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AN EFFICIENT HIERARCHICAL MULTISCALE FINITE ELEMENT

METHOD FOR STOKES EQUATIONS IN SLOWLY VARYING

MEDIA∗

DONALD L. BROWN† , YALCHIN EFENDIEV‡ , AND VIET HA HOANG§

Abstract. Direct numerical simulation (DNS) of fluid flow in porous media with many scales is
often not feasible, and an effective or homogenized description is more desirable. To construct the
homogenized equations, effective properties must be computed. Computation of effective properties
for nonperiodic microstructures can be prohibitively expensive, as many local cell problems must be
solved for different macroscopic points. In addition, the local problems may also be computationally
expensive. When the microstructure varies slowly, we develop an efficient numerical method for
two scales that achieves essentially the same accuracy as that for the full resolution solve of every
local cell problem. In this method, we build a dense hierarchy of macroscopic grid points and a
corresponding nested sequence of approximation spaces. Essentially, solutions computed in high
accuracy approximation spaces at select points in the the hierarchy are used as corrections for the
error of the lower accuracy approximation spaces at nearby macroscopic points. We give a brief
overview of slowly varying media and formal Stokes homogenization in such domains. We present a
general outline of the algorithm and list reasonable and easily verifiable assumptions on the PDEs,
geometry, and approximation spaces. With these assumptions, we achieve the same accuracy as
the full solve. To demonstrate the elements of the proof of the error estimate, we use a hierarchy
of macro–grid points in [0, 1]2 and finite element (FE) approximation spaces in [0, 1]2. We apply
this algorithm to Stokes equations in a slowly porous medium where the microstructure is obtained
from a reference periodic domain by a known smooth map. Using the arbitrary Lagrange–Eulerian
(ALE) formulation of the Stokes equations (cf. [G. P. Galdi and R. Rannacher, Fundamental Trends
in Fluid-Structure Interaction, Contemporary Challenges in Mathematical Fluid Dynamics and Its
Applications 1, World Scientific, Singapore, 2010]), we obtain modified Stokes equations with varying
coefficients in the periodic domain. We show that the algorithm can be utilized in this setting. Finally,
we implement the algorithm on the modified Stokes equations, using a simple stretch deformation
mapping, and compute the effective permeability. We show that our efficient computation is of the
same order as the full solve.

Key words. Stokes flow homogenization, multilevel finite elements, fluid-structure interaction,
arbitrary Lagrange–Eulerian
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1. Introduction. Understanding flow in porous media has wide ranging applica-
tions in various areas of science and engineering. A large portion of these applications
lies in the field of subsurface simulation. For example, in petroleum engineering, flow
information is used to provide economically efficient production strategies. In envi-
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ronmental engineering, understanding subsurface water flow can be used to predict
contaminant transport in aquifers. In most cases, porous media exhibit heterogeneous
microstructure and have many scales. This makes direct numerical simulation (DNS)
prohibitively expensive. More specifically, the pore size is much smaller than the do-
main of interest, and so effective equations are more desirable. In these situations,
homogenization or averaging techniques are employed to understand the physics on
an effective scale.

Traditionally, these methods rely heavily on the medium of interest having a
purely periodic structure. However, there are many multiscale and multiphysical
problems in which an initially periodic medium, through some coupled process, breaks
the periodicity. This is often achieved in a slowly varying way, where the pore-
space of two neighboring representative volume elements (RVEs) differs very little.
Examples of such processes include fluid-structure interaction (FSI), where mechanical
deformation, driven by normal stresses at the fluid-solid interface, breaks periodicity
in a slowly varying way; cf. [6, 7, 19]. In the case of concrete carbonation, chemical
degradation breaks down the periodic microstructure (cf. [17, 18]), and in industrial
filtration, deposition of contaminants yields a slowly varying pore-space; cf. [16].

In this work we consider creeping flow of an incompressible Newtonian fluid in
a microstructure that is slowly varying. The governing equations for these types
of flows are given by the Stokes equations [21]. We develop a novel and efficient
two-scale finite element method (FEM) to compute solutions to the auxiliary cell
equations. These cell problems relate the microscale information to the macroscale
or effective description. In turn, we are able to construct a numerical approximation
to the homogenized equations in slowly varying geometries. In this method, we are
able to reuse previously computed information from nearby cell equations to obtain a
more accurate solution at a reduced computational cost. The main goal of our paper
is to show that we obtain the same order of accuracy with our algorithm as the much
more costly full solve.

In the event that the media are periodic, analytical techniques and computational
algorithms for Stokes homogenization are well studied. Using the method of two-
scale asymptotic expansion [9, 10, 20], the authors develop a formal justification for
the homogenization of Stokes equations in perforated domains. First, auxiliary cell
equations are deduced; then, after averaging, the solutions are used to construct the
homogenized Darcy equation [8]. In the periodic setting, the cell equations completely
uncouple from macro–scale variables and depend only on the cell pore geometry. This
fact, along with periodicity, results in a single set of cell equations that must be
computed to construct the homogenized equations. In slowly varying media this is
not the case; as the geometry changes, a new set of cell equations must be calculated.
This is often also true for elliptic problems with highly oscillatory coefficients [2].
For example, in two-scale diffusion problems, the diffusivity tensor may depend on
both macro- and microscales. For each macroscopic point a corresponding set of cell
equations must be computed.

In practice, we cannot compute a set of cell equations for each macroscopic point.
In [7], the authors develop a moving averages homogenization algorithm, a numerical
technique for constructing the homogenized Darcy equation in slowly varying media.
By computing the set of cell problems at many select macroscopic points using a
standard FEM and interpolating the result, a numerical approximation to the ho-
mogenized equation is obtained. This approach, although successful in its task, can
be improved upon in a number of ways. Each of the cell equations is computed using
the same order of accuracy and must be remeshed for each unique geometry. This

D
o
w

n
lo

ad
ed

 1
2
/0

9
/1

3
 t

o
 1

5
5
.6

9
.4

.4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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can be computationally expensive, especially in cases where the cell geometry is very
complicated. Even though the geometry is slowly varying and there is little change
from RVE to RVE, information from nearby cells cannot be reused without sampling
errors from interpolating solutions with differing meshes. Since the geometries vary
little, there is some redundancy in recalculating cell problems in nearby RVEs. In
this work, we develop techniques to circumvent these difficulties.

The idea of the algorithm is as follows. We first develop an algorithm that yields a
hierarchy of grids, with specified qualities, in the macroscopic variable. Traditionally,
we would solve a set of cell problems at all these macroscopic grid points with the same
accuracy as in the method of moving averages [7]. In our proposed framework, we
build a corresponding nested collection of finite element (FE) approximation spaces
with varying orders of accuracy to compute cell equations. With some macrogrids
we compute very accurate cell solutions, and with more refined macrogrids (closer
grid spacing) we compute cell solutions with less accuracy. We use local information
from nearby higher accuracy solutions known as “right-hand-side data” to correct the
lower accuracy solves. These ideas have been used successfully for elliptic problems.
In the case where a high-dimensional homogenized equation is available, the sparse
tensor product discretization approach developed in [15] computes the solution to the
effective equation and the corrector with a complexity essentially equal to that for
solving a single macroscopic PDE and achieves accuracy essentially equal to that for
the full solve, without forming the effective equation explicitly. As for the Stokes
equations, for the elliptic problem considered in [15], if the effective coefficient is of
interest, it can be computed efficiently with much reduced complexity by our method.
This method is a special case of the wide class of heterogeneous multiscale methods
(HMMs), where local properties are used to update macroscale phenomena. For more
on these topics we refer the reader to [1] and the references therein.

Often, slowly varying media arise from coupled physical processes. In this work,
we assume the mapping from the initial periodic (reference) configuration to the
slowly varying (current) configuration is known. For example, in iterative FSI, fluid
equations are solved, and then normal stresses at the interface are passed to the
solid mechanics equations. The displacement of the solid is computed, and fluid
equations are solved again in the newly deformed domain; cf. [19]. At each iteration
step, the deformation from the reference to the current configuration is computed
by composing displacements of each iteration. With this information, we are able
to reformulate the Stokes equations in a slowly varying domain to modified Stokes
equations with tensor coefficients in the initial periodic domain. In the context of FSI,
this reformulation is referred to as the arbitrary Lagrange–Eulerian (ALE) formulation
of the Stokes equations; cf. [12, 13]. The periodic ALE formulation allows us to
construct a nested collection of FE spaces. The geometry does not change, but instead
the tensor coefficients vary. In this formulation, we are able to prove with reasonable
and easily verifiable assumptions that our algorithm produces essentially the same
order of accuracy as the full solve with much reduced complexity.

