
Abstract 

Real-time frequent pattern mining for business 
intelligence systems are currently in the focal area of 
research. In a number of areas of doing business, 
especially in the arena of supply chain management 
systems, real-time frequent pattern mining is in need. 
The need is being felt more due to the possibility of 
real-time knowledge discovery along with the gradual 
acceptance of technologies like RFID and grid 
computing and the huge amount of possibilities they 
promise for real-time decision making like supply-
chain optimization. In this paper, we describe a 
domain-independent heuristic, h1-max and a heuristic 
search algorithm, BDFS(b)-h1-max for real-time 
frequent pattern mining, even using limited computer 
memory. Empirical evaluations show that the 
techniques being presented can make a fair estimation 
of the set of the probable frequent patterns and 
completes the search much faster than the existing 
algorithms. 

1. Introduction 

In recent years, business intelligence systems are 
playing pivotal roles in fine-tuning business goals such 
as improving customer retention, market penetration, 
profitability and efficiency. In most cases, these 
insights are driven by analyses of historic data. The 
issue is, if the historic data can help us make better 
decisions, how real-time data can improve the decision 
making process [1] in a fast changing world, where 
real-time optimization techniques have become the 
focus of both academia and industry. Frequent pattern 
mining for large databases of business data, such as 
transaction records, is of great interest in knowledge 
discovery and data mining, since its inception by 
Agrawal et al. in 1993 [2]. An association rule is an 
expression of the form  X Y⇒  , where X and Y are 
sets of items. Such a rule reveals that the transactions in 
the database, containing items in X tend to contain 
items in Y, and the probability, measured as the 
fractions of the transactions containing X also 
containing Y, is called the confidence of the rule. The 
support of the rule, is the fraction of the total 
transactions that contain all items both in X and Y.

Researchers have generally focused on mining of 
frequent patterns as it is complex and the search space 
needed is colossal. A number of efficient algorithms 
have been proposed in this area in the last decade. 
However, most of the successful algorithms in this area 

have been bounded by their limitation of making the 
frequent pattern mining an offline analytical task. 
These algorithms stop only after finding the exhaustive 
(optimal) set of frequent patterns and do not promise to 
run under user-defined real-time constraints and 
produce some satisficing (interesting sub-optimal 
solutions) due to their limiting characteristics. Until 
recently, researchers have introduced techniques for 
real-time frequent pattern mining looking at its huge 
applicability in various facets of decision making and 
management [3-5]. One such area of thrust may be 
real-time optimization techniques in supply-chain 
management using real-time data from RFID detectors. 
A plethora of other areas of application demands real-
time frequent pattern mining. Among them, real-time 
customer relationship management, real-time 
recommender systems and real-time fraud detection 
systems and group-decision support systems are to 
name a few. However, all these real-time frequent 
pattern mining techniques have used a brute-force 
approach and have not incorporated any domain-
independent heuristic that enhances this real-time 
search for frequent patterns. 

In this paper, we introduce a heuristic named h1-
max and describe BDFS(b)-h1-max, a real-time 
heuristic search technique for real-time frequent pattern 
mining. This is an upgraded and enhanced version over 
the brute force version BDFS(b), as we use a heuristic 
search method in this version using the heuristic h1-
max. BDFS(b), in turn had been found to show 
substantial performance improvement over existing 
algorithms like Apriori, FP-Growth, Eclat, dEclat etc. 
when run to completion and outputs exhaustive set of 
frequent patterns[3-6] . 

The rest of the paper is organized as follows. In the 
next section, we discuss the importance of real-time 
frequent pattern mining in businesses, with a special 
reference to supply-chain management. In section 3, we 
provide a review of the previous work done in 
developing heuristics in frequent pattern mining. In 
section 4, we present the heuristic h1-max and in 
section 5, we introduce BDFS(b)-h1-max. Section 6 
contains the empirical evaluation of our algorithm. 
Finally we conclude the paper in section 7. 

2. Applications of Real-Time Frequent 
Pattern Mining in Business

With more and more companies maintaining 
customer and transactional databases and data 
warehouses, data mining has become an important and 
integral component of doing business in a global 
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context. In today’s scenario of the huge amount of data 
being maintained by the business houses and with the 
advent and progress of e-commerce, thousands and 
millions of data can easily take place in a single day. 
Embedded in these data is the valuable hidden 
knowledge about the behavior of the customers [7]. 
There are numerous areas where real-time decision 
making plays a critical role. One such area of focus is 
real-time supply chain management systems. 

