representations (where nucleotides are con-

verted to nodes and bonds to edges), and tree representations (where

base pairs are converted to ‘stem’ nodes and loop nucleotides are

converted to ‘loop’ nodes). Each representation has different advan-

tages and disadvantages including information loss and complexity

of calculation (Fera et al., 2004). In this article, we chose to adopt a

loss-less representation where nodes represent nucleotides and edges

are the bonds between them, either of the backbone type or of the

binding type.

It is known that the predicted MFE structure is often not the one

that is truly active in the cell (Ding and Lawrence, 2003). To address

this issue we allow multiple suboptimal solutions. Given that the

number of suboptimal solutions grows at an exponential rate w.r.t.

the free energy threshold, one needs to resort to some strategy to se-

lect a small subset representative of the overall structure landscape.

To this end we follow RNAshapes (Giegerich et al., 2004). The idea

is to select structures that have fundamental differences. RNAshapes

formalizes the notion of abstract shape and allows the efficient com-

putation of the representative structure of minimal free energy

within each abstract shape class, which is advantageous since the

number of different shapes is considerably smaller than the number

of different structures. The abstraction procedure preserves hairpins

and multi-loops, but abstracts notions such as the primary sequence,

stack lengths, bulges, internal loops and single-stranded regions.

RNAshapes supports five different abstraction levels, allowing the

preservation of more details up to all loops and unpaired regions.

As an example, we report the different shape abstractions for the

same sequence used in Steffen et al. (2006), where the underscore

symbol ‘_’ stands for unpaired region and the brackets ‘[]’ stand for

a stem region:

AUCGGCGCACAGGACAUCCUAGGUACAAGGCCGCCCGUU

.(((.((.(((. . ..))).(((. . ..)))))))).

Given a fixed shape abstraction level we follow (Giegerich et al.,

2004) and consider all possible shapes in which a sequence can fold.

Since many structures can have the same shape, we select as the

unique representative of the shape the MFE configuration, called the

shrep (for shape representative). We rank all the shreps and consider

only the k most energetically favorable ones. Both the abstraction

level and the value for k are considered as hyper parameters to be

optimized during the model selection phase.

3.4 Misspecified sequence boundaries
Although the abstract shape approach protects against committing

to a single wrong structural hypothesis, we still have to address the

problem of uncertainty on the exact sequence boundaries. This

problem does not only arise in the case of genome annotation but

can also manifest itself in the case of transcriptomic data do to

noise in the reads decoding and in the mapping process.

Uncertainty in the sequence boundaries has important conse-

quences since folding algorithms are not robust to this type of

noise and can yield drastically different structures when a few nu-

cleotides are added or removed from the beginning or end of the

sequence. To achieve robustness we adopt a multi-windowed ap-

proach: instead of considering only the full sequence we consider

the set of all subsequences obtained from a sliding window ap-

proach. Instead of committing to a single window and shift size,

we iterate the sliding window approach for multiple values of the

window (a fix the shift to a fraction of the size). Each resulting sub-

sequence is then folded using the RNAshapes approach detailed in

the previous section, yielding k suboptimal graphs per

Shape_Type Result

1 _[_[_[]_[]]]_

2 [_[[][]]]

3 [[[][]]]

4 [[][]]

5 [[][]]

An efficient graph Kernel method for non-coding RNA functional prediction 2645
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subsequence. The disjoint union of all the graphs constitutes the

final graph encoding for the original sequence. Figure 1 depicts the

windowing approach, where in bold we represent the original se-

quence retrieved from Rfam.

Note that the window size (ranging from 25 to 100 nucleotides

in our experiments) influences the locality of the structural features

that the method is aware of: larger window sizes allow to capture

multi-loop structures, while smaller ones can only capture single

hairpin loops. In Figure 1 we give an example of how the proposed

approach can correctly identify some of the true hairpins that are

not detected when folding the entire sequence.

3.5 Stacking base pairs
It is known that quadruplets formed by two consecutive stacking

base pairs carry considerable information about the stability and

hence likelihood of the corresponding stem structure. To better en-

code this type of information we introduce additional vertices with a

non-informative label and link them to each of the four nucleotides

of the stack; in this way the neighborhood subgraphs features cor-

respond exactly to individual stacking base pairs (see Fig. 2).