The organization of the paper is as follows. First, in section 2 we motivate the
need for an efficient multiscale algorithm in slowly varying media. We begin by giving
a summary of formal homogenization of Stokes equations in such media. This will
serve to introduce terminology used throughout the work and highlight advantages of
reformulating the problem in the ALE formulation. Then, an overview of the solution
approach and computational algorithm is presented in general terms. In section 3 we
outline physically reasonable and easily verifiable abstract mathematical assumptions
on the microstructure geometry, variational equations, and FE approximation spaces.
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These assumptions will guarantee that our algorithm has the same order of accuracy
as the full solve, but at less computational cost. We prove this for a two-dimensional
hierarchy of macrogrids to illustrate the main ideas of the proof. Then, in section 4
we reformulate the Stokes equations from the slowly varying geometry to the periodic
ALE formulation. We verify that the abstract assumptions outlined in section 3 hold,
assuming the geometry is slowly varying. Hence, our efficient multiscale algorithm
will be applicable in this setting. Finally, to demonstrate the ideas and effectiveness
of the algorithm, in section 5 we apply our algorithm to a constructed example where
initially periodic media with square inclusions are deformed via a horizontal stretch.
We show that our algorithm is the same order of accuracy as the full fine mesh solve
by comparing permeabilities or averaged cell velocity solutions.

2. Background and overview of the algorithm. In this section we give a
brief exposition of slowly varying domains, formal Stokes homogenization in such me-
dia, and an overview of our efficient multiscale FE algorithm. We introduce periodic
perforated domains, and then, after applying a mapping, we obtain the slowly varying
domain. This mapping is an a priori known quantity computed from another coupled
process such as FSI deformation, chemical degradation, etc. [18, 19]. The homogeniza-
tion background will serve to motivate our algorithm and give definitions to general
terminology used throughout the paper. We follow the presentation of this material
given in [7], where when using two-scale expansions in slowly varying domains, ho-
mogenization results are obtained. To this end, we introduce the fine-scale Stokes
operator, and then via formal two-scale asymptotic expansions [20], we arrive at the
auxiliary cell operator. From here we can construct the homogenized equations.

We are then in a position to give an overview for our algorithm. First, we highlight
the challenges in the numerical homogenization of the equations presented in section
2.1. The primary challenge is that, due to the changing pore geometry, we must
solve many sets of cell problems at various points in the domain. A synopsis of the
algorithm approach is given. We outline the requisite properties of the hierarchy of
macrogrids and corresponding nested sequence of FE approximation spaces. We then
state the procedure required to obtain the desired order of accuracy.

2.1. Slowly varying media and homogenization of Stokes flow. We begin
with some basic notation. Let the macroscopic domain Ω be an open bounded subset
of Rd. We assume that the domain is periodically perforated by an open solid micro-
structure denoted by Sε. The solid surrounds a connected fluid pore-space denoted
by Fε. That is, Ω = Fε ∪Sε and Fε ∩Sε = ∅. The interface between the two media is
denoted by Γε = F̄ε ∩ S̄ε. Furthermore, we assume that the media have an additional

structure. The two domains are decomposed into a set of unit cells ε
{
Y i
F

}N

i=1
and

ε
{
Y i
S

}N

i=1
, respectively, and ε is the characteristic pore size. That is, Y i

S and Y i
F ,

i = 1, . . . , N , are unit-sized domains and

Fε =

(
N⋃

i=1

εY i
F

)
∩Ω, Sε =

(
N⋃

i=1

εY i
S

)
∩ Ω.(1)

Since the domain is assumed to be periodic, each of the cells differs only by a
translation. That is, Y i

F = YF + ki and Y i
S = YS + ki, where ki ∈ Z

d corresponds to
the ith cell. We denote the entire unit cell by Y = YF ∪ YS and the cell interface YΓ.

Let x̃ε : Ω → Ω̃ε be a smooth map of the periodic domain to the deformed
domain Ω̃ε. Consequently, we may define the deformed fluid, solid, and interface as
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Fig. 1. Mapping from periodic Ω = Fε ∪ Sε to slowly varying Ω̃ε = F̃ε ∪ S̃ε by x̃ε. The fluid
and solid are white and black, respectively, in both domains.

F̃ε = x̃ε (Fε), S̃ε = x̃ε (Sε), and Γ̃ε = x̃ε (Γε), respectively. We denote the coordinates
of the periodic geometry by x and the slowly varying geometry by x̃. We denote
physical quantities in the slowly varying geometry by a .̃ An example of two domains
can be seen in Figure 1, where Ω = [0, 1]2 and ε = 1/4. Each unit cell is now deformed,

so we define an RVE. For each x̃ ∈ Ω̃ the fluid and solid cell domains contained in an
RVE are denoted by Y x̃

S̃
and Y x̃

F̃
, and the interface by Y x̃

Γ̃
. The deformation creates

a natural correspondence between translated periodic cells and deformed cells. We
view the slowly varying RVEs as the image of the mapping x̃ε restricted to translated
periodic cells. That is, εY x̃

F̃
= x̃ε(ε (YF + kx)) and εY x̃

S̃
= x̃ε(ε (YS + kx)), where

kx ∈ Z
d corresponds to the RVE at x ∈ Ω in the periodic domain. Thus, the deformed

fluid and solid space are given by

F̃ε =
⋃

x̃∈Ω̃

εY x̃
F̃
, S̃ε =

⋃

x̃∈Ω̃

εY x̃
S̃
.

Remark. Recalling the formal definition of slowly varying media given in [7], we
say a medium is slowly varying if nearby RVE pore geometry differs slightly. More
precisely, we say that Ω̃ε is slowly varying if the map x̃ε is such that if x̃, x̃′ ∈ Ω̃ε and
‖x̃− x̃′‖ < O(ε), then

|(Y x̃
F̃
∪ Y x̃′

F̃
)\(Y x̃

F̃
∩ Y x̃′

F̃
)| < O(ε).

In this work, we will need to make more concrete assumptions on the mapping x̃ε.
Indeed, we will require that the mapping and its gradient be sufficiently smooth and
Lipschitz continuous with respect to the macroscopic (slow) variables.

It is common practice in applied sciences and engineering applications to use
RVEs at many macroscopic points. The RVEs contain a representative sample of
small-scale information. At each of these points, local problems are solved. For
complex microstructure this can be very computationally expensive. To resolve local
flow properties, Stokes equations are solved in the RVEs assuming periodic boundary
conditions. These boundary conditions assume that, near a fixed macroscopic point,
the microstructure is periodic. Next, we present a formal derivation of this type
of procedure by two-scale asymptotic expansions for Stokes flow in slowly varying
domains. This will serve to introduce general terminology and motivate our algorithm.

We suppose that we have an incompressible Newtonian fluid in the pore-space
with viscosity µ. The fine-scale pressure and velocity are denoted by p̃ε and ṽε,
respectively. The flow of such a fluid at creeping velocities is governed by the Stokes
approximation [21]. The conservation of linear momentum and conservation of mass
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then read as

−∇p̃ε + µ∆ṽε = f̃ in F̃ε,(2a)

∇ · ṽε = 0 in F̃ε,(2b)

and we assume the boundary condition ṽε = 0 on Γ̃ε. For convenience in notation for
what follows, we let L̃ε

(
x̃, x̃

ε

)
denote the above fine-scale Stokes operator. Using the

two-scale expansions first proposed in [9, 10], pressure and velocity are expanded as

ṽε(x̃) = ε2 (ṽ0(x̃, ỹ) + εṽ1(x̃, ỹ) + · · ·) ,(3a)

p̃ε(x̃) = p̃0(x̃) + εp̃1(x̃, ỹ) + · · · ,(3b)

where ỹ = x̃/ε is the fast variable and derivatives behave as ∇ → ∇x̃+
1
ε∇ỹ. The cell

problems are now stated for a given spatial position. Fixing x̃ and substituting the
expansions (3) into the Stokes equations (2), gathering ε0 terms in the conservation
of linear momentum and ε1 terms in the incompressibility equation, one obtains

−∇ỹ p̃1(x̃, ỹ) + µ∆ỹ ṽ0(x̃, ỹ) = f̃(x̃) +∇x̃p̃0(x̃) in Y x̃
F̃
,(4a)

∇ỹ · ṽ0(x̃, ỹ) = 0 in Y x̃
F̃
,(4b)

where ṽ0 and p̃1 are ỹ-periodic; we also require ṽ0 = 0 on Y x̃
Γ̃

and 〈p̃1〉Y x̃ = 0. Here,

〈·〉Yx̃ is the average over the unit cell centered at x̃ given by

(5) 〈·〉Yx̃ =
1∣∣Yx̃
∣∣

∫

Y x̃

· dỹ.

Next, due to linearity of (4) and the right-hand side being a function of the slow
variable x̃ only, one has

ṽ0(x̃, ỹ) = w̃(x̃, ỹ) ·
(
f̃(x̃) +∇x̃p̃0(x̃)

)
,(6a)

p̃1(x̃, ỹ) = π̃(x̃, ỹ) ·
(
f̃(x̃) +∇x̃p̃0(x̃)

)
,(6b)

where (w̃i(x̃, ỹ), π̃i(x̃, ỹ)), i = 1, . . . , d, are the solutions to the auxiliary cell equations

−∇ỹπ̃
i + µ∆ỹw̃

i = ei in Y x̃
F̃
,(7a)

divỹ
(
w̃i
)
= 0 in Y x̃

F̃
,(7b)

where w̃i and π̃i are ỹ-periodic, w̃i = 0 on Y x̃
Γ̃
, and

〈
πi
〉
Y x̃ = 0. Here, ei is the ith

standard unit vector in R
d. Again, for convenience in presentation, in the following

we denote the above Stokes cell operator as L̃ỹ (x̃). Now, to relate these cell problems
to the the classical Darcy equation [8], one inserts (3a) into the conservation of mass
of the fine scale operator (2) and, by collecting ε2 terms, we obtain

(8) ∇x̃ · ṽ0 +∇ỹ · ṽ1 = 0 in F̃ε.