In today's demanding business environment, timely 
access to data to generate business information is the 
key to competitive advantage. Real-time data at the 
right time (right-time data) may change operational 
processes and stimulate process innovation. However, 
real-time data feeds to legacy systems or ERP may not 
be productive. Adaptability may be enhanced if 
decision systems can access information at the right 
time based on real-time data (real-time analytics) which 
may be acquired from diverse sources (RFID, sensors, 
GPS, barcodes). The argument over format (electronic 
produce code or EPC, universal identifier code or UID) 
may continue but that should not inhibit the thinking 
pre-requisite for process innovation to make adequate 
use of (Figure 1) right-time data [8]. 

This level of information, properly controlled, 
creates the opportunity for effective management 
throughout the supply chain: whether it is reading the 
bar code on a product, tracking that product's 
movement through the network or capturing the data at 
various transit points throughout the chain. 

 
Figure 1. Connectivity of real-time data to process (real-time 
analytics) may improve decisional information   Source [8] 
 
The level of management control and real time decision 
making and the efficiencies this produces gives a return 
on investment from controlling processes real-time 
through a manufacturing line, to effective warehouse 
and inventory management, from tracking the 
movement of goods in the distribution and delivery 
chain with real-time product and shipment location 
dates, right through into the retail store and beyond. No 
major organization can ignore this return on 

investment. It has been estimated that companies, 
which generally spend about 10 percent of revenue on 
logistics and inventory overhead, could halve that by 
taking full advantage of effective supply chain 
management planning. Quite simply, 'increased 
information used effectively equals increased profits’ 
[9]. In the next 5 years or, more likely, in the next 25-
50 years, when we may migrate from adaptive to 
predictive status of operations, we will require other 
concepts and tools that may be unknown, today [8].  

There are numerous other areas where real-time 
decision making becomes important. These include 
areas like real-time customer relationship management 
and real-time recommender systems, real-time 
enterprise risk management [10], real-time fraud 
detection [11], real-time negotiations and other areas 
like real-time dynamic pricing. More than that, real-
time data mining will have tremendous importance in 
areas where a real-time decision can make the 
difference between life and death – mining patterns in 
medical systems. 
 
3. Previous Work Done 
A detailed discussion about the various algorithms of 
frequent pattern mining and their performance can be 
found in the literature surveys of frequent pattern 
mining [12, 13]. 

The most well known and influential algorithm is 
Apriori[14]. Many variants of this algorithm have been 
designed. Other ways of solving the problem were 
using various partitioning methods and sampling 
methods. Su & Lin [15] have concluded that the most 
salient features of these algorithms are their counting 
strategy, search direction and search strategy (figure 
2). 

 
Search Direction 
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Figure 2. Classification of prevailing algorithms 
 
Throughout the last decade, researchers have tried 

applying a number of heuristics for frequent pattern 
mining. A number of attempts have been made for 
proposing heuristics for frequent patterns, which, 
however have not been found to be as effective and 
accurate as expected to be [12]. The major areas of 
development of these heuristics are: a.) to formulate 
heuristics for forecasting the probable frequency of a k-
length pattern b.) to decide the switching from the 
horizontal database format to the vertical tid-lists 
depending on the database density c.) and also to 
predict the maximum number of candidate patterns and 
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the level till which frequent patterns for a given support 
threshold can occur.  

The heuristic proposed for shifting from the Apriori 
to the AprioriTid in the AprioriHybrid algorithm by 
[16] was found to fail in substantial number of cases. 
Another such attempt was done by [17] proposing a 
mixture of Apriori and Eclat and a switching between 
them in the Hybrid algorithm. None of these heuristics 
have, however, been able to grab the centre-stage of 
frequent pattern mining. 

Forecasting the probable frequency of pattern based 
on other patterns has been a central question in the 
arena of frequent pattern mining. One such attempt was 
to find frequencies of k-length frequent patterns based 
on the heuristically defined values of patterns of (k-1)-
length patterns as was done in DIC [18] used. 
However, later studies have found that the DIC 
heuristic was not performing as promised. Moreover, 
DIC landed up in counting much more number of 
candidate patterns than was actually expected. The first 
algorithm that had used a support lower bounding 
technique was MaxMiner and Apriori-LB as proposed 
by Bayardo [19]. Other than this, researchers have  
attempted have been to tightly forecast the number of 
candidate patterns that yet remain to be checked as has 
been proposed by [20]. 
 