4 Experimental analysis

We cast the ncRNAs annotation task as a multiclass problem where

each class is a functionally distinct set of ncRNAs. We adopt the one-

versus-all multiclass formulation and evaluate the predictive perform-

ance using the area under the precision/recall curve (APR) which is

more informative in highly unbalanced tasks than area under the

curve for the receiver operating characteristic (AUC ROC).

4.1 Robustness analysis
4.1.1 Dataset construction

We extract data from Rfam (Gardner et al., 2011), a database that

catalogs ncRNAs using curated sequence alignments and CMs.

ncRNA sequences are grouped in ‘families’ if they share the same

function and have a clear common ancestor. Out of the total set of

2588 Rfam families we selected a subset of families that could sat-

isfy the following requirements. (i) A family should have a number

of members that allows statistical learning, we therefore selected the

families with at least 100 sequences. ncRNAs typically have a length

in the range of 40–400 nt. As current structural prediction tools be-

comes unreliable for sequences that exhibit interactions spanning

more than 150 nt (Lange et al., 2012), we selected families with an

average sequence length <150 nt. (ii) To study the robustness of

various approaches we added noise to each sequence boundary by

adding a random number of nucleotides both on the left and on the

right of the sequence. The padding is constructed so as to respect the

nucleotide frequency of each specific sequence, while the length of

the added noisy context varies from 0 to the necessary number of

nucleotides so as to obtain sequences of the same length of 250,

Fig. 1. Summary of the proposed approach. (a) Folding obtained for the complete (signal þ padding) sequence; (b) folding for the signal sequence alone. The pro-

posed approach splits each sequence in overlapping windows. The procedure is iterated for different window sizes. (c) Folding for the first 20 nt of the sequence.

Note that in this window contains only random context. (d–f) Foldings for window size 20, 30 and 40, respectively. The resulting graph is the disjoint union of all

the graphs produced by the windowing approach combined with the RNAshapes multiple folding strategies

Fig. 2. RNA secondary structure encoding and graph kernel features. (A) The

graph encoding includes nucleotide information (vertex labels) and binding

information (edge labels), here depicted with different shades of gray to dis-

tinguish backbone links from base pairing. (B) Additional vertices are inserted

in order to induce features related to stacking base-pairs quadruplets (thin

light gray vertices at the center of each stacking pair). Right: example of fea-

tures induced by the graph kernel NSPDK for a pair of vertices u, v at distance

3 with radius 0,1,2. Neighborhood graphs are enclosed in dashed ovals
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300, 350 and 400 nt. In this way we can control for the confounding

effect of the sequence length which could otherwise be used by a

learning algorithm as a discriminative feature to identify specific

families. (iii) To control for near rote learning and test for the gener-

alization capacity we split each family in three subsets: one for train-

ing, one for validation and one for testing, ensuring that no

sequence in the validation and test splits had sequence similarity

>50% with any other sequence in the training split. The families

that yielded an empty validation or test set under these requirements

were discarded. Note that the validation set was used only to tune

the hyper-parameters of the learning algorithm, while the test set

was used to derive an unbiased estimate of the predictive perform-

ance. In Table 1 we report the 47 Rfam families that satisfied all the

requirements. The average number of examples per class (including

training, validation and test sets) is 367, with a maximum of 1270

examples and a minimum of 105, for a total of 17 270 sequences.

Table 1. Predictive performance estimate (APR) for the baseline methods BLAST and INFERNAL and our approach on the dataset of se-

