
Abstract

Real-time frequent pattern mining for business
intelligence systems are currently in the focal area of
research. In a number of areas of doing business,
especially in the arena of supply chain management
systems, real-time frequent pattern mining is in need.
The need is being felt more due to the possibility of
real-time knowledge discovery along with the gradual
acceptance of technologies like RFID and grid
computing and the huge amount of possibilities they
promise for real-time decision making like supply-
chain optimization. In this paper, we describe a
domain-independent heuristic, h1-max and a heuristic
search algorithm, BDFS(b)-h1-max for real-time
frequent pattern mining, even using limited computer
memory. Empirical evaluations show that the
techniques being presented can make a fair estimation
of the set of the probable frequent patterns and
completes the search much faster than the existing
algorithms.

1. Introduction

In recent years, business intelligence systems are
playing pivotal roles in fine-tuning business goals such
as improving customer retention, market penetration,
profitability and efficiency. In most cases, these
insights are driven by analyses of historic data. The
issue is, if the historic data can help us make better
decisions, how real-time data can improve the decision
making process [1] in a fast changing world, where
real-time optimization techniques have become the
focus of both academia and industry. Frequent pattern
mining for large databases of business data, such as
transaction records, is of great interest in knowledge
discovery and data mining, since its inception by
Agrawal et al. in 1993 [2]. An association rule is an
expression of the form X Y⇒ , where X and Y are
sets of items. Such a rule reveals that the transactions in
the database, containing items in X tend to contain
items in Y, and the probability, measured as the
fractions of the transactions containing X also
containing Y, is called the confidence of the rule. The
support of the rule, is the fraction of the total
transactions that contain all items both in X and Y.

Researchers have generally focused on mining of
frequent patterns as it is complex and the search space
needed is colossal. A number of efficient algorithms
have been proposed in this area in the last decade.
However, most of the successful algorithms in this area

have been bounded by their limitation of making the
frequent pattern mining an offline analytical task.
These algorithms stop only after finding the exhaustive
(optimal) set of frequent patterns and do not promise to
run under user-defined real-time constraints and
produce some satisficing (interesting sub-optimal
solutions) due to their limiting characteristics. Until
recently, researchers have introduced techniques for
real-time frequent pattern mining looking at its huge
applicability in various facets of decision making and
management [3-5]. One such area of thrust may be
real-time optimization techniques in supply-chain
management using real-time data from RFID detectors.
A plethora of other areas of application demands real-
time frequent pattern mining. Among them, real-time
customer relationship management, real-time
recommender systems and real-time fraud detection
systems and group-decision support systems are to
name a few. However, all these real-time frequent
pattern mining techniques have used a brute-force
approach and have not incorporated any domain-
independent heuristic that enhances this real-time
search for frequent patterns.

In this paper, we introduce a heuristic named h1-
max and describe BDFS(b)-h1-max, a real-time
heuristic search technique for real-time frequent pattern
mining. This is an upgraded and enhanced version over
the brute force version BDFS(b), as we use a heuristic
search method in this version using the heuristic h1-
max. BDFS(b), in turn had been found to show
substantial performance improvement over existing
algorithms like Apriori, FP-Growth, Eclat, dEclat etc.
when run to completion and outputs exhaustive set of
frequent patterns[3-6] .

The rest of the paper is organized as follows. In the
next section, we discuss the importance of real-time
frequent pattern mining in businesses, with a special
reference to supply-chain management. In section 3, we
provide a review of the previous work done in
developing heuristics in frequent pattern mining. In
section 4, we present the heuristic h1-max and in
section 5, we introduce BDFS(b)-h1-max. Section 6
contains the empirical evaluation of our algorithm.
Finally we conclude the paper in section 7.

2. Applications of Real-Time Frequent
Pattern Mining in Business

With more and more companies maintaining
customer and transactional databases and data
warehouses, data mining has become an important and
integral component of doing business in a global

An Efficient Heuristic Search for Real-Time Frequent Pattern Mining

Rajanish Dass
Indian Institute of Management Ahmedabad

rajanish@iimahd.ernet.in

Ambuj Mahanti
Indian Institute of Management Calcutta

am@iimcal.ac.in

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10-7695-2507-5/06/$20.00 (C) 2006 IEEE

context. In today’s scenario of the huge amount of data
being maintained by the business houses and with the
advent and progress of e-commerce, thousands and
millions of data can easily take place in a single day.
Embedded in these data is the valuable hidden
knowledge about the behavior of the customers [7].
There are numerous areas where real-time decision
making plays a critical role. One such area of focus is
real-time supply chain management systems.

In today's demanding business environment, timely
access to data to generate business information is the
key to competitive advantage. Real-time data at the
right time (right-time data) may change operational
processes and stimulate process innovation. However,
real-time data feeds to legacy systems or ERP may not
be productive. Adaptability may be enhanced if
decision systems can access information at the right
time based on real-time data (real-time analytics) which
may be acquired from diverse sources (RFID, sensors,
GPS, barcodes). The argument over format (electronic
produce code or EPC, universal identifier code or UID)
may continue but that should not inhibit the thinking
pre-requisite for process innovation to make adequate
use of (Figure 1) right-time data [8].

This level of information, properly controlled,
creates the opportunity for effective management
throughout the supply chain: whether it is reading the
bar code on a product, tracking that product's
movement through the network or capturing the data at
various transit points throughout the chain.