4. Heuristic h1-max for Real-Time 
Frequent Pattern Mining 

Researchers have found that the problem of 
finding all frequent patterns from the database becomes 
complex as it is an exhaustive search and is NP-hard 
[21]. Moreover with increasing number of records in 
the database and with the increasing number of 
parameters, the search space becomes huge. Keeping 
these challenges of mining all frequent patterns in 
mind, our basic objective for in designing a heuristic 
will be as follows: 
   check lesser number of patterns for arriving at the 
total number of the frequent patterns once the search 
is completed 
  take lesser time to complete the search 
  will need a heuristic that will give us a solution set 
once the search for all frequent patterns is complete.  
  real-time performance of the heuristic search 
technique will be better than that of the brute force 
version as we are considering the patterns depending 
on their individual merit (where by merit we mean 
higher length patterns with a better promise or chance 
of being frequent).  

 
4.1 Heuristic h1-max 
 
The heuristic h1-max consists of finding a lower-bound 
value and estimating an upper-bound value of each k-
length pattern generated by merging two (k-1)-length 
patterns with common prefix and heuristically 
assigning a frequency to a pattern that can be said as 
heuristically frequent provided it satisfies the condition 
of being frequent as discussed later in this section. The 

support lower bounding technique that has been used is 
the lower bounding had been proposed by [19]  
 
 Lower Bound Support of a pattern.  

Let I = {xl, x2, … xn} be a set of distinct literals, called 
items. A set X ⊆  I is called an itemset. 

Let X, Y, Z⊆  I be itemsets then,  
Lower Bound support (X ∪ Y ∪  Z)  
= lb (X ∪ Y ∪  Z) 
≥  support (X ∪ Y) + support (X ∪ Z) – support (X) 
…………………(1) 
 
In practice, this lower-bound support value of a pattern 
can be obtained and used in the following way. Say, for 
example, we have a pattern abc by merging 2-length 
frequent patterns ab and ac. Then, the lower-bounded 
support value of this pattern abc will be given by 
equation (1) as follows: 
Lower-bound of support of abc = lb(abc) =support  
(ab) + support (ac) – support ( a)………………(2) 
However, for calculating the lower-bounded support 
value of a pattern, we should exactly know the 
frequency of two of its generating subsets (generating 
subsets are subsets from which the pattern was 
generated by merging) and also the frequency of the 
immediate common subset of these generating subsets. 
Nevertheless, researchers till now have suggested that 
we have to have the exact count of these required sets 
(in case of equation 2, we need to know the count of 
ab, ac and a), and hence not much mileage can be 
achieved by using the lower-bounded support value and 
predicting a pattern as frequent if the calculated lower-
bounded support value is found to be more than the 
given user-defined support threshold. In this context, 
we propose a heuristic upper-bounded value using 
which we can assign a heuristic frequency to a pattern. 
 
 Upper Bound Support of a pattern using 

heuristic h1-max 
Let I = {xl, x2, … xn} be a set of distinct literals, called 
items. A set X ⊆  I is called an itemset. 

Let X, Y, Z⊆  I be itemsets then,  
Upper Bound support (X ∪ Y ∪  Z)  
= ub (X ∪ Y ∪  Z)  
= h1 (X ∪ Y ∪  Z) 
= minimum {support(X ∪ Y), support (X ∪ Z) …} 

* k, 0  k  1…… (3) 
 
Here h1 is the heuristically calculated upper bound 

of the pattern (X ∪ Y ∪  Z) from the degrading 
factors of its immediate subsets. The upper-bound 
value using heuristic h1 is calculated using the support 
of its immediate subsets either found frequent or has 
been made heuristically frequent till the point of time 
when the upper bound support of the pattern under 
consideration is being calculated. If any subset 
becomes frequent at a later point of time, the upper 
bound value is updated. 

The degrading factor, k, of a pattern is defined as  
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k =  1  if pattern-length =2 
(  frequency of the pattern)

(  frequency of the pattern)

actual

estimated      for all other 
cases ……… (4) 

The logic behind the use of the degrading factor k is 
worth mentioning at this point. Looking at the 
immediate subsets of a given pattern, the maximum 
support of the given pattern (i.e. the upper-bound) can 
be equal to the minimum support of the immediate 
subsets. However, in very rare cases will this represent 
the actual support obtained by this pattern. Thus, the 
actual frequency can be lower than or equal to this 
minimum value of the immediate subsets. The 
degrading k has been introduced to approximate the 
upper bounded frequency. 

The upper-bound support value of a pattern is 
calculated taking into consideration its generating 
subsets. If however, other subsets of this pattern are 
found to be frequent, while we are checking for the 
presence of all its subsets, the upper bound value has to 
be updated taking into account the support (i.e the 
frequency) of its other subsets. Thus, if we generate the 
pattern abc by merging two of its subsets ab and ac, 
both having a common prefix, we say that the upper-
bound support value of abc as follows: 

Upper-bound support of abc 
= ub(abc) =h1 (abc) 
= minimum { support(ab), support(ac)} * k, where k 

is the degrading factor. 
Once we are checking for the presence of all the 

immediate subsets of the pattern abc and find that its 
immediate subset bc is also frequent, we update the 
upper-bound support of  abc.  