quences of original length and fixed (padded) length of 200 nt

Class Rfam No. Average Original len. Padding to 200 nt

ID class seq. len. BL IN Our BL IN Our

1 RF00001 1180 104 6 27 0.59 0.85 0.81 0.61 0.92 0.78

2 RF00005 703 114 6 26 0.52 0.02 0.57 0.49 0.41 0.50

3 RF00015 1056 121 6 27 0.88 0.57 0.99 0.89 0.98 0.99

4 RF00016 222 105 6 27 0.5 0 0.59 0.5 0 0.78

5 RF00019 1225 110 6 6 0.6 0.96 0.81 0.61 0.98 0.72

6 RF00020 264 117 6 5 0.54 0.95 0.8 0.54 0.85 0.74

7 RF00026 318 105 6 4 0.55 0.98 0.91 0.49 0.96 0.85

8 RF00029 572 92 6 24 0.55 0.89 0.90 0.57 0.73 0.85

9 RF00031 233 65 6 4 0.51 0.62 0.15 0.51 0.07 0.11

10 RF00050 146 132 6 20 0.56 0.78 0.90 0.56 0.83 0.98

11 RF00059 594 106 6 19 0.6 0.99 0.89 0.6 0.88 0.93

12 RF00066 238 60 6 7 0.54 0.88 0.97 0.47 0.90 0.81

13 RF00097 340 102 6 13 0.51 0.91 0.22 0.51 0.91 0.2

14 RF00140 124 99 6 14 0.57 0.87 0.85 0.61 0.81 0.83

15 RF00156 290 120 6 19 0.52 0.86 0.91 0.52 0.95 0.91

16 RF00162 111 143 6 15 0.5 0.81 0.65 0.5 0.73 0.6

17 RF00163 287 45 6 2 0.51 0.78 0.91 0.54 0.66 0.43

18 RF00169 195 99 6 2 0.52 0.95 0.84 0.52 0.87 0.73

19 RF00263 109 115 6 20 0.5 0.88 0.14 0.5 0.77 0.56

20 RF00322 195 107 6 21 0.54 0.91 0.81 0.55 0.96 0.9

21 RF00406 165 132 6 4 0.52 0.88 0.75 0.27 0.69 0.81

22 RF00409 1168 138 6 3 0.88 0.98 0.97 0.91 0.92 0.98

23 RF00420 428 121 6 4 0.55 0.97 0.9 0.55 0.92 0.89

24 RF00504 583 99 6 22 0.53 0.95 0.97 0.85 0.85 0.98

25 RF00557 142 142 6 19 0.53 0.88 0.8 0.53 0.87 0.89

26 RF00560 292 129 6 6 0.65 0.93 0.91 0.65 0.88 0.95

27 RF00619 185 117 6 15 0.53 0.94 0.67 0.36 0.92 0.49

28 RF00645 110 123 6 20 0.61 0.85 0.83 0.61 0.73 0.89

29 RF00655 234 105 6 9 0.58 0.89 1.00 0.53 0.71 1.00

30 RF00779 248 82 6 20 0.52 0.88 0.94 0.57 0.9 0.99

31 RF00875 233 82 6 3 0.55 0.91 0.94 0.64 0.85 0.95

32 RF00876 124 86 6 4 0.52 0.89 0.90 0.44 0.94 0.73

33 RF00906 1270 137 6 20 0.54 0.99 0.97 0.54 0.99 0.96

34 RF00989 283 114 6 8 0.55 0.89 0.89 0.58 0.8 0.96

35 RF01016 524 119 6 5 0.65 0.96 1.00 0.64 0.89 1.00

36 RF01028 140 70 6 17 0.53 0.89 0.99 0.56 0.99 0.99

37 RF01055 105 148 6 16 0.5 0.77 0.63 0.5 0.82 0.72

38 RF01059 952 102 6 13 0.54 0.98 0.99 0.53 0.97 1.00

39 RF01063 198 88 6 15 0.51 0.88 0.98 0.53 0.7 0.87

40 RF01699 223 111 6 33 0.54 0.87 0.84 0.54 0.67 0.93

41 RF01705 152 99 6 28 0.5 0.73 0.87 0.51 0.52 0.85

42 RF01725 148 107 6 8 0.5 0.69 0.56 0.51 0.35 0.56

43 RF01731 119 140 6 38 0.52 0.89 0.66 0.27 0.5 0.76

44 RF01734 110 73 6 12 0.5 0.80 0.56 0.50 0.50 0.2

45 RF01739 125 94 6 30 0.5 0.82 0.84 0.5 0.5 0.76

46 RF01942 491 103 6 14 0.58 0.97 0.87 0.63 0.52 0.93

47 RF02012 116 135 6 12 0.5 0.84 0.69 0.5 0.5 0.85

AVG 367 112 6 23 0.55 �0.84 0.80 0.55 0.76 �0.79

Note: BL, blast; IN, infernal; Our, our proposed approach. The methods with * perform significantly better than the other ones.
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4.1.2 Experimental results and discussion

We evaluated the predictive performance of our method in compari-

son to the two baselines presented in Section 2.1. Other methods

presented in Section 2.2.2 have not been evaluated since their com-

putational complexity is too high for the large scale setting we are

interested in.

