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Abstract—In this paper, we propose an efficient solution for the

Multiple Constant Multiplication(MCM) problem. The method

exploits common subexpressions among constants based on hier-

archical clustering and reduce the number of shifts, additions, and

subtractions. The algorithm defines appropriate weights which

indicate the operation priorities and selects the common subex-

pressions which results in the least number of local operations.

It can also be extended to various high-level synthesis tasks such

as arbitrary linear transforms. Experimental results show the

effectiveness of our method.

I. INTRODUCTION

Recently, high-level synthesis methodologies have played an

important role in VLSI design automation. Many tasks in high-

level synthesis such as design representation, transformation,

scheduling, and allocation have been exploited. In addition,

powerful high-level synthesis systems with these techniques

have been introduced over the last decade [1], [2].

Among the high-level synthesis tasks, transformation to be-

havioral descriptions and to internal flow-graph representations

is quite important to achieve high-quality design. Such trans-

formation involves various compiler-like optimizations such

as constant folding, redundant operator elimination. Another

powerful transformation technique, the tree-height reduction,

uses the algebraic properties of operators such as commutativ-

ity and distributivity to decrease the height of the parse tree.

This technique has been successfully applied to high-level

synthesis to improve the parallelism of the design [3].

The problem we consider in this paper is one of these flow-

graph transformations, that is, substituting multiplications with

a single constant by shifts and additions, and minimizing

the number of these operations. The motivation for such a

substitution is simply that in ASICs and processors, several

multiplication costs can be substantially reduced by imple-

menting with shifts, adders, and subtractors rather than with

multipliers. The importance of such optimization has been

recognized for high-level synthesis. Only recently, however,

has this transformation been investigated to reduce power

consumption [4] and area size [5].

The significant advance for the transformation was achieved

by Potkonjaket al. in [6], [7]. They first formulated the

Multiple Constant Multiplication(MCM) problem in high level

synthesis by considering the multiplications of one variable

with several constants at a time and also reduced the number of

the shifts and additions based on iterative pairwise matching.

Mehendaleet al.[8] considered the problem by examining the

coefficient matrix and the iterative elimination of two-element

common subexpressions.

In this paper, we first present new weights for subexpressions

indicating priorities to be executed earlier, and present the

algorithm to minimize the numbers of additions+subtractions

and shifts by using them. Since the definition of the weights

takes into account not only a direct common subexpression but

also subexpressions which can be computed by just shifting the

other, it can fully express the operation priorities and explore

the search space quite effectively. Our method can be applied

for various number representations such as Signed Digit(SD)

representation. Furthermore, it can be extended to a general

linear transform with arbitrary elements, and thus, applied

to various kinds of high-level sysnthesis tasks, especially for

numerically intensive applications.

This paper is organized as follows: In the next section, we

summarize the MCM problem using an example. In Section

III, we show our hierarchical clustering method to thoroughly

explore common subexpressions. In Section IV, we extend



our basic scheme to arbitrary linear transforms to aim at

several high-level synthesis tasks Section V is devoted to the

experimental results. Finally, we conclude in Section VI.II. Problem Formulation
A. Previous Work

Optimization of multiplications with a constant has been

investigated from several viewpoints, such as on software

compilers [9], computer architecture [10], DSP [11], and

so forth. Chatterjeeet al.[5] have addressed this problem

to improve area size and have presented algorithms based on

number splitting. However in these tecniques, the simultaneous

optimization of multiplications of one variable by multiple

constants has not been fully explored.