The degrading factor, k, plays a very crucial role in 
the upper-bound support value of a pattern. Let us 
consider a pattern of n-length. This means that this 
pattern will have n subsets of (n-1)-length. Each of 
these subsets will have a degrading factor (as 
calculated from equation 4) and let us designate the 
degrading factor ki for the i-th (n-1)-length subset of 
the n-length pattern under consideration. Thus k1, k2, k3 
….. kn represents the degrading factor of these n 
subsets. Now the degrading factor for calculating the 
upper-bound support can be as follows: 

h1-max = h1 heuristic using maximum degrading 
factor of the item sets in the same level that are subsets 
of the same superset (and this superset has been found 
to be frequent)  

= max { k1, k2, k3 … kn} …………(5) 
We have considered, in the above equation, the 

maximum value of the degrading factor to make the 
most pessimistic estimation of the upper bound support 
being estimated. 

Let us assume that the pattern abcd is formed by 
merging its immediate subsets with a common prefix, 
abc and abd. Let the heuristically calculated frequency 
of the patterns abc and abd be ub(abc) and ub(abd) 
respectively. Thus, the degrading factor of the pattern 
abc and abd will be: 

kabc = (actual frequency of abcd)/ub(abc) ………(6) 

kabd = (actual frequency of abd)/ub(abd)………(7) 
Using heuristic h1-max: 

k max(abcd) =  max { k(abc), k(abd)} ………(8) 
Thus the upper-bound frequency calculated using h1-
max will be: 
ub(abcd) = min { support (abc), support (abd)}* k 
max(abcd)  
= minimum {support (abc), support (abd)} * max 
{k(abc), k(abd)}………. (9) 
 
5. BDFS(b)-h1-max: An Efficient Heuristic 
Search Algorithm for Real-Time Frequent 
Pattern Mining Using Heuristic h1-max 

BDFS(b)-h1-max is a heuristic search algorithm 
for finding frequent patterns. We use the vertical 
database format of tid-lists for intersecting and finding 
out the frequency of a particular pattern. In BDFS(b)-
h1-max we calculate the lower-bound and the upper-
bound value of a pattern the moment it is generated. If 
we find that the calculated lower-bound support value 
is more than that of the user-defined support threshold 
and none of its subsets has been found to be infrequent 
till this point of time, we go ahead and mark this 
pattern as Heuristically Frequent, assign the calculated 
upper-bound support value as its heuristically assigned 
frequency and move this pattern to the set of the 
frequent itemsets of corresponding length. The upper-
bound support value (and hence the heuristically 
assigned frequency or support) of a pattern is updated 
the moment any immediate subset of this pattern is 
found to be frequent. As we now have the lower-bound 
and the upper-bound support value for each pattern, we 
keep the global pool of candidate itemsets sorted in 
descending order of length. Patterns of same length are 
sorted on their lower-bound values and then patterns 
with same length and same lower-bound values are 
sorted on their upper-bound values. We assume that a 
lower triangular frequency matrix M for a given 
database is created in a support-independent pre-
processing step and kept in the hard-disk. Once the user 
specifies a desired support value, all frequent patterns 
of length 1 and 2 (where F(n) means frequent pattern of 
length-n) are obtained from M. Then BDFS(b)-h1-max 
starts its search for frequent patterns of higher lengths 
from this point forward 

The most salient features of BDFS(b)-h1-max are 
:(a) It conducts search in stages and uses back-tracking 
strategy to run to completion and ensure optimal 
solution. (b) It takes a block of candidate patterns b 
from a global pool, conducts the search by checking the 
frequency of these patterns in the database. It generates 
the possible candidate patterns (explained later with an 
example) of the next higher length from the currently 
known frequent patterns. In this paper, we keep the 
block b variable and the value to be defined by the user 
using her knowledge and experience depending on the 
available computer memory for purposes of academic 
curiosity to find how it affects the performance of the 
algorithm. We intend to implement in a future work, 
the automatic decision of block b depending on various 
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decision making criterion. We have implemented this 
algorithm with the prefix based tree, called TRIE, data 
structure for implementing BDFS(b)-h1. We have kept 
the nodes of TRIE lexicographically ordered. 

Let us consider the following example to show how 
BDFS(b)-h1-max works.  