We fix x̃ and integrate over the cell Y x̃
F̃
. Using the divergence theorem, the fact

that ṽ1 has zero trace on Y x̃
Γ , ỹ-periodicity, and (6a), one obtains the homogenized

macroscopic equation of Darcy type

(9) ∇x̃ ·
(
K̃(x̃)

(
∇x̃p̃0(x̃) + f̃(x̃)

))
= 0 in Ω̃,
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where the x̃-dependent permeability is defined as K̃ij(x̃) :=
∫
Y
F̃

x̃ w̃ij(x̃, ỹ)dỹ and

we define the Darcy velocity ξ̃ = K̃(x̃)(f̃(x̃) + ∇x̃p̃0(x̃)). We require the boundary

condition ξ̃ · ν̃ = 0 on ∂Ω̃, where ν̃ is the outward normal. In what follows, we denote
the above homogenized operator as L̃ (x̃). Note that in the periodic setting we have
only one cell geometry and need only compute one set of cell equations (7). Thus,

K̃(x̃) = K̃ is constant and does not depend on the slow variable.
Remark. In addition, we require that the mapping x̃ε be smooth enough so

that the asymptotic expansions (3) will yield correct cell equations (4) and that the

permeability K̃(x̃) is a sufficiently smooth enough function of the slow variable x̃.
Formally speaking, the map does not change the microstructure from neighboring
RVEs in a significant way and varies slowly.

2.2. Overview of the algorithm. The main goal of employing the two-scale
asymptotic expansion is to obtain effective homogenized macroscopic equations L̃ (x̃)

of the fine-scale equations L̃ε

(
x̃, x̃

ε

)
, given here by (9) and (2), respectively. Often,

due to scale disparity and complex pore geometry, computing solutions of the fine-
scale equations by DNS is prohibitively expensive. In numerical homogenization, we
wish to construct an approximation to the homogenized equations L̃ (x̃) by computing

solutions to auxiliary cell equations L̃ỹ (x̃), given here by (7). In the periodic setting,

this is inexpensive, as L̃ỹ (x̃) = L̃ỹ. In this section, we outline an efficient multiscale
algorithm to compute the homogenized equations in slowly varying geometries.

The solution approach can be summarized as follows. Since we are given the
mapping x̃ε a priori, we use it to reformulate Stokes equations in the periodic ALE
formulation [12, 13]. This process transfers the information of the slowly varying
geometry to tensor coefficients of the modified Stokes equations. Then, we apply
the two-scale asymptotic expansion homogenization technique to the modified Stokes
equations Lε

(
x, x

ε

)
. This yields the cell equations Ly (x) and, subsequently, the ho-

mogenized equations L (x). We are then able work in fixed cell domains YF as opposed
to Y x̃

F̃
for many values of x̃. This fixed domain approach simplifies the analysis and

allows for information from nearby RVEs to be used in an effective way. The approach
may be summed up in the following diagram:

L̃ε

(
x̃,

x̃

ε

)
Two-Scale−−−−−−→ L̃ỹ (x̃)

Averaging−−−−−−→ L̃ (x̃)

⏐⏐⏐⏐�Reformulate Equations in Periodic Domain

�⏐⏐⏐⏐

Lε

(
x,

x

ε

)
Two-Scale−−−−−−→ Ly (x)

Averaging−−−−−−→ L (x) .

We present explicit expressions for the operators Lε

(
x, x

ε

)
, Ly (x), and L (x) in section

4, and in the appendix we derive the equations by two-scale expansion.
First, we give some mathematical preliminaries. We keep the presentation ab-

stract in the interest of generality because the methods here may be used for a wide
class of two-scale linear partial differential operators. Let V and W be two Hilbert
spaces for functions of y in the cell domain Y ⊂ R

d and V ′

and W ′

be their respective
dual spaces. Let f be a map in W ′

. For each x in the macroscopic domain Ω ⊂ R
d,

we consider the problem of a linear PDE in y: Find v ∈ V such that

Ly (x) v(x, y) = f(y),
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and integrating we obtain the corresponding weak variational form

(10) Ay (x) (v(x, ·), φ) = (f, φ)

for φ ∈ W. Here, Ay (x) (·, ·) is the bilinear form corresponding to the linear partial
differential operator Ly (x) and (·, ·) denotes the duality pairing (·, ·)W′ ,W .

Remark. Note here that for the Stokes cell equations, v(x, y) will have components
related to velocity and pressure, more precisely, v(x, y) = (w(x, y), π(x, y)) given by
(7) (in the current slowly varying configuration). In addition, the spaces we will need
are the same for both the solution and the test spaces V = W , and hence V ′ = W ′.
We will be more specific about the spaces in section 4. Finally, the domain Y below
plays the role of the cell YF in our Stokes problem.

We make a general outline of the algorithm.

Step 1: Build nested FE spaces. Fixing the macropoint x ∈ Ω, we wish to find
an approximation v(x, ·) ∈ V, satisfying (10), using a Galerkin FEM. To this end, we
build a nested collection of FE spaces for the problem. We denote the nested solution
spaces as V0 ⊂ V1 ⊂ · · · ⊂ VL ⊂ V and the trial spaces as W0 ⊂ W1 ⊂ · · · ⊂ WL ⊂ W
for L some fixed positive integer. We construct them so that the error between the
correct solution v(x, ·) ∈ V and the Galerkin FE approximation v̄(x, ·) decreases in a
structured way. More precisely, for φ ∈ WL−i, we solve for v̄(x, ·) ∈ VL−i

(11) Ay (x) (v̄(x, ·), φ) = (f, φ) ,

where v̄(x, ·) satisfies the error condition

(12) ‖v(x, ·) − v̄(x, ·)‖V = inf
ψ∈VL−i

‖v(x, ·) − ψ‖V ≤ Cκih ‖v(x, ·)‖U .

Here, h is the error in the finest approximation spaces (VL,WL) and κ is the FE
coarsening factor. The space U is the regularity for the solution, standard in FEM
error expression; cf. [4]. Note that we are clearly limited in the amount of coarsening
of our FE approximation spaces. That is, the coarsest error κLh must still be able to
resolve the scales on the cell domain for it to be a meaningful approximation.

Remark. This coarsening may be accomplished by coarsening the mesh or, con-
versely, refining. In the numerical example in this work, we start with the lowest level
space V0 and refine the mesh to build the collection of FEM spaces. This process can
be seen in Figure 5 in section 5.

Step 2: Build hierarchy of macrogrids. To choose judiciously at which
macro–grid points we will solve with high accuracy and which we will solve with
lower accuracy correction terms, we must build a hierarchy of macro–grid points.
First, we must build a nested macrogrid for Ω, denoted as

T0 ⊂ T1 ⊂ · · · ⊂ TL ⊂ Ω.

We construct this grid inductively as follows. Suppose we have an initial grid T0 with
grid spacing H . Grid spacing is where the distance between neighboring nodes is at
most H . Proceeding inductively, we construct the refinement of Ti−1, namely Ti, with
grid spacing Hκ−i. Note that the refinement is inversely of the same order as the FE
coarsening factor of the error expression (12) for the nested FE spaces.

We then define the dense hierarchy of macrogrids {S0, S1, . . . , SL} inductively as
S0 = T0, S1 = T1\S0, and in general

Si = Ti
∖(

⋃

k<i

Sk

)
.
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(a) T0 (b) T1 (c) T2

Fig. 2. 3-level nested macrogrids.

(a) S0 (b) S1 (c) S2

Fig. 3. 3-level hierarchy of macrogrids.

We refer to the coarsest grid S0 as the anchor points. We require that the hierarchy
of macrogrids be dense. That is, we require that for each point x ∈ Si, there exists
at least one point x′ ∈ ⋃

k<i Sk such that dist (x, x′) < O(Hκ−i). An example of a
3-level nested and corresponding hierarchy of macrogrids {(Ti,Si)}2i=0, contained in
Ω = [0, 1]2, can be seen in Figures 2 and 3.

Step 3: Calculating the correction term. We now relate the nested FE
spaces and the hierarchy of macrogrids in an efficient computational scheme. We
begin by solving at the so-called anchor points. At these points, we solve using the
standard Galerkin FEM. Let x ∈ S0, the most sparse macrogrid; then, we solve
the corresponding cell problems in the space of highest accuracy. That is, we find
v̄(x, ·) ∈ VL, which satisfies

(13) Ay (x) (v̄(x, ·), φ) = (f, φ) ∀ φ ∈ WL.