Figure 1. Connectivity of real-time data to process (real-time
analytics) may improve decisional information Source [8]

The level of management control and real time decision
making and the efficiencies this produces gives a return
on investment from controlling processes real-time
through a manufacturing line, to effective warehouse
and inventory management, from tracking the
movement of goods in the distribution and delivery
chain with real-time product and shipment location
dates, right through into the retail store and beyond. No
major organization can ignore this return on

investment. It has been estimated that companies,
which generally spend about 10 percent of revenue on
logistics and inventory overhead, could halve that by
taking full advantage of effective supply chain
management planning. Quite simply, 'increased
information used effectively equals increased profits’
[9]. In the next 5 years or, more likely, in the next 25-
50 years, when we may migrate from adaptive to
predictive status of operations, we will require other
concepts and tools that may be unknown, today [8].

There are numerous other areas where real-time
decision making becomes important. These include
areas like real-time customer relationship management
and real-time recommender systems, real-time
enterprise risk management [10], real-time fraud
detection [11], real-time negotiations and other areas
like real-time dynamic pricing. More than that, real-
time data mining will have tremendous importance in
areas where a real-time decision can make the
difference between life and death – mining patterns in
medical systems.

3. Previous Work Done
A detailed discussion about the various algorithms of
frequent pattern mining and their performance can be
found in the literature surveys of frequent pattern
mining [12, 13].

The most well known and influential algorithm is
Apriori[14]. Many variants of this algorithm have been
designed. Other ways of solving the problem were
using various partitioning methods and sampling
methods. Su & Lin [15] have concluded that the most
salient features of these algorithms are their counting
strategy, search direction and search strategy (figure
2).

Search Direction

Bottom-up Top-Down
Search Strategy Search Strategy

Counting
Strategy

Depth-
first

Breadth-
first

Depth-
first

Breadth-
first

Counting FP-
Growth

Apriori Top-
Down

Intersection
of tid-lists

Eclat Partition

Intersection
of Diff-Sets

dEclat

Figure 2. Classification of prevailing algorithms

Throughout the last decade, researchers have tried

applying a number of heuristics for frequent pattern
mining. A number of attempts have been made for
proposing heuristics for frequent patterns, which,
however have not been found to be as effective and
accurate as expected to be [12]. The major areas of
development of these heuristics are: a.) to formulate
heuristics for forecasting the probable frequency of a k-
length pattern b.) to decide the switching from the
horizontal database format to the vertical tid-lists
depending on the database density c.) and also to
predict the maximum number of candidate patterns and

DECISIONDECISION

PROCESSPROCESS

OBJECTOBJECT

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

2

the level till which frequent patterns for a given support
threshold can occur.

The heuristic proposed for shifting from the Apriori
to the AprioriTid in the AprioriHybrid algorithm by
[16] was found to fail in substantial number of cases.
Another such attempt was done by [17] proposing a
mixture of Apriori and Eclat and a switching between
them in the Hybrid algorithm. None of these heuristics
have, however, been able to grab the centre-stage of
frequent pattern mining.

Forecasting the probable frequency of pattern based
on other patterns has been a central question in the
arena of frequent pattern mining. One such attempt was
to find frequencies of k-length frequent patterns based
on the heuristically defined values of patterns of (k-1)-
length patterns as was done in DIC [18] used.
However, later studies have found that the DIC
heuristic was not performing as promised. Moreover,
DIC landed up in counting much more number of
candidate patterns than was actually expected. The first
algorithm that had used a support lower bounding
technique was MaxMiner and Apriori-LB as proposed
by Bayardo [19]. Other than this, researchers have
attempted have been to tightly forecast the number of
candidate patterns that yet remain to be checked as has
been proposed by [20].

4. Heuristic h1-max for Real-Time
Frequent Pattern Mining

Researchers have found that the problem of
finding all frequent patterns from the database becomes
complex as it is an exhaustive search and is NP-hard
[21]. Moreover with increasing number of records in
the database and with the increasing number of
parameters, the search space becomes huge. Keeping
these challenges of mining all frequent patterns in
mind, our basic objective for in designing a heuristic
will be as follows:
 check lesser number of patterns for arriving at the
total number of the frequent patterns once the search
is completed
 take lesser time to complete the search
 will need a heuristic that will give us a solution set
once the search for all frequent patterns is complete.
 real-time performance of the heuristic search
technique will be better than that of the brute force
version as we are considering the patterns depending
on their individual merit (where by merit we mean
higher length patterns with a better promise or chance
of being frequent).

4.1 Heuristic h1-max

The heuristic h1-max consists of finding a lower-bound
value and estimating an upper-bound value of each k-
length pattern generated by merging two (k-1)-length
patterns with common prefix and heuristically
assigning a frequency to a pattern that can be said as
heuristically frequent provided it satisfies the condition
of being frequent as discussed later in this section. The

support lower bounding technique that has been used is
the lower bounding had been proposed by [19]

 Lower Bound Support of a pattern.

Let I = {xl, x2, … xn} be a set of distinct literals, called
items. A set X ⊆ I is called an itemset.