 

τ

 

 

 

 

 

 

 

 

 τ

Figure 3. Algorithm BDFS(b)-h1-max 
Let the following table represent a set of 12 
transactions, where the items are represented by a, b, c 
… 
 

Transaction ID Transaction of items 
1 abcde 
2 acde 
3 ade 

4 bcde 
5 bde 
6 abd 
7 abd 
8 abcd 
9 de 
10 acde 
11 abcde 
12 ace 

Figure 4. An example of transaction data, D. 
Now we proceed as follows: 

Step I. Given this set of transactions D, we create a 
support-independent two dimensional lower triangular 
matrix M (as in figure 6) using procedure 
Create_Matrix (as shown in figure 5) and the 
transaction id lists (as shown in figure 7). This step of 
creating the support-independent lower triangular and 
the tid-list of 1-length patterns is support independent 
step and we refer this step through out this paper as a 
pre-processing step. Once this support independent 
step is conducted, the matrix M and the tid-list of 1-
length items are stored in the hard-drive once and for 
all future references. 

 
I. Create a lower triangular adjacency matrix, M, for 
n-items (Total storage required: n*(n+1)/2). M stores 
the frequencies of 1-at-a-time and 2-at-a-time  
combinations of all items. 
II. In M, M(i,j) represents the number of occurrences of 
the item-pair i and j, ∀ i = 1,2…n and ∀  j = 1,2,3…i 
and M(i,i) represents the total number of occurrences 
of item i. 

Figure 5. Procedure Create_Matrix 
 

 
Figure 6. Matrix M 

 
Step II. Let the absolute support,  (abs), given for 

running BDFS(b)-h1-max be 3. Cells of Matrix M 
(figure 6) are visited to find F(1) and F(2) [where F(n) 
is frequent pattern of length n]. Thus we have: 
 
F(1) = { a(9), b(7), c(7), d(11), e(9)} ……. (10) 
F(2) = { ab(5), ac(6), ad(8), ae(6), bc(4), bd(7), be(4), 
cd(6), ce(6),  de(8)} … (11) 

Frequency of each pattern is shown within 
parentheses. Thus the pattern e of F(1) has frequency 9 
and bd  of F(2) has frequency 7. We calculate the 
degrading factor for the patterns of length 2. We 
calculate the upper- bound frequencies of the 2-length 
patterns approximated from the F(1). Thus, we have: 

ub(ab) = min (support(a),support(b)) = min (9,7) = 
7. Actual frequency of ab = 5  
Thus the degrading factor for ab, k(ab) = 5/7 
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Similarly, we find the degrading factors of other 2-
length patterns. Thus we have: k(ac) = 6/7; k(ad) = 
8/9; k(ae) = 6/9; k(bc) = 4/7; k(bd) = 1; k(be) = 4/7; 
k(cd) = 6/7; k(ce) = 6/7; k(de) = 8/9 

Step III. Two 2-length patterns are merged if their 
first elements match. Thus we have from equation 11: 

Newly merged patterns = { abc, abd, abe, acd, 
ace, ade, bcd, bce, bde, cde } …………(12) 

Figure 7. The tid-lists of the items 
Step IV. Find if all the subsets of new merged 

patterns are frequent. For any 3-length newly merged 
pattern, if all its 2-length subsets are not present, then 
the pattern is pruned (using the support monotonicity 
property [14] If all its 2-length subsets are present we 
calculate the lower-bound and the upper-bound 
heuristics of these patterns. For all patterns, whose 
lower-bound heuristic value is  support threshold; we 
directly mark the pattern as a Heuristically Frequent 
pattern of corresponding length and assign it a heuristic 
frequency for further references. We move this pattern 
to the list of frequent patterns along with is 
heuristically assigned frequency and marking it as 
Heuristically Frequent. Otherwise we check if all of its 
subsets are frequent. If yes, we move it to the global 
pool of candidate itemsets, else we move it to the 
Border set of corresponding length and wait till all its 
subsets become frequent. If however, any of the subsets 
of this border-set pattern becomes infrequent, this 
border-set pattern in turn is made infrequent and is 
pruned. However, where lb = ub, we take the approx 
freq = lb. We will take the value rounded off to the 
nearest integer. Thus, we have: 
abc:  lb = ab + ac – a = 5 + 6 – 9 = 2;  

ub = min support of (ab, ac, bc) * kmax  = 
min(5,6,4)* max (kab, kac, kbc) = 4 * max (5/7, 
6/7, 4/7) 
 = 4* 6/7  3  

abd:  lb = ab + ad – a = 5 + 8 – 9 = 4;  
ub = min support of (ab,ad, bd) * kmax = 
min(5,8,7) * max (kab, kad, kbd)  = 5 * max 
(5/7, 8/9, 1)  = 5 

abe:  lb = ab + ae – a = 5 + 6 – 9 = 2; ub = min 
support of (ab, ae, be) * k max = min(5,6,4) * 
max (kab, kae, kbe) = 4 * max (5/7, 6/9, 4/7)  3 

 
Similarly: acd: lb = 5; ub = 5; ace: lb = 3; ub = 5.; ade: 
lb = 5; ub = 5.; bcd: lb = 4; ub = 4.; bce: lb = 1; ub = 
3.; bde: lb = 4; ub = 4.; cde: lb = 5; ub = 5. 