We then proceed inductively: for i = 1, . . . , L, let x ∈ Si, and let {x1, x2, . . . , xn} ∈
(
⋃

k<i Sk) be a collection of points sufficiently close to x. More precisely, the distance

between x and {x1, x2, . . . , xn} is less than O
(
Hκ−i

)
for all points in the collection.

There exists at least one such point in (
⋃

k<i Sk) since we constructed the hierarchy
of grids in a dense way. We denote the ith macro–grid interpolation as

(14) Ixi (v) =

n∑

j=1

cjv(xj , ·),
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where the constant weights cj determine the interpolation procedure. We also re-
quire

∑n
j=1 cj = 1. Let Ixi (v̄) =

∑n
j=1 cj v̄(xj , ·) denote the macro–grid interpola-

tion of Galerkin approximations. Recall that we assume we have already computed
{v̄(xj , ·)}nj=1 inductively. We solve for the correction term v̄c(x, ·) ∈ VL−i so that

Ay (x) (v̄c(x, ·), φ) = (f, φ)−Ay (x) (I
x
i (v̄), φ)

for all φ ∈ WL−i. Note that the right-hand-side term is known data from the previous
finer accuracy solves at macro–grid points in (

⋃
k<i Sk). We solve for the correction

term in a set of FE spaces (VL−i,WL−i) with coarser accuracy. Using both the
correction term and the macro–grid interpolation term, let

(15) v̄(x, ·) = v̄c(x, ·) + Ixi (v̄)

be an approximation for v(x, ·). We will show in section 3 that the approximation
(15) for v(x, ·) is of the same order of accuracy as if we solved in the standard way
via (13) using the finest FE spaces (VL,WL), at a reduced computational cost.

The simplest macro–grid interpolation scheme is that of a single point, Ixi (v) =
v(x1, ·), for some x1 ∈ (

⋃
k<i Sk)

⋂
BHκ−i(x). Here, BHκ−i(x) is an open ball in Ω

centered at x with radius Hκ−i. Another simple scheme is the two-point scheme. For
some x1, x2 ∈ (

⋃
k<i Sk)

⋂
BHκ−i(x), we write Ixi (v) =

1
2 (v(x1, ·) + v(x2, ·)), and so

on.
Remark. The relationship between the error coarsening factor κ of the nested FE

spaces and the refinement of the hierarchy of macrogrids is critical. The coarser the
FE spaces, the closer the macro–grid points must be when calculating the correction
term. Conversely, for very fine resolution FE solves, we use a sparser macrogrid. With
this in mind, we see that Steps 1 and 2 can be interchanged in order.

3. Abstract formulation. In this section, we enumerate the assumptions and
conditions required to guarantee that our efficient multiscale algorithm will yield the
same accuracy as the full solve. These assumptions on the variational form (10) are
physically reasonable and easily verifiable. To illustrate the main of ideas of the proof
of the error estimate, we proceed to build a nested collection of FE spaces and a
corresponding hierarchy of macrogrids for Ω = [0, 1]2. We proceed as outlined in
section 2.2.

We show in Theorem 3.1, without loss of generality, that we are able to obtain
the same order of accuracy as the full solve. For large domains with large variation in
microstructure over the domain, we must resolve the local scales at many macroscopic
points. We must solve many cell problems, each of which can be computationally
expensive. Indeed, if we have O(M) cell problems and in each cell we have O(N)
unknowns, then the total number of degrees of freedom for the full solve is O(MN).
Comparatively, the hierarchical solve will be that of one single set of cell equations
or O(N) degrees of freedom, a significant reduction. The computational complexity
is summarized in Theorem 3.2.

3.1. Assumptions on the operator. To ensure that our algorithm will give
us the proper rate of convergence we must make a few abstract assumptions on the
variational form (10). The first one is a standard assumption. These conditions are
the boundedness, the so-called inf-sup, and the nondegeneracy conditions; cf. [11].
They guarantee the existence, uniqueness, and a priori bounds for the solution.
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Assumption 3.1. There are positive constants α and β, independent of the nested
FE spaces, so that for all x ∈ Ω

sup
v∈V,w∈W

|Ay (x) (v, w) |
‖v‖V‖w‖W

≤ α < ∞,(16a)

inf
0�=v

sup
0�=w

|Ay (x) (v, w) |
‖v‖V‖w‖W

≥ β > 0,(16b)

∀ 0 �= w ∈ W : sup
v∈V

|Ay (x) (v, w) | > 0.(16c)

With Assumption 3.1, problem (10) has a unique solution v that satisfies the a
priori bounds

‖v‖V ≤ 1

β
‖f‖W′ .

To utilize information from solutions at other nearby macro–grid points, we must
have some measure of how much the variational form may change from macropoint
to macropoint in Ω. The following assumption that the variational form must be
Lipschitz in x allows us to quantify this idea.

Assumption 3.2. There exists a constant γ, independent of the nested FE spaces,
so that for all x, x′ ∈ Ω

|(Ay (x) −Ay (x
′)) (v, w) | ≤ γ|x− x′|‖v‖V‖w‖W .

To ensure accuracy of the finite element approximations we must assume regu-
larity of the true solution and existence of a regularity space U . For the canonical
example, the Laplacian operator −∆ using a linear Lagrange FE we have V = H1(Y)
and U = H2(Y) [11]. We also have specific requirements on the FE error. We sum-
marize this in an assumption.

Assumption 3.3. There is a regularity space U , containing V , and a nested
sequence of finite element spaces V0 ⊂ V1 ⊂ · · · ⊂ VL ⊂ V so that for all v in U

(17) inf
ψ∈VL−i

‖v − ψ‖V ≤ θ

(
1 +

α

β

)
κih‖v‖U ,

where the constant θ depends only on the spaces U ,V and the domain Ω. The con-
stants α and β are as in Assumption 3.1. Here, h is the order of accuracy for the
finest space VL and κ is the FE coarsening factor.

For the purpose of formulating the finite element approximations of (10), we
assume that the boundedness, inf-sup, and nondegeneracy conditions hold for the
discrete problem, and the constants are independent of the nested FE spaces. This
may be guaranteed by choosing proper stable FE spaces. For example, for Stokes
equations we can use Pk/Pk−1, k ≥ 2, Taylor–Hood elements; cf. [11]. In section
5, we use the stable element P2/P0 in the implementation of our algorithm. We
summarize this requirement in an assumption.

Assumption 3.4. There is a nested sequence of finite element spaces W0 ⊂ W1 ⊂
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· · · ⊂ WL ⊂ W so that

sup
v∈Vi,w∈Wi

|Ay (x) (v, w) |
‖v‖V‖w‖W

≤ α < ∞,(18a)

inf
0�=Vi

sup
0�=Wi

|Ay (x) (v, w) |
‖v‖V‖w‖W

≥ β > 0,(18b)

∀ 0 �= w ∈ Wi : sup
v∈Vi

|Ay (x) (v, w) | > 0(18c)

for i = 0, 1, . . . , L, and the spaces V0 ⊂ V1 ⊂ · · · ⊂ VL ⊂ V are as in Assumption 3.3.
The constants α and β are the same as in Assumption 3.2.

To ensure that our macro–grid interpolation (14) is close to the solution of (10),
we assume the following regularity condition with respect to the macrovariable x.
This assumption assumes a slow changing microstructure. With this regularity we
can show by a simple Taylor expansion argument the following inequality.

Assumption 3.5. The solution v of the problem (10) is in C1(Ω̄) as a map from
v(x, ·) : Ω → U . Let Ixi (v) be the interpolating operator in (14); then we have

‖v(x, ·) − Ixi (v)‖U ≤ N
n

max
j=1

(d(x, xj))

for some N > 0, independent of the nested FE spaces, and d is the standard Euclidean
metric.

Remark. The above assumption relies heavily on the smoothness of our mapping.
We have not provided a proof of this result, and it will be taken as an assumption
throughout this work. However, for smooth mappings (i.e., slowly varying geometries)
one expects this assumption to be valid. This is a subject of great interest and future
work.

3.2. Proof of the main theorem for the two-dimensional macrogrid. In
this section we construct a rectangular hierarchy of macrogrids and corresponding
nested FE spaces that satisfy the assumptions of the algorithm outlined in section
2.2, where Ω = [0, 1]2 and Y = [0, 1]2. We prove that by using the assumptions on the
variational form (10) outlined in section 3.1, we obtain the same order of convergence
as the full solve. The proof generalized to Ω ⊂ R

d and Y ⊂ R
d can be achieved in

a similar manner. We proceed in this way with the intent of elucidating elements of
the proof without loss of generality.

We begin by outlining the FE spaces needed in the proof. Here, the explicit
representation of the FE spaces is not so important, but the proper error bounds are
crucial. Let (Vi,Wi)

L
i=1 be FE spaces over Y satisfying the assumptions in section

3.1. In this case, V0 = W0 = ∅ for simplicity of notation of indices, as it is convenient
here to reindex. Furthermore, let vi ∈ Vi be such that

(19) Ay (x) (vi(x, ·), φ) = (f, φ) ∀φ ∈ Wi.