We first tested if the sequence length is alone a significant pre-

dictor for family membership. Using a k-nearest neighbor classifier

exclusively on the sequence length yielded an average APR of only

0.09.

We then considered as a baseline BLAST. To classify a sequence

s, we query the training database to obtain the k highest matches

(where k is an hyper-parameter of the method). Each retrieved se-

quence counts as a vote for the class it belongs to and the prediction

is then obtained via the majority vote. The second baseline is based

on an INFERNAL model (see Section 2.2.1) for each family. The se-

quences in each family are aligned with the sequence alignment pro-

gram MUSCLE (Edgar, 2004) and a consensus structure is identified

with RNAalifold (Hofacker et al., 1989), finally we built a cali-

brated CM with INFERNAL. In this way, given some representative

sequences in the training set, we generate a model for each family.

INFERNAL can then estimate the probability of a query sequence

w.r.t. each model. As a prediction we consider the model with the

highest confidence. Finally, for our proposed method, described in

Section 3, we trained a multi-class SVM using the one-versus-all ap-

proach. As learning procedure, we adopted the Stochastic Gradient

Descent because it is very fast compared with more classic algo-

rithms (e.g. SMO) while achieving very similar predictive perform-

ances (Zhang, 2004). For the assessment of the classification

performance, we considered the area under the Precision/Recall

curve (APR) measure. After preliminary experiments, we fixed the

shape type parameter t of RNAshapes to t ¼ 4. We optimized the

other hyper parameters of RNAshapes using a grid-search approach.

We validated the parameter w controlling the window size in the set

{75, 100}. The parameter M controlling the number of foldings gen-

erated from each fragment has been validated in the set {2, 3}. Note

that the performance of the kernel methods can be further improved

considering, for example, multiple window sizes at the same time.

However, this approach would increase the parameter space of the

method, and thus we decided to leave this approach as a future

work. Finally, for each dataset the kernel parameters have been opti-

mized using a grid-search approach on the following sets:

r ¼ f1;2; 3g, d ¼ f3; 6g. Thus, a total of 6 kernel parameter config-

urations have been tested, that combined with the RNAshapes par-

ameters gives a total of 24 possible parameter configurations for the

proposed method. Finally, the a parameter of the SGD has been vali-

dated in the set f10�1; ::;10�7g.
In Table 1 we report the experimental results on the test set for

the original dataset, and for the dataset where padding has been

added to each sequence (up to 200 nt). We start our discussion con-

sidering the dataset where no padding has been added. In this case,

INFERNAL is the best performing method. This is not a surprise

since the dataset we consider comes from the Rfam database, where

the INFERNAL tool is used to discover the sequences belonging to a

family, starting from a small set of manually aligned seeds (see

Section 4.1.1). However, in this setting our proposed method shows

predictive performances that are close to the INFERNAL ones.