Thus in short we have the following patterns with 
the lower bound and upper bound denoted in the 
parentheses [where the first number in the parentheses 
denotes the lb and the second the ub]: 

newly merged patterns = {abc (2,3), abd (4,5), 
abe(2,3), acd(5,5), ace(3,5), ade(5,5), bcd(4,4), 
bce(1,3), bde(4,4), cde(5,5)}…………. (13)   

As mentioned above, for all patterns, whose lower 
bound heuristic value  support threshold, we mark the 
pattern as Heuristically Frequent and assign it its 
upper-bound value as a heuristically found frequency. 
For all other patterns, we check if all its subsets are 
frequent and move it to the global pool of candidates. 
Thus, we have that the patterns abd, acd, ace, ade, bcd, 
bde, cde which have their lower-bound heuristic values 
greater than the given minimum support threshold are 
marked as Heuristically Frequent patterns of length 3, 
and is moved to the list of frequent patterns of length 3, 
F(3), along with the heuristically assigned frequency 
(its upper-bound support) and the mark that it is 
heuristically frequent. The rest of the patterns are 
moved to the global pool of candidate patterns. Thus, 
we have:  
F(3) = { abd(HF, 5), acd(HF, 5), ace(HF, 5), ade(HF, 
5), bcd(HF, 4), bde(HF, 4), cde(HF, 5)}……(14) 
C( ) = {abe (2,4), abc (2,4), bce (1,3)} ……………(15) 

We keep the global pool of candidates sorted on the 
length, lb and ub respectively and have assigned the 
Heuristically Frequent patterns with the calculated 
upper-bound as their heuristically assigned frequency. 

Step V. We start finding the frequencies of the 
patterns lying in the global pool of candidate itemsets. 
If the block size b is assumed to be 4, then we have that 
all the candidate patterns are checked in the first block 
b itself.  b = { abc, abe, bce} …………………(16) 
We intersect the tid-lists and find the frequencies of 
these itemsets. Thus, we have: 

b = {abc(3), abe(2), bce(3)} …………(17) 
As the given support threshold is 3, we prune ace Thus 
from this block, the frequent patterns obtained are:  
 F(3) = { abc(3), bce(3)}………………(18) 

We merge the newly found 3-length frequent 
patterns from the current block with the existing set of 
frequent patterns of length-3. Thus, we have: 
F(3) = { abd(HF, 5), acd(HF, 5), ace(HF, 5), ade(HF, 
5), bcd(HF, 4), bde(HF, 4), cde(HF, 5), abc(3), 
bce(3)}…………………………(19) 

Step VI  We now merge the frequent patterns 
of length-3 in the F(3) to find higher-length patterns of 
length-4 and calculate the lower-bound and upper-
bound support values of these patterns. Thus we have: 
newly merged patterns = {abcd, acde, bcde} ……(20) 

We now calculate the lower-bound and upper-bound 
support of these patterns newly merged.  
abcd: lb = abc + abd – ab = 3 + 5 – 5 = 3;  
ub = min supp of {abc, abd, acd, bcd) * k max  
= min (3, 5, 5, 4) * max (1,1,8/9,1) = 3.  .... (21) 
acde: lb = acd + ace – ac = 5 + 5 – 6 = 4  
ub = min support of (acd, ace, ade, cde) * k max 
     = 5 * max (8/9, 6/7,8/9,8/9)  4 …………… (22) 
bcde: lb = bcd +  bce – bc = 4 + 3 – 4 = 3  
ub = min supp of (bcd, bce, bde, cde) * k max                    
= min (4, 3, 4, 5) * max (kbcd, kbce, kbde, kcde ) = 3 … (23) 

Item Transaction Ids 
a 1 2 3 6 7 8 10 11 12   
b 1 4 5 6 7 8 11     
c 1 2 4 8 10 11 12     
d 1 2 3 4 5 6 7 8 9 10 11 
e 1 2 3 4 5 10 11 12    
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From equations 21, 22 and 23, we find that all the 
three patterns have their lower-bound heuristics 
calculated to be more than the user-defined support 
threshold. Hence these patterns are made Heuristically 
Frequent and are moved to the frequent set of 4-length 
patterns along with their upper-bound values as the 
heuristically assigned values. Thus, we have: 
F(4) = { abcd(HF,3), acde(HF, 4), bcde(HF, 3)} …(24) 