From Assumption 3.4, this problem has a unique solution vi ∈ Vi. In addition, from
Assumption 3.3 we have the error estimate

‖v(x, ·)− vi(x, ·)‖V =

(
1 +

α

β

)
inf
φ∈Vi

‖v − φ‖V ≤ θ

(
1 +

α

β

)
2−i‖v‖U .

Here, we have that h = 2−L is the accuracy of the finest space VL and κ = 2 is the
FE coarsening factor. As v is a continuous map from Ω to U , ‖v(x, ·)‖U is bounded
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uniformly for all x ∈ Ω. Therefore, there is a constant M such that

(20) ‖v(x, ·)− vi(x, ·)‖V ≤ M2−i

for all i = 1, . . . , L, and all x ∈ Ω.
For simplicity, in the following presentation, we assume that the macroscopic

domain Ω is the closed cube [0, 1]2 ⊂ R
2. In the interval [0, 1], let T0 be the set

{0, 1/2, 1} and, for k ≥ 1, let Tk be the set {(2j − 1)2−(k+1), j = 1, 2, 3, . . . , 2k + 1}.
We define the set Si ⊂ Ω as

Si = {x = (x1, x2), xk ∈ Tik : max{i1, i2} = i},

and we let S = ∪L−1
i=0 Si, where SL = ∅ due to reindexing. The first few of both nested

and hierarchical macrogrids can be seen in Figures 2 and 3. Clearly, this hierarchy
of macrogrids satisfies the grid spacing and density requirements. We will show with
the above hierarchy of macrogrids {Si}L−1

i=0 and nested FE spaces (Vi,Wi)
L
i=1 that the

algorithm outlined in section 2.2 yields accuracy equivalent to that when using finest
FE space VL for all points S.

We begin by establishing standard Galerkin approximation at the anchor points
as a base step to our induction. For each point x ∈ S0, we consider the Galerkin
approximation (19) using the finest FE spaces (VL,WL) and we find the solution
v̄(x, ·) ∈ VL such that

‖v(x, ·) − v̄(x, ·)‖V ≤ M2−L.

We then find the Galerkin approximations for (10) at other points x ∈ S inductively as
follows. Consider a point x = (x1, x2) in Si, i.e., x1 ∈ Ti1 and x2 ∈ Ti2 , max{i1, i2} =
i. Let x1 = (2j1 − 1)2−i1 and x2 = (2j2 − 1)2−i2 . Let

x′ = (2(j1 − 1)2−i1 , (2j2 − 1)2−i2) if i1 > i2,

x′ = ((2j1 − 1)2−i1 , 2(j2 − 1)2−i2) if i1 < i2,

x′ = (2(j1 − 1)2−i1 , 2(j2 − 1)2−i2) if i1 = i2.

It is clear that x′ ∈ Si′ , where i′ < i, and in any case, d(x, x′) <
√
2 · 2−i. Assume

that a Galerkin approximation v̄(x′, ·) ∈ VL−i′ has been computed for v(x′, ·). We
consider the following problem: Find the correction term, v̄c(x, ·) ∈ VL−i, so that

(21) Ay (x) (v̄c(x, ·), φ) = (f, φ)−Ay (x) (v̄(x
′, ·), φ)

for all φ ∈ WL−i. Let the approximation for v(x, ·) be given by

v̄(x, ·) = v̄c(x, ·) + v̄(x′, ·).

Note here that we use the single point interpolation Ixi (v) = v(x′, ·) as in (14). We
have the following proposition for v̄(x, ·) constructed in such a way.

Proposition 3.1. There is a positive constant ci which depends only on the

operator Ly and i so that

(22) ‖v(x, ·) − v̄(x, ·)‖V ≤ ci2
−L.

Proof. We prove (22) by induction. The conclusion obviously holds for i = 0. We
assume that the conclusions hold for all l < i. Let x ∈ Si and x′ ∈ Si′ , for i

′ < i, be
as above, and let the continuous correction term be given by

vc(x, y) = v(x, y) − v(x′, y).
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Sufficient smoothness for v(x, ·) : Ω → U is guaranteed from Assumption 3.5, and,
using d(x, x′) ≤

√
2 · 2−i, we have the estimate

(23) ‖vc(x, ·)‖U ≤ Nd(x, x′) ≤ N2−i,

where we absorb the factor
√
2 into N . From the variational formulation on the

continuous level we have

Ay (x) (vc(x, ·), φ) = (f, φ)−Ay (x) (v(x
′, ·), φ)

for all φ ∈ W . Recall that we have solved

Ay (x
′) (v(x′, ·), φ) = (f, φ) ;

from here we deduce that

Ay (x) (vc(x, ·), φ) = − (Ay (x)−Ay (x
′)) (v(x′, ·), φ) .

Let ¯̄vc(x, ·) ∈ VL−i be such that

(24) Ay (x) (¯̄vc(x, ·), φ) = − (Ay (x)−Ay (x
′)) (v(x′, ·), φ) ∀ φ ∈ WL−i.

From Assumption 3.4 and Cea’s lemma [4], we obtain

‖vc(x, ·)− ¯̄vc(x, ·)‖V =

(
1 +

α

β

)
inf

φ∈VL−i

‖vc − φ‖V .

From (17) and (23), we deduce that

‖vc(x, ·)− ¯̄vc(x, ·)‖V ≤ θ

(
1 +

α

β

)
2i−L(N2−i) ≤ θ

(
1 +

α

β

)
N2−L.

Since x′ ∈ Si′ , where i′ < i, then VL−i ⊂ VL−i′ . Recall that we have previously
computed v̄(x′, ·) ∈ VL−i′ , an FE space with higher accuracy. Therefore, v̄(x′, ·)
will satisfy the variational form (19) over nested spaces with lower accuracy. More
precisely, we will have

(25) Ay (x
′) (v̄(x′, ·), φ) = (f, φ) ∀ φ ∈ WL−i.

From (21) and (25), we deduce that

(26) Ay (x) (v̄c(x, ·), φ) = − (Ay (x)−Ay (x
′)) (v̄(x′, ·), φ) ∀ φ ∈ WL−i.

Therefore, from Assumption 3.4 and using (24) and (26),

‖¯̄vc(x, ·)− v̄c(x, ·)‖V ≤ 1

β
‖ (Ay (x) −Ay (x

′)) (v(x′, ·)− v̄(x′, ·)) ‖W′ .

Finally, using the Lipschitz assumption (Assumption 3.2), we obtain

‖ (Ay (x)−Ay (x
′)) (v(x′, ·)− v̄(x′, ·)) ‖W′ ≤ γ|x− x′|‖v(x′, ·)− v̄(x′, ·)‖V

≤ γ(
√
2 · 2−i)(ci2

−L) ≤
√
2ciγ2

−L−i.
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Therefore,

‖¯̄vc(x, ·) − v̄c(x, ·)‖V ≤
√
2

β
ciγ2

−L−i.

Thus, putting all the estimates together we obtain

‖v(x, ·) − v̄(x, ·)‖V ≤ ‖vc(x, ·) − v̄c(x, ·)‖V + ‖v(x′, ·)− v̄(x′, ·)‖V ≤ ci+12
−L,

where

(27) ci+1 = ci +

√
2

β
ciγ2

−i +

(
1 +

α

β

)
θN.

We are now in the position to prove our main result.
Theorem 3.1. Let the assumptions of Proposition 3.1 hold. Furthermore, as-

sume we have constructed v̄(x, ·) as above for x ∈ Si. Then, for a sufficiently large

constant c∗ which depends only on the operator Ly, we have the estimate

‖v(x, ·)− v̄(x, ·)‖V ≤ c∗(i+ 1)2−L.

Proof. We choose a constant ī independent of L such that i2−i < β/(2
√
2γ) for

i > ī. Let

c∗ = max

{
max
0≤i≤ī

{ci
i

}
, 2
(
1 +

α

β

)
θN

}
,

where ci is given by (27). We prove that

(28) ‖v(x, ·)− v̄(x, ·)‖V ≤ c∗(i+ 1)2−L

by induction. This obviously holds for all i ≤ ī. We assume that the conclusions hold
for all i. From (27), we deduce that

ci+1 ≤ ic∗ +

√
2γ

β

β

2
√
2γ

c∗ +
c∗
2

≤ (i + 1)c∗.

The theorem is proved.
We also state a theorem on the computational complexity of our algorithm for

such a hierarchy of macrogrids and FE spaces given in this section.
Theorem 3.2. Suppose that we solve (10) for x in S0, S1, . . . , SL and that the to-

tal number of degrees of freedom is O(L22L) for the hierarchical solve. Comparatively,

the number of degrees of freedom in the full solve is O((22L)2).
Proof. First note that the dimension of VL−i is O(22(L−i)) and that the number

of points in Si is O(22i). Therefore, the total number of degrees of freedom when
solving (10) for all points in Si is O(22i)O(22L−2i) = O(22L). Thus, the total num-
ber of degrees of freedom used when solving (10) for all points in S0, S1, . . . , SL is
O(L22L).