Moreover, the computational time required from our proposed

method is considerably lower that the one of INFERNAL, as will be

detailed in Section 4.3. Let us consider the dataset with padding to

200 nucleotides. Surprisingly BLAST performs well for a few RNA

families. Indeed, for some ncRNA families the sequence carries

enough information about the function. In these cases, it’s useless to

apply techniques that consider the secondary structure because of

the additional computational complexity. Moreover in these cases,

considering the structure may also introduce additional noise to the

data, resulting in a decay in classification performances. This hap-

pens in the classes 9 and 44 in our dataset. However, for the major-

ity of the classes, the approaches that considers secondary structure

information (INFERNAL and NSPDK) achieve significantly higher

classification performance w.r.t. BLAST. The comparison between

INFERNAL and the NSPDK is tighter: INFERNAL wins in 18 cases,

while NSPDK wins in 27 (on class 36 the performances for the two

methods are the same). On average, the APR value on the test set for

BLAST is 0.55, for INFERNAL it is 0.76 while for the NSPDK ker-

nel is 0.79. In order to assess if the difference in performance among

the proposed method and the considered baselines is statistically sig-

nificant, we performed a Wilcoxon signed-rank test (Wilcoxon,

1945). We consider the performance difference significant if the

one-tail test results in a P-value <0.05. Both INFERNAL and the

proposed method perform significantly better than BLAST in all the

considered settings. INFERNAL performs significantly better than

our proposed method when no padding is present (as expected: we

recall that the dataset is biased in favour of INFERNAl), while our

proposed method performs significantly better than infernal when

considering padding to 200 nucleotides. We than analyzed what

happens when we increase the size of the padding. Table 2 summar-

izes this set of experiments. We can see that, adding more and more

padding, the predictive performances of the two methods

(INFERNAL and our proposed method) decrease. However, our

proposed method shows constantly higher AUC with respect to

INFERNAL, showing that it is more robust to the noise in the

boundaries of the sequences. Also for these experiments, we com-

puted the same statistical test. The proposed method performs sig-

nificantly better than infernal with all the considering padding

lengths (with the only exception of length 300 nt, where the pro-

posed method performs better but the difference is not statistically

significant).

4.2 Genome simulation analysis
In this section, we present our second set of experiments, aimed at

assessing the robustness of the proposed method when in the dataset

there are non-functional RNA sequences, i.e. sequences that do not

belong to any ncRNA family.

4.2.1 Dataset construction

We started from the same dataset as in the previous section, fixing

the length of the sequences to 200 nucleotides. We want to generate

sequences that do not belong to any class, in order to mimick the

fact that in whole-genome analysis, the majority of the RNA is non-

functional or it does not belong to any known ncRNA family. To do

so, for each sequence in the dataset we generated a number t of shuf-

flings (possibly preserving the di-nucleotides, i.e. shuffling two nu-

cleotides at a time). We tested different values of t, i.e. 1,2,6,10,

obtaining increasingly difficult classification problems. Note that,

with t ¼ 1, we generated one shuffling for each sequence in the ori-

ginal dataset, and we considered the standard shuffling (i.e. we

shuffled the single nucleotides). For the other values of t, we gener-

ated the same number of single and di-nucleotide shufflings. Thus,

the number of samples in each version of the dataset is increasing.
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With t ¼ 1, the new dataset have the double the sequences as in the

original dataset, with t ¼ 2 three times and so on.

4.2.2 Experimental results and discussion

Table 3 reports the APR of the proposed method, together with the

INFERNAL baseline, on this set of experiments. In this setting, the

Infernal baseline performs poorly already with t ¼ 1. On the con-

trary, our proposed method is able to deal with such scenario. As ex-

pected, the predictive performances decrease increasing t. Overall,

this experiment shows that our proposed approach is robust to this

kind of noise, i.e. to the presence of sequences that do not belong to

any ncRNA family.

4.3 Computational runtime analysis
In this section, we discuss the computational requirements of the con-

sidered methods. We divide the computational times in the training

phase and the test phase. The training phase consists in all the oper-

ations that have to be performed in order to build the predictive

model, and that are executed only once. The test phase, on the con-

trary, comprises the step necessary to classify the test instances. For

the BLAST baseline the training phase consists in the computation of

some indices on the training sequences. The test phase consists in the

scanning of the target sequences against the training ones. This base-

line is very fast, and requires only few seconds to be computed (both

training and test phases) in all our experimental settings. INFERNAL

training phase requires to build a CM for each class, and to calibrate

it. Its test phase consists in the scanning (with the tool cmscan) of the

target sequences against the generated CMs. As for the proposed

method, its training phase consists in the feature generation for the

training and validation instances, the training of the classifier (one for

each parameter combination), and the parameter selection (via classi-

fication of validation instances). The test phase consists in the feature

generation for the test instances, and their classification (with SVM).