Let X, Y, Z⊆ I be itemsets then,
Lower Bound support (X ∪ Y ∪ Z)
= lb (X ∪ Y ∪ Z)
≥ support (X ∪ Y) + support (X ∪ Z) – support (X)
…………………(1)

In practice, this lower-bound support value of a pattern
can be obtained and used in the following way. Say, for
example, we have a pattern abc by merging 2-length
frequent patterns ab and ac. Then, the lower-bounded
support value of this pattern abc will be given by
equation (1) as follows:
Lower-bound of support of abc = lb(abc) =support
(ab) + support (ac) – support (a)………………(2)
However, for calculating the lower-bounded support
value of a pattern, we should exactly know the
frequency of two of its generating subsets (generating
subsets are subsets from which the pattern was
generated by merging) and also the frequency of the
immediate common subset of these generating subsets.
Nevertheless, researchers till now have suggested that
we have to have the exact count of these required sets
(in case of equation 2, we need to know the count of
ab, ac and a), and hence not much mileage can be
achieved by using the lower-bounded support value and
predicting a pattern as frequent if the calculated lower-
bounded support value is found to be more than the
given user-defined support threshold. In this context,
we propose a heuristic upper-bounded value using
which we can assign a heuristic frequency to a pattern.

 Upper Bound Support of a pattern using

heuristic h1-max
Let I = {xl, x2, … xn} be a set of distinct literals, called
items. A set X ⊆ I is called an itemset.

Let X, Y, Z⊆ I be itemsets then,
Upper Bound support (X ∪ Y ∪ Z)
= ub (X ∪ Y ∪ Z)
= h1 (X ∪ Y ∪ Z)
= minimum {support(X ∪ Y), support (X ∪ Z) …}

* k, 0 k 1…… (3)

Here h1 is the heuristically calculated upper bound

of the pattern (X ∪ Y ∪ Z) from the degrading
factors of its immediate subsets. The upper-bound
value using heuristic h1 is calculated using the support
of its immediate subsets either found frequent or has
been made heuristically frequent till the point of time
when the upper bound support of the pattern under
consideration is being calculated. If any subset
becomes frequent at a later point of time, the upper
bound value is updated.

The degrading factor, k, of a pattern is defined as

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

3

k = 1 if pattern-length =2
(frequency of the pattern)

(frequency of the pattern)

actual

estimated for all other
cases ……… (4)

The logic behind the use of the degrading factor k is
worth mentioning at this point. Looking at the
immediate subsets of a given pattern, the maximum
support of the given pattern (i.e. the upper-bound) can
be equal to the minimum support of the immediate
subsets. However, in very rare cases will this represent
the actual support obtained by this pattern. Thus, the
actual frequency can be lower than or equal to this
minimum value of the immediate subsets. The
degrading k has been introduced to approximate the
upper bounded frequency.

The upper-bound support value of a pattern is
calculated taking into consideration its generating
subsets. If however, other subsets of this pattern are
found to be frequent, while we are checking for the
presence of all its subsets, the upper bound value has to
be updated taking into account the support (i.e the
frequency) of its other subsets. Thus, if we generate the
pattern abc by merging two of its subsets ab and ac,
both having a common prefix, we say that the upper-
bound support value of abc as follows:

Upper-bound support of abc
= ub(abc) =h1 (abc)
= minimum { support(ab), support(ac)} * k, where k

is the degrading factor.
Once we are checking for the presence of all the

immediate subsets of the pattern abc and find that its
immediate subset bc is also frequent, we update the
upper-bound support of abc.

The degrading factor, k, plays a very crucial role in
the upper-bound support value of a pattern. Let us
consider a pattern of n-length. This means that this
pattern will have n subsets of (n-1)-length. Each of
these subsets will have a degrading factor (as
calculated from equation 4) and let us designate the
degrading factor ki for the i-th (n-1)-length subset of
the n-length pattern under consideration. Thus k1, k2, k3
….. kn represents the degrading factor of these n
subsets. Now the degrading factor for calculating the
upper-bound support can be as follows:

h1-max = h1 heuristic using maximum degrading
factor of the item sets in the same level that are subsets
of the same superset (and this superset has been found
to be frequent)

= max { k1, k2, k3 … kn} …………(5)
We have considered, in the above equation, the

maximum value of the degrading factor to make the
most pessimistic estimation of the upper bound support
being estimated.

Let us assume that the pattern abcd is formed by
merging its immediate subsets with a common prefix,
abc and abd. Let the heuristically calculated frequency
of the patterns abc and abd be ub(abc) and ub(abd)
respectively. Thus, the degrading factor of the pattern
abc and abd will be:

kabc = (actual frequency of abcd)/ub(abc) ………(6)

kabd = (actual frequency of abd)/ub(abd)………(7)
Using heuristic h1-max:

k max(abcd) = max { k(abc), k(abd)} ………(8)
Thus the upper-bound frequency calculated using h1-
max will be:
ub(abcd) = min { support (abc), support (abd)}* k
max(abcd)
= minimum {support (abc), support (abd)} * max
{k(abc), k(abd)}………. (9)

5. BDFS(b)-h1-max: An Efficient Heuristic
Search Algorithm for Real-Time Frequent
Pattern Mining Using Heuristic h1-max

BDFS(b)-h1-max is a heuristic search algorithm
for finding frequent patterns. We use the vertical
database format of tid-lists for intersecting and finding
out the frequency of a particular pattern. In BDFS(b)-
h1-max we calculate the lower-bound and the upper-
bound value of a pattern the moment it is generated. If
we find that the calculated lower-bound support value
is more than that of the user-defined support threshold
and none of its subsets has been found to be infrequent
till this point of time, we go ahead and mark this
pattern as Heuristically Frequent, assign the calculated
upper-bound support value as its heuristically assigned
frequency and move this pattern to the set of the
frequent itemsets of corresponding length. The upper-
bound support value (and hence the heuristically
assigned frequency or support) of a pattern is updated
the moment any immediate subset of this pattern is
found to be frequent. As we now have the lower-bound
and the upper-bound support value for each pattern, we
keep the global pool of candidate itemsets sorted in
descending order of length. Patterns of same length are
sorted on their lower-bound values and then patterns
with same length and same lower-bound values are
sorted on their upper-bound values. We assume that a
lower triangular frequency matrix M for a given
database is created in a support-independent pre-
processing step and kept in the hard-disk. Once the user
specifies a desired support value, all frequent patterns
of length 1 and 2 (where F(n) means frequent pattern of
length-n) are obtained from M. Then BDFS(b)-h1-max
starts its search for frequent patterns of higher lengths
from this point forward