Remark. It is important to note the connection between the number of macro–
grid points and degrees of freedom for local problems. To obtain the above optimal
computational result, the relationship between the two is critical. If one wanted to
increase the size of the macroscopic domain, more macro–grid points would increase.
For example, if we were to square the number of points Si = O(22i) → Si = O(24i),
we would make a corresponding change in the accuracy of the FE spaces to obtain
the above result.
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4. Application to the Stokes equations. In this section, we apply the algo-
rithm and methodology outlined in sections 2.2 and 3 to the modified Stokes equations
in the periodic domain. In section 2.1, we gave a brief overview of homogenization of
the Stokes equations in slowly varying domains. Here, we use the ALE formulation
of the Stokes equations; cf. [12, 13]. We will briefly formulate this reformulation in
the periodic domain and will then apply the two-scale asymptotic expansion [20] to
the modified equations. This will allow for easy application of our efficient algorithm.
The details for the derivation of the ALE formulation and the application of two-scale
expansion can be found in the appendix. We obtain auxiliary cell equations and hence
the homogenized equations in the periodic ALE.

With the intention of developing a proper nested collection of FE spaces, we
then introduce appropriate Sobolev spaces for the solutions. Then, the variational
formulation of the cell equations is presented. We make basic assumptions on the
smoothness properties of the mapping x̃ε and the geometry of the cell equations. With
these assumptions we verify that the conditions on the operator outlined in section
3.1 are satisfied. Hence, given a hierarchy of macrogrids and the corresponding nested
collection of FE spaces as outlined in section 2.2, satisfying the assumptions in 3.1,
we are able to obtain the error estimate given by Theorem 3.1.

4.1. Homogenization of Stokes equations in the ALE formulation. In
the slowly varying domains, there is variation of the cell geometry from RVE to
RVE. When we reformulate the Stokes equations to the periodic domain, we encode
this information into the tensor coefficients of the modified equations. We begin by
reformulating the Stokes equations.

Recall that the fine-scale Stokes equations (2) are represented in the slowly varying

fluid domain F̃ε = x̃ε(Fε). Let Pε ⊂ Fε be some open subset of the periodic fluid

domain, and thus x̃ε(Pε) = P̃ε. We rewrite the Stokes equations in integral form after
the application of the divergence theorem as

∫

∂P̃ε

(−p̃ε(x̃)I+ µ∇x̃ṽε(x̃)) · ñ(x̃)dx̃ =

∫

P̃ε

f̃(x̃)dx̃,(29a)

∫

∂P̃ε

ṽε(x̃) · ñ(x̃)dx̃ = 0.(29b)

We make the change of variables x̃ → x̃(x) and map back to the initial periodic fluid

domain. If φ̃(x̃) is a physical quantity in the deformed (slowly varying) domain, then

denote the pullback to the periodic domain φ(x) := φ̃(x̃(x)). We need to define a few
tensors. Let the mapping gradient and Jacobian be defined as

Fε(x) = ∇xx̃ε(x), Jε(x) = det(∇xx̃ε(x))

and the related tensors as

Gε(x) = det(Fε(x))Fε(x)
−T , Hε(x) = F−1

ε (x)Gε(x).

We assume that the mapping is nondegenerate; that is, there exists a c > 0 such that
Jε(x) > c > 0 for all x ∈ Ω. Hence, Fε(x) and related tensors will be invertible for
all points in the domain. Note that in this coordinate transformation, gradients are
transformed as

∇x̃ṽε(x̃) = ∇xvε(x)F
−1
ε (x).
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Let the surface normal on ∂P̃ε be ñ and the surface normal on ∂Pε be n. The surface
normals and volume elements transform as

ñ(x̃) = F−T
ε (x)n(x), dx̃ = Jε(x)dx.

Using these transformations, we represent (29) in the periodic domain as
∫

∂Pε

(−pǫ(x)Gε(x) + µ∇xvε(x)Hε(x)) · n(x)dx =

∫

Pε

f(x)Jε(x)dx,

∫

∂Pε

vε(x) ·Gε(x) · ndx = 0.

This is true for any Pε ⊂ Fε. We move to the divergence form of these equations,
and we obtain the modified Stokes equations in the periodic domain Fε:

−divx (pε(x)Gε(x)) + µdivx(∇xvε(x)Hε(x)) = f(x)Jε(x) in Fε,(30a)

divx(G
T
ε (x)vε) = 0 in Fε,(30b)

and we assume the boundary condition that vε = 0 on Γε. This is a representation of
the fine-scale Stokes operator we denoted earlier by Lε

(
x, x

ε

)
.

Remark. Here we briefly clarify some notation. For scalar quantities φ, we write
(∇xφ)i = ∂φ

∂xi
as a column vector. In addition, for vector quantities such as the

deformation, we have (Fε)ij =
∂x̃i

ε

∂xj
. For matrix-vector multiplication, we use the

standard convention of multiplying on the right, summing over the second index of
the matrix. Finally, divergence over tensor quantities is summed over the second
variable. To illustrate this, we write out (30a) in indicial notation using the Einstein
summation convention

− ∂

∂xj

(
(Gε)ijpε

)
+ µ

∂

∂xj

(
∂viε
∂xm

(Hε)mj

)
= f iJε.

For brevity, we will return to using the tensor notation.
We apply the two-scale asymptotic expansions (42)–(46), given in the appen-

dix, and apply them to (30). Gathering terms in ε we obtain the two auxiliary cell
equations for i = 1, . . . , d,

−G0∇yπ
i
1 + µdivy

(
∇yw

i
1H0

)
= G0ei in YF ,(31a)

divy(G
T
0 w

i
1) = 0 in YF ,(31b)

and for the second cell equation

−G0∇yπ
i
2 + µdivy

(
∇yw

i
2H0

)
= J0ei in YF ,(32a)

divy(G
T
0 w

i
2) = 0 in YF ,(32b)

where wi
j and πi

j are y-periodic, wi
j = 0 on YΓ, and

〈
πi
j

〉
Y
= 0. The two cell equations

are a result of the representation (49) for p1 and v0. The above partial differential
operator is the cell operator denoted by Ly (x).

From the ε0 order of the expansion of (30b) and averaging over YF we obtain
a representation for the homogenized operator in the periodic domain L (x). The
modified Darcy equation is given by

(33) ∇x ·
(
K(x)∇xp0(x) + f̄(x)

)
= 0 in Ω,
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where

K(x) =
〈
GT

0 (x, y)w1(x, y)
〉
Y

and f̄(x) =
〈
GT

0 (x, y)w2(x, y)
〉
Y
f(x).

The modified Darcy velocity is given by ξ = K(x)∇xp0(x) + f̄(x). We also require
the boundary conditions ξ · ν = 0 on ∂Ω, where ν is the unit normal.

4.2. Variational form and verification of algorithm assumptions. In this
section, we present definitions of appropriate Sobolev solution spaces. Then, we derive
the corresponding variational form for the cell operator in the periodic setting Ly (x)
given by (31) and (32). We show that this variational form will satisfy the abstract
assumptions outlined in section 3.1.

We define the following Sobolev spaces. For the pressure related quantities let

(L2∫
=0(YF ))

d =

{
ζ ∈ (L2(YF ))

d :
1

|YF |

∫

YF

ζdy = 0

}
,

and for the velocity related quantities let

(H1
#,0(YF ))

d×d = {q ∈ (H1(YF ))
d×d : q = 0 on YΓ and q is y-periodic}.

Recall that we have the same solution and test space for our Stokes equations. Indeed,
we let

(34) V = W = (H1
#,0(YF ))

d×d × (L2∫
=0(YF ))

d.

Remark. For the rest of the paper, when we state the spaces V ,W , we will
mean the above cross product of Sobolev spaces with V = W . Moreover, the spaces
{Vl = Wl}Ll=0 will be finite-dimensional FE subspaces of V given by (34).

Multiplying both sides of (31) and (32) by test functions (q(y), ζ(y)) ∈ V and
integrating by parts we obtain a corresponding variational form for each x ∈ Ω:

Ay (x)
(
(w(x, y), π(x, y)), (q(y), ζ(y))

)

=

∫

YF

(
π(x, y) · divy(GT

0 (x, y)q(y)) − µ(∇yw(x, y)H0(x, y)) : ∇yq(y)
)
dy

+

∫

YF

(
ζ(y) · divy(GT

0 (x, y)w(x, y))
)
dy.(35)

The cell problems (31) and (32) can then be written as the following two variational
problems: Find (wj(x, y), πj(x, y)) ∈ V , for j = 1, 2, such that

Ay (x)
(
(w1(x, y), π1(x, y)), (q(y), ζ(y))

)
=

∫

YF

G0(x, y) : q(y)dy,

Ay (x)
(
(w2(x, y), π2(x, y)), (q(y), ζ(y))

)
=

∫

YF

J0(x, y)I : q(y)dy

for all (q(y), ζ(y)) ∈ V .
We will now state and prove a lemma that will allow us to use our efficient

multiscale finite element algorithm. We verify the necessary abstract assumptions
from section 3.1.