Recently, another significant advance was achieved by

Potkonjaket al.[6], [7] and by Mehendaleet al.[8]. Potk-

injak et al. considered all of the constants multiplied by

the same variable at the same point in time and formulated

the MCM problem as follows:Substitute all multiplications

with constants by shifts and additions(and subtractions), and

use common subexpressions between various multiplications

to minimize the number of additions(and subtractions). They

explored common subexpressions among multiple constants

using the iterative pairwise matching algorithm. Note that

this algorithm works better than the simple bipartite matching,

even though it possibly has some defects in searching for

common subexpressions. Mehendaleet al. also considered

the MCM problem by looking for common 2-bit subexpres-

sions across bit locations and those within a coefficient. In

doing this, they suceeded in further reducing in the number of

additions+subtractions. However, since they explore common

subexpressions across constants and those within a constant

separately and explore only those of ‘2-bit’ types, better com-

mon subexpressions which exist in many bit locations across

the constants and within a constant can be missed. Thus, we

explore the common subexpressions across the constants and

those within each constant simultaneously and decide the best

subexpression to be executed by the priority criteria which

takes both types of common subexpressions into account. Fur-

thermore, we extend the basic algorithm to a wider range of

problems, such as to the MCM problem for a linear transform

with arbitrary entries.

B. Exploring Common Subexpressions – An Example

We introduce the MCM problem using an example and men-

tion the basic idea.
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Fig. 1. Values of the constants and their binary representations
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Fig. 2. Example of multiple constant multiplications

Example 1. First, consider the following description:

y = a � X + b � X + c � X + d � X. The concrete val-

ues of the constants froma to d are shown in Fig. 1 and the

simplified circuit in Fig. 2.

Not only are the constants integers but even arbitrary fixed

point numbers are permissible. Before explaining the algo-

rithm, we need to make one assumption. If all we need is the

totazl value of the right side of the description, then it does

not make sense to find the common expression, because in that

case, all of the constants can be added in advance using the

distributive property. Thus, we assume that we need each of

the product elementsa �X; b �X; c �X, andd �X and that

we do not add the constants in advance. This assumption is

appropriate when we formulate the MCM problem on various

applications.

We first represent all of the constants in binary form as

shown in Fig. 1. By this representation, an addition between

two shifted numbers can be shared by all of the constants that

have common 1s in the same two figures. We will demonstrate

how to share the subexpressions: If we first shift and add the

numbers corresponding to the common 1s in the first, fourth,

and sixth figures as shown in Fig. 3, we need only two

additions among the three figures and two shifts for the 1s in

the fourth and sixth figures. However, without any sharing,

we need eight additions and eight shifts for the computation.

Thus, six additions and six shifts are saved by that sharing.
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Fig. 3. Clustering based on 2-bit common subexpressions

We then process the computation for the third and 10th figures.

Continuing in the same way, we need 10 additions and eight

shifts, while initially 22 additions and 22 shifts were needed

for the multiplications ofa; b; c; andd.

However, this is not sufficient because it does not utilize

common subexpressions within each constant. That is, as in

Fig. 4 where the sum of the shifted numbers corresponding

to the 1s in the third and fourth figures of the constanta can

be just computed by shifting the sum for its first and second

figures as follows:

X � 2+X � 3 = (X +X � 1)� 2: (1)

Similarly, the sum corresponding to the subexpressionB of d

in Fig. 4 can be computed in terms of the subexpressionA in

Fig. 4 as follows:

6X
i=3

(X � i) = f

3X
i=0

(X � i)g � 3 (2)

By rigorously executing such substitutions of shifts for

additions, we can reduce the number of additions to nine,

where the number of shifts is unchanged, eight in total.

We extract common subexpressions in such an order that a

pair of bits that exists most frequently across the constants and

within a constant is given the highest priority and shifted and

added first. We progress with the algorithm until all bits have

been added and the whole computation is completed.

The above example describes techniques for exploring the

common subexpressions across constants and those within each

constant. We will show the details of the algorithm in the next

section.III. Hierarchical Clustering Algorithm
A. Preliminaries

The MCM problem can be formally stated as the minimiza-

tion problem of a weighted sum of the numbers of shifts,
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Fig. 4. Clustering with a substitution of shifts for additions

additions, and subtractions. Thus, we first minimize the num-

ber of additions+subtractions and then, minimize the number

of shifts under the assumption that varrel shifts are used and

cost of all shifts is identical.