The most salient features of BDFS(b)-h1-max are
:(a) It conducts search in stages and uses back-tracking
strategy to run to completion and ensure optimal
solution. (b) It takes a block of candidate patterns b
from a global pool, conducts the search by checking the
frequency of these patterns in the database. It generates
the possible candidate patterns (explained later with an
example) of the next higher length from the currently
known frequent patterns. In this paper, we keep the
block b variable and the value to be defined by the user
using her knowledge and experience depending on the
available computer memory for purposes of academic
curiosity to find how it affects the performance of the
algorithm. We intend to implement in a future work,
the automatic decision of block b depending on various

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

4

decision making criterion. We have implemented this
algorithm with the prefix based tree, called TRIE, data
structure for implementing BDFS(b)-h1. We have kept
the nodes of TRIE lexicographically ordered.

Let us consider the following example to show how
BDFS(b)-h1-max works.

τ

 τ

Figure 3. Algorithm BDFS(b)-h1-max
Let the following table represent a set of 12
transactions, where the items are represented by a, b, c
…

Transaction ID Transaction of items
1 abcde
2 acde
3 ade

4 bcde
5 bde
6 abd
7 abd
8 abcd
9 de
10 acde
11 abcde
12 ace

Figure 4. An example of transaction data, D.
Now we proceed as follows:

Step I. Given this set of transactions D, we create a
support-independent two dimensional lower triangular
matrix M (as in figure 6) using procedure
Create_Matrix (as shown in figure 5) and the
transaction id lists (as shown in figure 7). This step of
creating the support-independent lower triangular and
the tid-list of 1-length patterns is support independent
step and we refer this step through out this paper as a
pre-processing step. Once this support independent
step is conducted, the matrix M and the tid-list of 1-
length items are stored in the hard-drive once and for
all future references.

I. Create a lower triangular adjacency matrix, M, for
n-items (Total storage required: n*(n+1)/2). M stores
the frequencies of 1-at-a-time and 2-at-a-time
combinations of all items.
II. In M, M(i,j) represents the number of occurrences of
the item-pair i and j, ∀ i = 1,2…n and ∀ j = 1,2,3…i
and M(i,i) represents the total number of occurrences
of item i.

Figure 5. Procedure Create_Matrix

Figure 6. Matrix M

Step II. Let the absolute support, (abs), given for

running BDFS(b)-h1-max be 3. Cells of Matrix M
(figure 6) are visited to find F(1) and F(2) [where F(n)
is frequent pattern of length n]. Thus we have:

F(1) = { a(9), b(7), c(7), d(11), e(9)} ……. (10)
F(2) = { ab(5), ac(6), ad(8), ae(6), bc(4), bd(7), be(4),
cd(6), ce(6), de(8)} … (11)

Frequency of each pattern is shown within
parentheses. Thus the pattern e of F(1) has frequency 9
and bd of F(2) has frequency 7. We calculate the
degrading factor for the patterns of length 2. We
calculate the upper- bound frequencies of the 2-length
patterns approximated from the F(1). Thus, we have:

ub(ab) = min (support(a),support(b)) = min (9,7) =
7. Actual frequency of ab = 5
Thus the degrading factor for ab, k(ab) = 5/7

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

5

Similarly, we find the degrading factors of other 2-
length patterns. Thus we have: k(ac) = 6/7; k(ad) =
8/9; k(ae) = 6/9; k(bc) = 4/7; k(bd) = 1; k(be) = 4/7;
k(cd) = 6/7; k(ce) = 6/7; k(de) = 8/9

Step III. Two 2-length patterns are merged if their
first elements match. Thus we have from equation 11:

Newly merged patterns = { abc, abd, abe, acd,
ace, ade, bcd, bce, bde, cde } …………(12)

Figure 7. The tid-lists of the items
Step IV. Find if all the subsets of new merged

patterns are frequent. For any 3-length newly merged
pattern, if all its 2-length subsets are not present, then
the pattern is pruned (using the support monotonicity
property [14] If all its 2-length subsets are present we
calculate the lower-bound and the upper-bound
heuristics of these patterns. For all patterns, whose
lower-bound heuristic value is support threshold; we
directly mark the pattern as a Heuristically Frequent
pattern of corresponding length and assign it a heuristic
frequency for further references. We move this pattern
to the list of frequent patterns along with is
heuristically assigned frequency and marking it as
Heuristically Frequent. Otherwise we check if all of its
subsets are frequent. If yes, we move it to the global
pool of candidate itemsets, else we move it to the
Border set of corresponding length and wait till all its
subsets become frequent. If however, any of the subsets
of this border-set pattern becomes infrequent, this
border-set pattern in turn is made infrequent and is
pruned. However, where lb = ub, we take the approx
freq = lb. We will take the value rounded off to the
nearest integer. Thus, we have:
abc: lb = ab + ac – a = 5 + 6 – 9 = 2;

ub = min support of (ab, ac, bc) * kmax =
min(5,6,4)* max (kab, kac, kbc) = 4 * max (5/7,
6/7, 4/7)
 = 4* 6/7 3

abd: lb = ab + ad – a = 5 + 8 – 9 = 4;
ub = min support of (ab,ad, bd) * kmax =
min(5,8,7) * max (kab, kad, kbd) = 5 * max
(5/7, 8/9, 1) = 5

abe: lb = ab + ae – a = 5 + 6 – 9 = 2; ub = min
support of (ab, ae, be) * k max = min(5,6,4) *
max (kab, kae, kbe) = 4 * max (5/7, 6/9, 4/7) 3