Lemma 4.1. Assume that Ω and YF are sufficiently smooth. Let the mapping be

of the form x̃ε(x) = x̃0(x)+εx̃1(x, y) as in (41). Suppose the regularities x̃0 ∈ C2(Ω̄)
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and x̃1(x, y) ∈ C2(Ω̄ × Y ). Assume the mapping is nondegenerate. There exists

a c > 0 such that for all x ∈ Ω, Jε(x) = det(∇x̃ε(x)) > c > 0 and J0(x, y) =
det(∇xx̃0(x) + ∇yx̃1(x, y)) > c > 0. Then, the variational form (35) satisfies the

abstract assumptions, namely Assumptions 3.1 and 3.2, required of Ay (x).
Proof. First, we verify Assumption 3.1. The boundedness condition (16a) is a

simple consequence of the boundedness that the smooth matrix functions J0, F0, G0,
and H0 are of class C1(Ω̄× Y ). The nondegeneracy condition (16c) is easily satisfied
as in the standard Stokes variational form; cf. [11].

We verify that the variational form satisfies the inf-sup condition (16b). The
velocity term is coercive since the tensor H0 = J0F

−1
0 F−T

0 is positive definite. Indeed,
F−T

0 and J0 satisfy the lower bound conditions (44) and (45). Furthermore, the
Poincaré inequality is satisfied since w = 0 on YΓ. Hence, for a positive constant
C > 0, the following estimate holds:

∫

YF

∇ywH0∇ywdy =

∫

YF

∇ywJ0F
−1
0 F−T

0 ∇ywdy

=

∫

YF

|F−T
0 ∇yw|2J0dy > C||w||2(H1(YF ))d×d .

The pressure term satisfies the so-called Babus̆ka–Brezzi condition [5]. Indeed, we
must show that for all π ∈ (L2∫

=0
(YF ))

d

sup
w∈(H1

#,0
(YF ))d×d

∫
YF

πdivy(G
T
0 w)dy

||w||(H1(YF ))d×d

≥ C||π||(L2∫
=0

(YF ))d .

Let v = GT
0 w; then ||G−T

0 v||(H1
#,0

(YF ))d×d ≤ ||G−T
0 ||∞||v||(H1

#,0
(YF ))d×d . Note that

the tensor

G−T
0 (x, y) =

∇xx̃0(x) +∇yx̃1(x, y)

J0(x, y)

is bounded since x̃0(x) ∈ C2(Ω̄), x̃1(x, y) ∈ C2(Ω̄×Y ) and because of the nondegener-
acy of J0(x, y). The standard Stokes operator satisfies the Babus̆ka–Brezzi condition
[11]. Indeed, we have

sup
v∈(H1

#,0
(YF ))

∫
YF

πdivy(v)dy

||G−T
0 v||(H1

#,0
(YF ))d×d

≥ sup
v∈(H1

#,0
(YF ))

C

∫
YF

πdivy(v)dy

||v||(H1
#,0

(YF ))d×d

≥ C||π||(L2∫
=0

(YF ))d .

Therefore, the variational form Ay (x) satisfies the inf-sup conditions (16b) and we
obtain the desired a priori bound on the initial data.

The variational form Ay (x) is Lipschitz in the sense outlined in Assumption
3.2. Note that G0 and H0 are of class C1(Ω̄ × Y ), Ω̄ × Y being compact, and
hence they are Lipschitz in x and are bounded (the derivatives are also bounded). In
addition, note, based on Stokes regularity results (cf. [3, 21]), that (w, π) are bounded
in (H1(YF ))

d×d × (L2(YF ))
d. From these facts we are able to derive the following

estimates for (31):

||w(x, ·) − w(x′, ·)||(H1(YF ))d×d + ||π(x, ·)− π(x′, ·)||(L2(YF ))d

≤ C
(
||GT

0 (x, ·) −GT
0 (x

′, ·)||(H1(YF )) + ||H0(x, ·)−H0(x
′, ·)||(H1(YF ))

)
.
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From the above a priori bound, the Lipschitz property of the tensors, and the fact
that (q, ζ) are functions of y only, we are able to obtain our result. Indeed, we have
for x, x′ ∈ Ω

|Ay (x) (w, π), (q, ζ) −Ay (x
′) (w′, π′), (q, ζ)|q

≤ CC
(
||GT

0 (x, ·)−GT
0 (x

′, ·)||(H1(YF )) + ||H0(x, ·) −H0(x
′, ·)||(H1(YF ))

)
≤ C|x− x′|,

where C depends on the norms of (w, π) and (q, ζ) and the Lipschitz constants of GT
0

and H0.
Remark. Concerning the regularity space U of Assumption 3.3, we may obtain

the desired regularity of the cell problem by assuming appropriate smoothness on the
cell geometry, the mapping, and related tensors. We suppose the regularity space
U = (H2(YF ))

d×d × (H1(YF ))
d. For more on regularity issues of Stokes equations we

refer the reader to [3, 21].
With Lemma 4.1, and utilizing the proof of Theorem 3.1, we are now in a position

to summarize our results in a theorem. We have the following error estimate for our
efficient multiscale FEM applied to the modified cell equations (31) and (32).

Theorem 4.2. Suppose the assumptions in Lemma 4.1 hold. Suppose that (w, π)
as a map from Ω to U = (H2(YF ))

d×d×(H1(YF ))
d is in C1(Ω) to satisfy Assumption

3.5. Suppose further that the nested sequence of FE spaces {Vl}Ll=0 satisfies the error

bounds, and inf-sup conditions of Assumption 3.4. Let {Sl}Ll=0 be a dense hierarchy

of macrogrids having the properties outlined in section 2.2. Then, the FE approximate

solutions (w̄j(x, ·), π̄j(x, ·)) to (31) and (32), constructed as in section 2.2, satisfy the

error estimate

(36) ‖πj(x, ·) − π̄j(x, ·)‖L2(YF ) + ‖wj(x, ·)− w̄j(x, ·)‖H1(YF ) ≤ c∗(l + 1)h.

Remark. Any pairs of finite element approximating spaces in V , given by (34), that
satisfy the inf-sup condition for the Stokes equations will satisfy the inf-sup condition
for the operator Ay(x) in (35). The proof is identical to that presented above in
Lemma 4.1. More precisely, elements stable for the standard Stokes equations will be
stable for our modified equations. In the numerical examples below, we choose the
well-known Taylor–Hood-type P2/P0 elements.

5. Numerical example. In this section, we propose an example for the im-
plementation of the efficient multiscale FEM method. We apply the computational
methodology outlined in section 2.2 to the Stokes cell equations Ly (x) in the ALE
formulation as in section 4. We begin by constructing an initial periodic reference
domain Ω. Then, we propose a mapping x̃ε that is smooth and depends only on the
macroscopic slow variable in one direction. This symmetry makes the macrogrid es-
sentially one dimensional. We build a nested sequence of four FE spaces by decreasing
mesh size and construct a hierarchy of macrogrids. After averaging, we compute a
component of the modified permeability. We do this for a small stretch and a large
stretch mapping. Finally, we compare our fine mesh standard solve to our efficient
hierarchical solve for both mappings.

5.1. Example problem formulation. Here, we formulate our example do-
main, mapping, corresponding equations, and variational form. We begin with the
description of the periodic domain. Let Ω = [0, 1]2 be the macroscopic domain, and
define the unit cell to be Y = [0, 1]2. The solid part of the cell is given by the square
inclusion YS = [1/4, 3/4]2, and hence the fluid domain is given by YF = Y\YS . The
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interface of the cell YΓ is ∂YS . Thus, Fε and Sε, periodic fluid and solid domains, are
given by (1). Since the domain is periodic, we will have a single unit cell Y = YF ∪YS .

We suppose the mapping x̃ε : Ω → Ω̃ε to be a stretch in the x1 direction given by

(37) x̃ε(x) = (x1, x2) + α(x2
1, 0),

where x = (x1, x2) are coordinates in Ω. This map preserves the periodicity in the x2

direction, but periodicity in the x1 direction is broken. Fixing x1 but varying x2 will
yield the same cell solution, making the macrogridding essentially one dimensional.
It is important to note that the local cell problems in y = (y1, y2) are still two
dimensional in Y .