We first need to introduce some notation to support the

algorithm. Consider a variableX multiplied by multiple

constantsfakg(0 � k � n � 1) where each of them hasm

bits. We first express all of the constants in some representation

taking the values 1,�1, and 0. LetV = fvig(0� i � m� 1)

be the set ofm vertices wherevi represents theith figure from

the right of all constants. We express the value of theith figure

of ak by vi[k]. Then, the representation ofak is written as

vm�1[k]vm�2[k] � � � v1[k]v0[k], which implies that the values

(vi[k]) (0 � k � n� 1; 0� i � m� 1) form an�m matrix

whose elements are 1,�1, or 0. We call(vi[k]) the digit

matrix.

(vi[k]) =

0
BBB@

vm�1[0] : : : v1[0] v0[0]

vm�1[1] : : : v1[1] v0[1]

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

vm�1[n� 1] : : : v1[n � 1] v0[n� 1]

1
CCCA

vm�1 : : : v1 v0

Fig. 5. Digit matrix

Next, we define two kinds of weights betweenvi andvj to

express priorities among the subexpressions as follows:

W+

i;j = #f(vp[k]; vq[k]) = (�1;�1) j 0 � 9l � m� 2 s:t:

X � p+X � q = �(X � i+X � j)� lg

W
�

i;j = #f(vp[k]; vq[k]) = (�1;�1) j 0 � 9l � m� 2 s:t:

X � p�X � q = �(X � i�X � j)� lg

Each of the weightsW�

i;j is equal to the number of 2-bit

subexpressions which can be computed by just shifting the

addition(or subtraction) result ofX � i �X � j to the left.

Hence, all the subexpressions used to calculate each weight

can be performed with only one addition(or subtraction).



B. Hierarchical Clustering Procedure

We explain how to calculatefW�

i;jg and how to select

subexpressions by using the following example.

Example 2. Suppose a variableX is multiplied by the four

constantsa; b; c; andd where the binary representations of the

constants area = 1 1 1 12; b = 1 1 0 12; c = 0 1 1 02; andd =

1 0 1 12. Then, there are initially four vertices corresponding

to the four bit elements,i.e. V = fv0; v1; v2; v3g. The digit

matrix that consists of the bit elements of a, b , c, and d is

shown in Fig. 6.

(vi[k]) =

0
BBB@

1 1 1 1

1 1 0 1

0 1 1 0

1 0 1 1

1
CCCA

v3 v2 v1 v0

Fig. 6. Digit matrix for Example 2

To calculateW+

0;1, for example, we count the subexpressions

that are obtained by shifting (1 1) inv0 andv1. There are two

such pairs inv0 andv1, one such pair inv1 andv2, and two

pairs inv2 andv3. Thus,W0;1 = 2+ 1+ 2 = 5. All Wi;js are

obtained in the same way. In this case,W+

0;1 is maximal and all

the pairs of (1 1) are clustered over columns and rows at a time.

We generate three columnsv4, v5, andv6 corresponding to the

above three kinds of subexpressions, respectively. Hence, the

digit matrix is subsequently updated as in Fig. 7 and weights

are computed again. Finally, we need four additions and four

shifts for the whole computation.
0
BBB@

1 0 1 0 0 0 0

1 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 1 1 0 0 0

1
CCCA

v6 v5 v4 v3 v2 v1 v0

Fig. 7. Updated digit matrix

Now, we outline the algorithm below.

Algorithm for Hierarcichal Clustering

1. Represent all constants in some representation form and

transform them into the digit matrix (vi[k]) where each

element consists of a single digit.

2. Eliminate duplicates of identical constants as well as

eliminate constants of less than two non-zero digits.

3. For allvi; vj 2 V , compute the weightsfW�

i;jg.