Similarly: acd: lb = 5; ub = 5; ace: lb = 3; ub = 5.; ade:
lb = 5; ub = 5.; bcd: lb = 4; ub = 4.; bce: lb = 1; ub =
3.; bde: lb = 4; ub = 4.; cde: lb = 5; ub = 5.

Thus in short we have the following patterns with
the lower bound and upper bound denoted in the
parentheses [where the first number in the parentheses
denotes the lb and the second the ub]:

newly merged patterns = {abc (2,3), abd (4,5),
abe(2,3), acd(5,5), ace(3,5), ade(5,5), bcd(4,4),
bce(1,3), bde(4,4), cde(5,5)}…………. (13)

As mentioned above, for all patterns, whose lower
bound heuristic value support threshold, we mark the
pattern as Heuristically Frequent and assign it its
upper-bound value as a heuristically found frequency.
For all other patterns, we check if all its subsets are
frequent and move it to the global pool of candidates.
Thus, we have that the patterns abd, acd, ace, ade, bcd,
bde, cde which have their lower-bound heuristic values
greater than the given minimum support threshold are
marked as Heuristically Frequent patterns of length 3,
and is moved to the list of frequent patterns of length 3,
F(3), along with the heuristically assigned frequency
(its upper-bound support) and the mark that it is
heuristically frequent. The rest of the patterns are
moved to the global pool of candidate patterns. Thus,
we have:
F(3) = { abd(HF, 5), acd(HF, 5), ace(HF, 5), ade(HF,
5), bcd(HF, 4), bde(HF, 4), cde(HF, 5)}……(14)
C() = {abe (2,4), abc (2,4), bce (1,3)} ……………(15)

We keep the global pool of candidates sorted on the
length, lb and ub respectively and have assigned the
Heuristically Frequent patterns with the calculated
upper-bound as their heuristically assigned frequency.

Step V. We start finding the frequencies of the
patterns lying in the global pool of candidate itemsets.
If the block size b is assumed to be 4, then we have that
all the candidate patterns are checked in the first block
b itself. b = { abc, abe, bce} …………………(16)
We intersect the tid-lists and find the frequencies of
these itemsets. Thus, we have:

b = {abc(3), abe(2), bce(3)} …………(17)
As the given support threshold is 3, we prune ace Thus
from this block, the frequent patterns obtained are:
 F(3) = { abc(3), bce(3)}………………(18)

We merge the newly found 3-length frequent
patterns from the current block with the existing set of
frequent patterns of length-3. Thus, we have:
F(3) = { abd(HF, 5), acd(HF, 5), ace(HF, 5), ade(HF,
5), bcd(HF, 4), bde(HF, 4), cde(HF, 5), abc(3),
bce(3)}…………………………(19)

Step VI We now merge the frequent patterns
of length-3 in the F(3) to find higher-length patterns of
length-4 and calculate the lower-bound and upper-
bound support values of these patterns. Thus we have:
newly merged patterns = {abcd, acde, bcde} ……(20)

We now calculate the lower-bound and upper-bound
support of these patterns newly merged.
abcd: lb = abc + abd – ab = 3 + 5 – 5 = 3;
ub = min supp of {abc, abd, acd, bcd) * k max
= min (3, 5, 5, 4) * max (1,1,8/9,1) = 3. (21)
acde: lb = acd + ace – ac = 5 + 5 – 6 = 4
ub = min support of (acd, ace, ade, cde) * k max
 = 5 * max (8/9, 6/7,8/9,8/9) 4 …………… (22)
bcde: lb = bcd + bce – bc = 4 + 3 – 4 = 3
ub = min supp of (bcd, bce, bde, cde) * k max
= min (4, 3, 4, 5) * max (kbcd, kbce, kbde, kcde) = 3 … (23)

Item Transaction Ids
a 1 2 3 6 7 8 10 11 12
b 1 4 5 6 7 8 11
c 1 2 4 8 10 11 12
d 1 2 3 4 5 6 7 8 9 10 11
e 1 2 3 4 5 10 11 12

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

6

From equations 21, 22 and 23, we find that all the
three patterns have their lower-bound heuristics
calculated to be more than the user-defined support
threshold. Hence these patterns are made Heuristically
Frequent and are moved to the frequent set of 4-length
patterns along with their upper-bound values as the
heuristically assigned values. Thus, we have:
F(4) = { abcd(HF,3), acde(HF, 4), bcde(HF, 3)} …(24)