Let us start our discussion with the first experimental setting,

presented in Section 4.1. The training step for the INFERNAL base-

line on the dataset with no padding required �10 h; with a fixed

length of 200 nt, it required �20 h; with sequences of 350 nt, the

calibration phase required �90 h. The computational times required

for the test phase, for all the considered sequence lengths, are re-

ported in Table 2, fourth column. We can see that they are in the

order of several hours. Indeed, this is the slowest method we con-

sidered. As for the proposed method, with no padding the training

phase require at most 3 h for each parameter configuration. With se-

quences of 200 nt, the training phase required at most 4.5 h; increas-

ing the length to 350 nt, it required at most 6 h. The computational

times required by our proposed method for the test phase, are

reported in Table 2, fifth column. Our proposed method is very fast

on the test phase. Note that there are several techniques for speeding

up the training phase of kernel methods. For example, parameter es-

timation can be performed on just a subset of the training data.

Moreover, instead of a grid-search, a local search on the parameters

grid can be performed. Moreover, a single training procedure can be

performed considering all the parameter configurations at once

(Massimo et al., 2016). The exploration of these approaches is how-

ever out of the scope of this article, where we put emphasis on the

test times, and we leave the analysis of these techniques for a future

work. Concluding, the INFERNAL baseline and the proposed

method have comparable training times (in orders of magnitude),

due to the fact that many parameter configurations have to be vali-

dated for the proposed method. However, in the test phase, our pro-

posed method is thousands of times faster than INFERNAL.

We now discuss the second experimental setting, presented in

Section 4.2. For the case with t ¼ 1, Infernal training phase required

113 h. The scanning phase, as reported in Table 3, fourth column,

required 102 h. The performance of the method is poor, and it is

computationally very demanding, so we decided not to go further

with higher values of t. As for the proposed method, with t ¼ 1 the

training phase required 5.5 h; with t ¼ 2 the training phase required

overall at most 6 h. With t ¼ 6 it required 12 h, while with t ¼ 10

the computational time increases to 15 h. The computational times

required by the proposed method for the test phase are reported in

Table 3, fifth column. Also in this scenario, our proposed method is

very fast compared with INFERNAL.

5 Conclusions and future work

In this article we proposed a novel approach for non-coding RNA

functional annotation based on graph kernel techniques capable of

addressing the key requirements of (i) efficiency, (ii) flexibility and

(iii) robustness. An extensive empirical evaluation shows that (i) it is

possible to learn from tens of thousands of examples and test in lin-

ear time paving the way to efficient genome scale annotations; (ii) it

is possible to easily encode multiple windows and suboptimal fold-

ing structures to improve predictive accuracy; and (iii) it is possible

to be resilient to sequence boundary misspecification and obtain a

prediction accuracy that degrades gracefully with the increase in

noise level. Given the efficiency of the proposed approach we plan

to develop an efficient and easy to use web server to perform

ncRNA annotations for novel genomes. In the future we will investi-

gate the encoding of more complex structural information such as

the presence of pseudo-knots and how to include structural informa-

tion derived from experimental protocols such as SHAPE and

hiCLIP.

Table 3. APR results of INFERNAL and our proposed method, with

the presence of a ‘zero’ class containing random sequences

Sequences

length

APR test set Test times

IN Our IN Our

1� negatives 0.08 6 0.10 *0.76 6 0.11 102 h 2 h 32 min

2� negatives — 0.72 6 0.11 — 3 h 30 min

6� negatives — 0.70 6 0.12 — 3 h 40 min

10� negatives — 0.62 6 0.13 — 5 h

Note: The method with * performs significantly better than the other.

Table 2. APR results of INFERNAL and our proposed method, at the

increasing of noise around the real sequences

Sequences

length

APR on test set Test times

IN Our IN Our

original *0.84 6 0.10 0.80 6 0.10 7 h 30 min 15 min

200 0.76 6 0.11 *0.79 6 0.11 30 h 37 min

250 0.73 6 0.12 *0.78 6 0.11 48 h 43 min

300 0.73 6 0.13 0.75 6 0.11 75 h 46 min

350 0.69 6 0.11 *0.72 6 0.12 100 h 1 h 12 min

400 0.56 6 0.12 *0.68 6 0.13 127 h 1 h 30 min

Note: The method with * performs significantly better than the other.
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