4. Until all of the pairs of columns have no positive weights,

� Select the best pair of digits,i.e. find the pair of

columns(vI ; vJ) that takes the valuemax fW�

i;jg.

� Update the digit matrix according to the clustering of

common subexpressions: let the clustered elements

to be zero in the former matrix and decide the

elements of the new columns which are produced

by the clustering instead.

� Recompute the weightsfW�

i;jg for the updated digit

matrix.

5. Output the total number of additions and shifts needed

and the final data flow graph.

In the third step, we compute the weights which take into

count both the direct common subexpressions and the subex-

pressions which are obtained by the substitution of shifts for

additions. The fourth step is the main recursive procedure of

the algorithm. The pairing that can reduce the number of ad-

ditions most is selected. In case that there are weights with the

same highest value, we select the subexpression that does not

increase the height of the data-flow graph because balancing

the heights of all trees tends to result in the better sharing of

the subexpressions while also affecting the throughput.

As for the substitution of shifts for additions, generally, such

shifts can be performed between the subexpressions which

consist of more than two non-zero digits and the common

subexpressions can be fully explored.IV. Extension to arbitrary linear transforms
The MCM problem can be seen frequently in many problems

which include linear transforms such as those in signal and

image processing, error-correcting codes, and so forth. Thus,

it is beneficial to extend our method to linear transforms with

entries of arbitrary values.

The general linear transform has the form:

Yi =

nX
j=1

aijXj ; (i = 1; : : : ; n):

Such a case was formerly discussed in [7] in which they applied

the iterative pairwise matching algorithm twice. However, we

present a natural and effective method to explore the solution

space at a single point in time using hierarchical clustering.

In the case of matrix multiplication, two kinds of shift-for-

addition substitution are taken into account for the weight



computation; one is for the constants in the same columns,

i.e. for those multiplied by the same variableX , and the other

is for those in two different columns multiplied by different

variablesX andX0. In the former case, the pair of digits are

in the same column and the weights are computed in the same

way as before. To explore the latter case, we first need to

define the digit matrix. It can be achieved by regarding each

column in the original matrix as a set of multiple columns so

that each element consists of just a single digit. Then, we can

generalize the definition of the weights as follows:

W+

i;j = #f(vp[k]; vq [k]) = (�1;�1) j 0� 9l � m� 1 s:t:

X � p +X0
� q = �(X � i+X0

� j) � lg

W�

i;j = #f(vp[k]; vq [k]) = (�1;�1) j 0� 9l � m� 1 s:t:

X � p �X0
� q = �(X � i�X0

� j) � lg

Then, fW�

i;jg within one column is a special case of this

definitions.t.X andX 0 being the same variable.

Note that in regard to a linear transform with elements of

only 1;�1, and 0, common subexpressions are limited to those

across the rows in the matrix, thus preventing substitution of

shifts being performed. The weights and the procedure are

almost the same as those used by Mehendaleet al.[8], although

they did not refer to a matrix computation.

We will now state the extended algorithm.

Extended Algorithm for Linear Transforms

1. Represent all of the elements of a matrix in some repre-

sentation form.

2. Generate the digit matrix by regarding each column of the

original matrix as a set of multiple columns so that each

element consists of a single digit.

3. Compute the weightsfW�

i;jg and apply the clustering

algorithm to the digit matrix.V. Experimental Results
We have implemented the algorithms in C under Unix and

applied them to a set of benchmark examples as shown in Table

I and II. Some of them were adopted from the examples used

in [7]; we used as many examples as we could to compare

the effects directly. In the two tables, the rows are devoted to

the names of the benchmark examples. The columns “Initial”

and “I” show the number of additions initially needed. “HC”

is the abbreviation for our hierarchical clustering and the

column “HC” shows the number of operations after applying

our algorithm. The columns “HC/Initial”, “HC/I”, and “[7]/I”