As no higher length patterns can be generated and
the number of patterns in block b becomes zero and
also the number of candidate patterns in the global pool
of candidate patterns becomes zero, or if the total
executable time , has come to an end, the algorithm
stops executing here. Thus, the set of all frequent
patterns are:
F(1) = { a(9), b(7), c(7), d(11), e(9)}
F(2) = { ab(5), ac(6), ad(8), ae(6), bc(4), bd(7), be(4),
cd(6), ce(6), de(8)}
F(3) = { abd(HF, 5), acd(HF, 5), ace(HF, 5), ade(HF,
5), bcd(HF, 4), bde(HF, 4), cde(HF, 5), abc(3), bce(3)}
F(4) = { abcd(HF,3), acde(HF, 4), bcde(HF, 3)}
………………………………………………(25)

If the user now wants to have the set of the frequent
patterns only, then in another iteration we can find the
actual frequencies of the patterns with the flag HF (i.e.
Heuristically Frequent) in the set of frequent patterns.
The block size b can now be varied to show how it
affects the execution time of the algorithm. In a later
section, we show and discuss this effect. BDFS(b)-h1
has the capability to run in real-time. Whenever it is
stopped before its natural completion, it outputs
frequent patterns of various lengths it had obtained up
to that point of execution time.

6. Empirical Evaluation
Legend:
T= Average size of transaction; I= Average size of the
maximal potentially large itemset; D= No. of
transactions in the database; N= Number of items.

To evaluate the performance of the BDFS(b)-h1-
max heuristic search technique, we have tested it on
various datasets, both sparse and dense, which on the
other hand were both taken from synthetic and real-life
datasets. These includes real-life datasets like BMS-
Webview-1[22], Kosarak1, CHESS2 and a host of
synthetic datasets like T10I8D100K, T10I4D100K,
T25I10D100K3 etc. The experiments were performed
on a Red-Hat Linux machine with 1GB RAM and 20
GB HD with Pentium IV 2.24Ghz processor.
6.1 Comparison of BDFS(b)-h1-max with
Existing Algortihms

In order to show how BDFS(b)-h1-max performs
when it is allowed to run to complete execution, we
have chosen to compare it with existing bench-marked

1 These datasets are publicly available at
http://fimi.cs.helsinki.fi/data/
2 These datasets are publicly available at
http://fimi.cs.helsinki.fi/data/
3 The data generator is available from
http://www.almaden.ibm.com/cs/quest//syndata.html#assocSynData

algorithms like the Apriori, FP-Growth, Eclat, dEclat
and DIC4. Since FP-Growth, Eclat and dEclat is known
to perform and scale better than that of the Apriori
algorithm, we have chosen to take FP-Growth, Eclat
and dEclat as the benchmark and compare the
execution time of these algorithms with that of
BDFS(b)-h1-max. In some cases, where we have found
Apriori to perform better, we have compared our work
with Apriori as well. For the sake of curiosity of the
number of patterns being checked (as this actually
decides the total running time of an algorithm in
frequent pattern mining cases), we have chose to
compare the performance of our technique with
Apriori.

In figures 8, 11 and 13 we have compared the run-
time of Eclat and dEclat with BDFS(b)-h1-max for
three different datasets and found that our technique
compares well with Eclat and dEclat.

0
1
2
3
4
5
6
7
8
9

0.325 0.5 0.9 1
%Support

T
im

e(
s)

Eclat dEclat BDFS(b)-h1-max

Figure 8. Time comparison of BDFS(b)-h1-max with Eclat

and dEclat for T10I8D100K, b=100K

In figures 9, 12 and 14 we have compared the
performance of BDFS(b)-h1-max with FP-Growth to
find that FP-Growth gets significantly outperformed in
all the cases. In figure 10 and 11 we have shown that
BDFS(b)-h1-max performs better than that of DIC and
Apriori respectively for the corresponding datasets.
Comparing the number of patterns being checked by
Apriori and BDFS(b)-h1-max, as shown in figures 15,
16 and 17 for three datasets, we find that in all the
cases BDFS(b)-h1-max checks significantly lesser
number of patterns than that of Apriori. In figures 18,
19 and 20 we have shown the %accuracy of the output
for all-frequent patterns that BDFS(b)-h1-max provides
for three different datasets under consideration. In all
the three cases we find that the accuracy of the result
provided is high.

4 The FP-growth code used for comparison is publicly available at
www.cse.cuhk.edu.hk/~kdd/program.html ;
The Eclat code used for comparison is publicly available at
http://fuzzy.cs.uni-magdeburg.de/~borgelt/eclat.html;
The Apriori, dEclat and DIC codes used for comparison are publicly
available at http://www.cs.helsinki.fi/u/goethals/software/index.html

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

7

0
10
20
30
40
50

0.25 0.325 0.5 0.9 1

%Support

T
im

e(
s)

FP-Grow th BDFS(b)-h1-max

Figure 9. Time comparison of BDFS(b)-h1-max with FP-
Growth for T10I8D100K, b=100K.