As no higher length patterns can be generated and 
the number of patterns in block b becomes zero and 
also the number of candidate patterns in the global pool 
of candidate patterns becomes zero, or if the total 
executable time , has come to an end, the algorithm 
stops executing here. Thus, the set of all frequent 
patterns are: 
F(1) = { a(9), b(7), c(7), d(11), e(9)} 
F(2) = { ab(5), ac(6), ad(8), ae(6), bc(4), bd(7), be(4), 
cd(6), ce(6),  de(8)} 
F(3) = { abd(HF, 5), acd(HF, 5), ace(HF, 5), ade(HF, 
5), bcd(HF, 4), bde(HF, 4), cde(HF, 5), abc(3), bce(3)} 
F(4) = { abcd(HF,3), acde(HF, 4), bcde(HF, 3)} 
………………………………………………(25) 

If the user now wants to have the set of the frequent 
patterns only, then in another iteration we can find the 
actual frequencies of the patterns with the flag HF (i.e. 
Heuristically Frequent) in the set of frequent patterns. 
The block size b can now be varied to show how it 
affects the execution time of the algorithm. In a later 
section, we show and discuss this effect. BDFS(b)-h1 
has the capability to run in real-time. Whenever it is 
stopped before its natural completion, it outputs 
frequent patterns of various lengths it had obtained up 
to that point of execution time. 
 
6. Empirical Evaluation 
Legend:  
T= Average size of transaction; I= Average size of the 
maximal potentially large itemset; D= No. of 
transactions in the database; N= Number of items.  

To evaluate the performance of the BDFS(b)-h1-
max heuristic search technique, we have tested it on 
various datasets, both sparse and dense, which on the 
other hand were both taken from synthetic and real-life 
datasets. These includes real-life datasets like BMS-
Webview-1[22], Kosarak1, CHESS2 and a host of 
synthetic datasets like T10I8D100K, T10I4D100K, 
T25I10D100K3 etc. The experiments were performed 
on a Red-Hat Linux machine with 1GB RAM and 20 
GB HD with Pentium IV 2.24Ghz processor. 
6.1 Comparison of BDFS(b)-h1-max with 
Existing Algortihms 

In order to show how BDFS(b)-h1-max performs 
when it is allowed to run to complete execution, we 
have chosen to compare it with existing bench-marked 

                                                
1 These datasets are publicly available at 
http://fimi.cs.helsinki.fi/data/ 
2 These datasets are publicly available at 
http://fimi.cs.helsinki.fi/data/ 
3 The data generator is available from 
http://www.almaden.ibm.com/cs/quest//syndata.html#assocSynData 

algorithms like the Apriori, FP-Growth, Eclat, dEclat 
and DIC4. Since FP-Growth, Eclat and dEclat is known 
to perform and scale better than that of the Apriori 
algorithm, we have chosen to take FP-Growth, Eclat 
and dEclat as the benchmark and compare the 
execution time of these algorithms with that of 
BDFS(b)-h1-max. In some cases, where we have found 
Apriori to perform better, we have compared our work 
with Apriori as well. For the sake of curiosity of the 
number of patterns being checked (as this actually 
decides the total running time of an algorithm in 
frequent pattern mining cases), we have chose to 
compare the performance of our technique with 
Apriori. 

In figures 8, 11 and 13 we have compared the run-
time of Eclat and dEclat with BDFS(b)-h1-max for 
three different datasets and found that our technique 
compares well with Eclat and dEclat.  
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Figure 8. Time comparison of BDFS(b)-h1-max with Eclat 

and dEclat for T10I8D100K, b=100K 
 
In figures 9, 12 and 14 we have compared the 
performance of BDFS(b)-h1-max with FP-Growth to 
find that FP-Growth gets significantly outperformed in 
all the cases. In figure 10 and 11 we have shown that 
BDFS(b)-h1-max performs better than that of DIC and 
Apriori respectively for the corresponding datasets. 
Comparing the number of patterns being checked by 
Apriori and BDFS(b)-h1-max, as shown in figures 15, 
16 and 17 for three datasets, we find that in all the 
cases BDFS(b)-h1-max checks significantly lesser 
number of patterns than that of Apriori. In figures 18, 
19 and 20 we have shown the %accuracy of the output 
for all-frequent patterns that BDFS(b)-h1-max provides 
for three different datasets under consideration. In all 
the three cases we find that the accuracy of the result 
provided is high. 
 