TABLE IBenchmark Results on several linear transforms
(3) Example for a Linear Code wit ternary values

I
Additions

Ternary Golay  10

Example
  Shifts

HC/IHCIHC/IHC

0.83320240.55

(2) Example for a Linear Transform with 0, 1, -1

Initial
Additions/Subtractions

Hadamard 
56

Example

0.3572024

HC/InitialHC[7]

8
Hadamard        

16 240 -  64 0.267

(1) Examples for Linear Codes with binary values

Initial

  Reed-Muller

(15,7) BCH

(24,12,8) Golay

61

   Additions
Example

  (7,4)      0.762161621

0.5083143

0.635474874

0.61847-76

HC/InitialHC[7]

Hadamard
(16,11)

(12,6,6)

Matrix H

Matrix H

show the reduction ratios compared with the initial number of

operations.

More specifically, (1) of Table 1 shows the set of bench-

mark examples of the representation matrices of some error-

correcting codes with binary elements as in [7] and [12]. The

Hadamard matrices in (2) were taken as examples with ele-

ments of values 1;�1, and 0. They are often used for image

and video compression.

For those matrices with elements of a single digit, our

weights coincide with those of Mehendaleet al.[8] as we note

in IV and will be performed in the same way exept for the

selection of the subexpressions with identical weight. The

average reduction ratio for (1) and (2) is about 0.525 and the

numbers of additions/subtactions are less or equal to those in

[7]. Especially for the Hadamard matrixH8, we discover the

best digit-pairs in the 3rd and 7th columns from the left and as

well as in the 4th and 8th columns from the left by the weights.

This results in reducing four more additions than in [7].

Finally, (3) of Table I and Table II are examples of linear

transforms with entries of arbitrary values. We compare

our results with the method previously proposed for linear

transforms. Since the input numbers of shifts and additions are

slightly different between [7] and our method, we compared the

reduction ratios to be equitable. In these examples, with regard

to the number of additions/subtractions, the average reduction

ratio in our method is 0.242 and those in [7] is 0.276. Thus,

our method achieved better level of reduction. In analyzing

the results, in [7], the substitution of shifts were not taken into

account and the multistep approach were taken for reducing



TABLE IIResults for DCT -Discrete Cosine Transform
I([7]) Example

        Shifts# of 
bits

DCT

8

12

16

HC/I

308 280

0.202

75376

72 0.234

[7] [7]/I  HCI

58 0.207

74 0.197 376 0.199

529 504107 99 0.196

Ave.  - - -0.211 0.201 -

I([7]) Example
# of 
bits

DCT

8

12

16

HC/I

300 272

0.248

368

94 0.313

[7] [7]/I HCI

73

100 0.272 368

521 496129

Additions/Subtractions

  0.230114

0.268

Ave.

84 0.228

-    -0.278  - 0.242-

the solution space. However, our weights take into account

not only the common subexpresisons across the columns of the

digit matrix but also those across the rows. Furthermore, we

have also searched for the entire solution space at one time,

which possibly acounts for the better results in the number of

additions/subtractions. Accordingly, more shifts were shared

across the rows and columns in our method and the number of

shifts were also be more reduced.VI. Conclusion
In this paper, we have proposed an efficient solution for

the Multiple Constant Multiplication problem to minimize the

number of additions, subtractions and shifts needed for the

original multiplications with a constant. First, we transform

the problem into a minimization problem of the number of addi-

tions+subtractions and then, solve it by hierarchical clustering

based on the appropriate weights. Since the weights express

operation priorities to be shifted and added(or subtracted), our

method can efficiently select the best subexpression to be op-

erated. Furthermore, the advantage of our method is not only

in its efficiency and simplicity but also in its extendability to

other high-level synthesis tasks which are reduced to linear

transforms with arbitrary elements. The experimental results

show the effectiveness of our method.

Future work is on applying the method for a resource-

constrained case and on implementing DSP applications.
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