0

10000

20000

30000

0.25 0.325 0.5 0.9 1

%Support

T
im

e(
s)

DIC BDFS(b)-h1-max

Figure 10. Time comparison of DIC and BDFS(b)-h1-max
for varying supports of T10I8D100K, b=100K

0

5

10

15

20

0.25 0.325 0.5 0.75 0.9 1 2
%Support

T
im

e(
s)

BDFS(b)-h1-max dEclat

Eclat Apriori

Figure 11. Time comparison of BDFS(b)-h1-max with
Apriori, Eclat and dEclat for T10I4D100K, b=100K

0

10

20

30

40

50

60

70

80

0.25 0.325 0.5 0.75 0.9 1 2

%Support

T
im

e(
s)

BDFS(b)-h1-max FP-Growth

Figure 12. Time comparison of FP-Growth and BDFS(b)-

h1-max for T10I4D100K, b=100K

0
2
4
6
8

10
12
14
16
18

1.00 1.30 1.50 1.70 1.90 2.00
%Support

T
im

e(
s)

dEclat Eclat BDFS(b)

Figure 13. Time comparison of BDFS(b)-h1-max, b=41.2K,

with Eclat and dEclat for varying supports of Kosarak

0

50

100

150

200

250

300

350

0.70 0.80 0.90 1.00 1.30 1.50 1.70 1.90 2.00

%Support

T
im

e(
s)

BDFS(b) FP-Grow th

Figure 14. Time comparison of BDFS(b)-h1-max, b=41.2K,

with FP-Growth for varying supports of Kosarak

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1.00 1.50 1.90

%Support

N
o
. o

f
P
at

te
rn

s
C

h
ec

ke
d

BDFS(b) Apriori

Figure 15. Comparison of number of patterns checked by

Apriori and BDFS(b)-h1-max for varying supports of
Kosarak

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.25 0.325 0.5 0.75 0.9 1 2

%Support

N
o.

 o
f
P
at

te
rn

s
Ch

ec
ke

d

Apriori BDFS(b)

Figure 16. Comparison of number of patterns checked by

Apriori and BDFS(b)-h1-max for T10I4D100K

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

8

0

2000

4000

6000

8000

0.3 0.4 0.5 0.9 2

%Support

N
o

. o
f

P
at

te
rn

s
C

h
ec

ke
d

Apriori BDFS(b)-h1-max

Figure 17. Comparison of number of patterns checked by

Apriori and BDFS(b)-h1-max for T10I8D100K

88

93

98

0.20 0.28 0.33 0.38 0.43 0.48 0.53

%Support

%
A

cc
u

ra
cy

Figure 18. %Accuracy of output by BDFS(b)-h1-max for
varying supports of T10I8D100K

99.40

99.50

99.60

99.70

99.80

99.90

100.00

0.25 0.30 0.35 0.40 0.45 0.50 0.55
%Support

%
A
cc

u
ra

cy

Figure 19. %Accuracy of output by BDFS(b)-h1-max for

varying supports of T10I4D100K

The accuracy increases with the increase in the support
threshold. This may be easily explained as follows:
with the increase in the support threshold the number
of frequent patterns of higher lengths drastically
decreases and hence there is a significant increase in
the accuracy of the output being provided by BDFS(b)-
h1-max.

60

65

70

75

80

85

90

95

100

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
%Support

%
A

cc
u
ra

cy

Figure 20. %Accuracy of output bt BDFS(b)-h1-max or

varying supports of Kosarak

0

10

20

30

40

50

60

70

80

90

100

50 60 70 80 90 100
%Time

%
P
at

te
rn

s

h1 max brute

Figure 21. Time-Pattern% of BDFS(b)-h1-max as compared
to BDFS(b) brute force search for 0.40% support of Kosarak

and b=41270

0

20

40

60

80

100

120

0 20 40 60 80 100 120
%Time

%
P
at

te
rn

s

brute h1 max

Figure 22. Time-pattern% of BDFS(b)-h1-max as compared
to BDFS(b) brute force search for 69% support of Chess and

b=7600

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

%Time

%
P
at

te
rn

s

h1 max brute

Figure 23. Time-pattern% of BDFS(b)-h1-max as compared
to BDFS(b) brute force for 0.08% support of BMS-Webview-

I and b=497K

88

90

92

94

96

98

100

40 50 60 70 80 90 100
%Time

%
P
a
tt

er
n

h1max brute

Figure 24. Time-pattern% of BDFS(b)-h1-max as compared
to BDFS(b) brute force for 0.775% support of T25I10D100K

and b=1K

6.2 Real-Time Performance of BDFS(b)-h1-max

Real-time performance of BDFS(b)-h1-max has
been summarized in figures 21, 22, 23 and 24. In these
figures, we have shown the real-time performance of

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

9

BDFS(b)-h1-max both in the context of real-life and
synthetic datasets.

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100
%Time

H
ig

h
es

t
L
en

g
th

 P
at

te
rn

h1max brute

Figure 25. Highest length pattern-time% for 0.775%

support of T25I10D100K
We have also compared the real-time performance with
brute force BDFS(b). In every cases, we find that the
real-time performance has been better than that of the
brute force version. From fig 23, for example, we find
that the heuristic version provides 80% patterns in 40%
time. In fig. 25, we have shown the highest length
patterns being found frequent in %completion time. We
have intentionally not presented the comparison of the
real-time output of existing algorithms as they are not
meant for performing in real-time, not even for the sake
of academic curiosity. Authors may be contacted for
these results.

7. Conclusion
Traditionally frequent pattern mining has been treated
as an offline task. Real-time frequent pattern mining
was introduced in [3, 4] looking at the needs in real-life
business scenarios [23]. However, the approach to this
was a brute-force search. In this paper, we have
introduced the heuristic h1-max along with the
heuristic search technique BDFS(b)-h1-max, which can
respond to the real-time requirements more efficiently.
A limitation of this work is that the block size cannot
be determined automatically while the algorithm runs
and has to be given by the user. Empirical results show
that a smaller block size gives better real-time
performance. Real-time frequent pattern mining will
have a great impact in real-time decision making,
especially in the scenarios like real-time optimization
for managing supply chains and real-time predictive
modeling. This algorithm may be modified for
matching the memory and time constraints
dynamically. It may be worthwhile to extend this work
in scenarios of grid-computing where data is being
gathered from a multi-agent grid-network. More
domain specific heuristics for business, if developed,
and used along with the technique proposed in this
paper, will make real-time frequent pattern mining
more efficient.