                                                
4 The FP-growth code used for comparison is publicly available at 
www.cse.cuhk.edu.hk/~kdd/program.html ;  
The Eclat code used for comparison is publicly available at 
http://fuzzy.cs.uni-magdeburg.de/~borgelt/eclat.html;  
The Apriori, dEclat and DIC codes used for comparison are publicly 
available at  http://www.cs.helsinki.fi/u/goethals/software/index.html 
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Figure 9. Time comparison of BDFS(b)-h1-max with FP-
Growth for T10I8D100K, b=100K. 
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Figure 10. Time comparison of DIC and BDFS(b)-h1-max 
for varying supports of T10I8D100K, b=100K 
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Figure 11. Time comparison of BDFS(b)-h1-max with 
Apriori, Eclat and dEclat for T10I4D100K, b=100K 
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Figure 12. Time comparison of FP-Growth and BDFS(b)-

h1-max for T10I4D100K, b=100K 
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Figure 13. Time comparison of BDFS(b)-h1-max, b=41.2K, 

with Eclat and dEclat for varying supports of Kosarak 
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Figure 14. Time comparison of BDFS(b)-h1-max, b=41.2K, 

with FP-Growth for varying supports of Kosarak 
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Figure 15. Comparison of number of patterns checked by 

Apriori and BDFS(b)-h1-max for varying supports of 
Kosarak 
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Figure 16. Comparison of number of patterns checked by 

Apriori and BDFS(b)-h1-max for T10I4D100K 
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Figure 17. Comparison of number of patterns checked by 

Apriori and BDFS(b)-h1-max for T10I8D100K 
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Figure 18. %Accuracy of output by BDFS(b)-h1-max for 
varying supports of T10I8D100K 
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Figure 19. %Accuracy of output by BDFS(b)-h1-max for 

varying supports of T10I4D100K 
 
The accuracy increases with the increase in the support 
threshold. This may be easily explained as follows: 
with the increase in the support threshold the number 
of frequent patterns of higher lengths drastically 
decreases and hence there is a significant increase in 
the accuracy of the output being provided by BDFS(b)-
h1-max. 
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Figure 20. %Accuracy of output bt BDFS(b)-h1-max or 

varying supports of Kosarak 
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Figure 21. Time-Pattern% of BDFS(b)-h1-max as compared 
to BDFS(b) brute force search for 0.40% support of Kosarak 

and b=41270 
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Figure 22. Time-pattern% of BDFS(b)-h1-max as compared 
to BDFS(b) brute force search for 69% support of Chess and 

b=7600 
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Figure 23. Time-pattern% of BDFS(b)-h1-max as compared 
to BDFS(b) brute force for 0.08% support of BMS-Webview-

I and b=497K 
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Figure 24. Time-pattern% of BDFS(b)-h1-max as compared 
to BDFS(b) brute force for 0.775% support of T25I10D100K 

and b=1K 
 
6.2 Real-Time Performance of BDFS(b)-h1-max 

Real-time performance of BDFS(b)-h1-max has 
been summarized in figures 21, 22, 23 and 24. In these 
figures, we have shown the real-time performance of 
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BDFS(b)-h1-max both in the context of real-life and 
synthetic datasets. 
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Figure 25. Highest length pattern-time% for 0.775% 

support of T25I10D100K 
We have also compared the real-time performance with 
brute force BDFS(b). In every cases, we find that the 
real-time performance has been better than that of the 
brute force version. From fig 23, for example, we find 
that the heuristic version provides 80% patterns in 40% 
time. In fig. 25, we have shown the highest length 
patterns being found frequent in %completion time. We 
have intentionally not presented the comparison of the 
real-time output of existing algorithms as they are not 
meant for performing in real-time, not even for the sake 
of academic curiosity. Authors may be contacted for 
these results. 
 
7. Conclusion 
Traditionally frequent pattern mining has been treated 
as an offline task. Real-time frequent pattern mining 
was introduced in [3, 4] looking at the needs in real-life 
business scenarios [23]. However, the approach to this 
was a brute-force search. In this paper, we have 
introduced the heuristic h1-max along with the 
heuristic search technique BDFS(b)-h1-max, which can 
respond to the real-time requirements more efficiently. 
A limitation of this work is that the block size cannot 
be determined automatically while the algorithm runs 
and has to be given by the user. Empirical results show 
that a smaller block size gives better real-time 
performance. Real-time frequent pattern mining will 
have a great impact in real-time decision making, 
especially in the scenarios like real-time optimization 
for managing supply chains and real-time predictive 
modeling. This algorithm may be modified for 
matching the memory and time constraints 
dynamically. It may be worthwhile to extend this work 
in scenarios of grid-computing where data is being 
gathered from a multi-agent grid-network. More 
domain specific heuristics for business, if developed, 
and used along with the technique proposed in this 
paper, will make real-time frequent pattern mining 
more efficient. 
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