8. Reference:
[1] M. L. Gonzales, "Unearth BI in Real-time," vol. 2004: Teradata, 2004.
[2] B. Goethals, "Memory Issues in Frequent Pattern Mining," in Proceedings
of SAC'04. Nicosia, Cyprus: ACM, 2004.

[3] R. Dass and A. Mahanti, "Frequent Pattern Mining in Real-Time – First
Results," presented at TDM2004/ACM SIGKDD 2004, Seattle, Washington
USA, 2004.
[4] R. Dass and A. Mahanti, "An Efficient Technique for Frequent Pattern
Mininig in Real-Time Business Applications," presented at 38th IEEE Hawaii
International Conference on System Sciences (HICSS 38), Big Island, 2005.
[5] R. Dass and A. Mahanti, "Implementing BDFS(b) with Diff-Sets for Real-
Time Frequent Pattern Mining in Dense Datasets – First Findings," presented at
UDM 2005/IEEE International Conference of Data Engineering 2005 (ICDE
2005), Tokyo, Japan, 2005.
[6] R. Dass and A. Mahanti, "Fast Frequent Pattern Mining in Real-Time,"
presented at Proceedings of the Eleventh International Conference on
Management of Data (COMAD 2005), Goa, India, 2005.
[7] A. Das, W.-K. Ng, and Y.-K. Woon, "Rapid Association Rule Mining,"
presented at CIKM 2001, Atlanta, Georgia, USA, 2001.
[8] S. Dutta, "Adapting Decisions, Optimizing Facts and Predicting Figures:
Can Confluence of Concepts, Tools, Technologies and Standards Catalyze
Innovation?," Massachusetts Institute of Technology, Massachusetts August
2004 2004.
[9] J. Dyche, "Real Time or Right Time- Explaining The Real Time
Enterprise," vol. 2004: CRM Guru, 2003.
[10] OpenServiceInc., "Real-Time Enterprise Risk and Vulnerability
Management," vol. 2004: Open Service Incorporation, 2004.
[11] W. Lee, S. J. Stolfo, P. K. Chan, E. Eskin, W. Fan, M. Miller, S.
Hershkop, and J. Zhang, "Real time data mining-based intrusion detection,"
presented at DARPA Information Survivability Conference & Exposition II,
Anaheim, CA , USA, 2001.
[12] B. Goethals, "Survey on Frequent Pattern Mining," vol. 2004. Helsinki,
2003, pp. 43.
[13] J. Hipp, U. Guntzer, and G. Nakhaeizadeh, "Algorithms for Association
Rule Mining -- A general Survey and Comparision," SIGKDD Explorations,
vol. 2, pp. 58-64, 2000.
[14] R. Agarwal, T. Imielinski, and A. Swami, "Mining Association Rules
Between Sets of Items in Large Datasets," in Proceedings of the ACM
SIGMOD Conference on Management of Data. Washington,D.C.: ACM, 1993,
pp. 207-216.
[15] J.-H. Su and W. Y. Lin, "CBW: An Efficient Algorithm for Frequent
Itmeset Mining," in Proceedings of the 37th Hawaii International Conference
on System Sciences. Hawaii: IEEE, 2004.
[16] R. Agarwal and R. Srikant, "Fast Algorithms for Mining Association
Rules in Large Databases," in Proceedings of the 20th International
Conference on Very Large Databases (VLDB), J. B. Bocca, M. Jarke, and C.
Zaniolo, Eds. Santiago, Chile: Morgan Kaufmann, 1994, pp. 487-499.
[17] J. Hipp, U. Guntzer, and G. Nakhaeizadeh, "Mining Association Rules:
Deriving a Superior Algorithm by Analyzing Today's Approaches," in
Proceedings of the 4th European Conference on Principles of Data Mining and
Knowledge Discovery, vol. 1910 of Lecture Notes in Computer Science, D. A.
Zighed, H. J. Komorowski, and J. M. Zytkow, Eds.: Springer, 2000.
[18] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, "Dynamic Itemset
Counting and Implication Rules for Market Basket Data," in Proceedings of the
ACM SIGMOD Conference, 1997, pp. 255-264.
[19] R. J. Bayardo Jr., "Efficiently mining long patterns from databases.," in
Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data, vol. 27(2) of SIGMOD Record, L. M. Haas and A.
Tiwary, Eds.: ACM Press, 1998, pp. 85-93.
[20] F. Goerts, B. Goethals, and J. Van den Bussche, "A Tight Upper Bound on
the Number of Candidate Patterns," in Proceedings of the 2001 IEEE
International Conference on Data Mining, N. Cercone, T. Y. Lin, and X. Wu,
Eds.: IEEE, 2001, pp. 155-162.
[21] M. J. Zaki and M. Ogihara, "Theoratical Foundations of Association
Rules," presented at DMKD'98, Seattle, 1998.
[22] R. Kohavi and F. Provost, "Applications of Data Mining to Electronic
Commerce," Journal of Data Mining and Knowledge Discovery, vol. 5, pp. 5-
10, 2001.
[23] M. S. Rahman, N. L. Martin, and S. Paul, "Data Mining, Group Memory,
Group Decision Making: A Theoretical Framework," presented at Ninth
Americas Conference on Information Systems, 2003.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10