Recall the two-scale representation for x̃ε(x) = x̃0(x) + εx̃1(x) as in (41). We see
that x̃1 = 0, as there is no dependence on ε or the fast variable y = (y1, y2). Thus,
x̃ε(x) = x̃0(x). Calculating the gradient of this mapping we see that

F0(x1) =

(
1 + 2αx1 0

0 1

)
,

and from here we may build the Jacobian and related tensors J0(x1) = det (F0(x1)),
G0(x1) = J0(x1)F

−T
0 (x1), and H0(x1) = F−1

0 (x1)G0(x1).
To simplify the implementation, we assume that we have no external body force,

that is, f = 0. If the body force in present, we must solve two cell problems (31) and
(32). We wish to find

(
wi, πi

)
∈ V , for i = 1, 2, such that

−G0(x1)∇yπ
i + µdivy

(
∇yw

iH0(x1)
)
= G0(x1)ei in YF ,(38a)

divy(G
T
0 (x1)w

i) = 0 in YF ,(38b)

where wi and πi are y-periodic, wi = 0 on YΓ, and
〈
πi
〉
Y

= 0. For simplicity of
notation, in the following we adopt a notation similar to that of section 3. We let
v = (w, π) be the solution and φ = (q, ζ) be the test function. The bar¯denotes an FE
approximation. Then, (38) has the corresponding variational formulation. We wish
to find v ∈ V such that

(39) Ay (x1) (v, φ) =

∫

YF

G0(x1) : qdy ∀φ ∈ V ,

where Ay (x1) has the same form as (35).
It is useful to visualize the solutions. Fixing x1, we solve the above variational

form using P2/P0 Taylor–Hood finite elements over YF . These elements satisfy the
inf-sup stability conditions in Assumption 3.4; cf. [14]. We use quadratic elements
for velocity and piecewise constants for pressure. In Figure 4, we plot the pressure
π1 and velocity w1 cell solutions to (38), with right-hand-side G0(x1)e1 = (1, 0),
for x1 = 0, 1 and α = 1/2. We see that, as we move from x1 = 0 to x1 = 1, the
tensor coefficients change. This, in turn, changes the pressure and velocity fields. As
we stretch, the solid inclusion is thinner and has less of an effect on the flow in the
horizontal direction. In the next section, we will compare the standard full solves
(h = 1/24) to the hierarchical solve using our efficient algorithm.

Remark. It is important to note here that our inclusion has sharp corners. Near
those regions, we will not be able to guarantee the solutions will be in our regularity
space U . However, since the data and other regions of the domain are smooth enough,
this will not affect our results in a significant way.
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(a) x1 = 0 (b) x1 = 1

Fig. 4. Pressure π1 (triangle shading) and velocity w1 (vectors) plots for α = 1/2, h = 1/12
for (a) x1 = 0, (b) x1 = 1 in the periodic reference configuration.

(a) h = 1/3 (b) h = 1/6

(c) h = 1/12 (d) h = 1/24

Fig. 5. Four levels of meshes with coarsening factor κ = 2.

5.2. Implementation of the algorithm. In this section, we implement the
efficient hierarchical multiscale algorithm outlined in section 2.2. We apply these
methods to (38). First, we build the nested sequence of FE spaces by coarsening the
initial fine mesh in a structured way. From this sequence of meshes, we use P2/P0

Taylor–Hood elements to build the FE approximation spaces. Recall that the mapping
(37) depends only on x1, implying that the macrogrid need only vary in one direction.
Hence, we construct a corresponding one-dimensional hierarchy of grids. Then, we
implement the algorithm by computing the velocity. After averaging, we compute the
modified permeability and compare our algorithm to the standard full solve at each
point in our hierarchical grid.

With the intent of building our nested FE spaces, we begin with our meshes. We
use the four meshes in Figure 5. We can view the generation of these meshes as either
a coarsening of the finest mesh or a refinement of the coarsest mesh. A characteristic
mesh size h is the length of the base of a triangular element (nonhypotenuse side). We
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Fig. 6. Schematic diagram of hierarchy of macrogrids and corresponding FE spaces. Stratifi-
cation of spaces and lines indicates correction term relationships. The ∗ indicates where corrected
solutions are used to correct once more.

use these meshes to build a nested sequence of FE spaces. Using P2/P0 Taylor–Hood
elements, where quadratics are used for velocity and constants for pressure, we denote
the FE spaces as {V3−l}3l=0. Each space has the corresponding mesh size hl = 2l( 1

24 )
for l = 0, 1, 2, 3 (κ = 2, FE coarsening factor). With these approximation spaces and
using the notation in section 5.1, we will have the error estimate

inf
φ∈V3−l

‖v − φ‖V ≤ C

(
2l

24

)
‖v‖U .

Remark. Here the Sobolev space V is given by (34), and the regularity space
is given by U = (H2

#,0(YF ))
d×d × (H1∫

=0
(YF ))

d. Note also that, since we are using

quadratics for velocity, we will have an error estimate of h2
l . However, due to using

constant pressure, the overall estimate will be order hl.
We now construct the nested macrogrids {Tl}3l=0 ⊂ [0, 1] and subsequently the

hierarchy of macrogrids {Sl}3l=0. Recall that our coarsening of the FE error is inversely
proportional to the macro–grid spacing. With this in mind, we let T0 = {0, 1/2, 1};
then the initial grid spacing is H20, where is given by H = 1/2. The next macrogrids

must have grid spacing H2−l for l = 1, 2, 3,. Thus, we have Tl = {k/2l+1}2l+1

k=0 .
We can now construct our hierarchy of grids Sl for l = 0, 1, 2, 3. Let the coarsest
grid be T0 = S0 = {0, 1/2, 1}; then S1 = {1/4, 3/4}, S2 = {(2k + 1)/8}3k=0, and
S3 = {(2k + 1)/16}7k=0. A schematic diagram of this hierarchy of grids and their
relationship to the correction term procedure can be seen in Figure 6.

We implement the algorithm on the variational form (39) as follows. For x′ ∈
S0 = {0, 1/2, 1}, the so-called anchor points, we then solve for v(x′, ·) ∈ V3 using
the standard Galerkin FEM. We proceed to solve the lower level macrogrids by our
inductive procedure. We use a simple 1-point interpolation to compute the correction
term. For x ∈ Sl and then for x′ ∈ (∪k<lSk) we let

Ixl (v) = v(x′
1, ·)

be the macro–grid interpolation. For example, using x′ = 0 ∈ S0, we have computed
v̄(0, ·) ∈ V3 by the standard Galerkin FEM. We want to calculate v̄(1/4, ·), where
x = 1/4 ∈ S1. Using I

1/4
1 (v̄) = v̄(0, ·) as known data, we find the correction term
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(a) Permeability h-values
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Fine Mesh Solve

Hierarchical Solve

(b) Permeability, fine mesh vs. hierarchical

Fig. 7. Interpolated permeability values for xi

1 = i/16, i = 0, . . . , 16, with α = 1/2. (a) Varying
h = 1/3, 1/6, 1/12, 1/24, (b) hierarchical solve “- o -” vs. fine mesh solve “—.”

v̄c(1/4, ·) ∈ V2 such that

Ay (1/4) (v̄c, φ) =

∫

YF

G0(1/4) : qdy −Ay (1/4) (v̄(0, ·), φ)

for all φ ∈ V2. We write the solution at x = 1/4 as

v̄(1/4, ·) = v̄c(1/4, ·) + v̄(0, ·).

We continue this procedure. For x = 3/4, we use I
3/4
1 (v̄) = v̄(1, ·) as known data as

above. Since x = 3/4 ∈ S1, we solve for v̄c ∈ V2 and write v̄(3/4, ·) = v̄c(3/4, ·)+v̄(1, ·).
Continuing on in this manner, we use the corrected solution v̄(1/4, ·) to compute the
correction terms at x = 3/16, 5/16 in V0. We also use the corrected solution v̄(3/4, ·)
to compute the correction terms at x = 11/16, 13/16 in V0. Indeed, using v̄(0, ·), we
build the correction terms at x = 1/8 in V1 and at x = 1/16 in V0. Using v̄(1/2, ·), we
build the correction terms at x = 3/8, 5/8 in V1 and at x = 7/16, 9/16 in V0. Finally,
using v̄(1, ·), we build the correction terms at x = 7/8 in V1 and at x = 15/16 in V0.
In this way, we build all solutions in T3 = {k/16}16k=0. We summarize this procedure
in Figure 6.

We compute the solutions to cell equations (38) for i = 1. First, we compare the
convergence results for standard solves, for varying hl-values. We then compare the
convergence results for the finest mesh standard Galerkin solve to the implementation
of our efficient algorithm (hierarchical solve). To this end, we define the modified
permeability in the y1 direction as

(40) Ky1y1
(x1) =

∫

YF

w1(x1, y)dy,

where w1
1(x1, y) is the y1 component of the velocity in (38) for i = 1. Ultimately, we

want to compute permeability, so this is a reasonable measure of accuracy.
In Figures 7 and 8, we present a summary of our results. In Figure 7, we let

α = 1/2, where the mapping (37) is weak. Using the standard Galerkin FEM for the
macropoints T3 = {k/16}16k=0, in Figure 7(a), we compute modified permeabilities in
the y1 direction (40) for varying values of hl. Then, we interpolate the values to make
the trends clearer. Since the mapping is weak, the solution changes very slowly and
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(a) Permeability h-values
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Fig. 8. Interpolated permeability values for xi

1 = i/16, i = 0, . . . , 16, with α = 5. (a) Varying
h = 1/3, 1/6, 1/12, 1/24; (b) hierarchical solve “- o -” vs. fine mesh solve “—.”

not much is gained from decreasing hl past a certain value. In Figure 7(b), we compare
our efficient algorithm described above with the finest mesh solution h = 1/24, used at
all points in T3. We see that we obtain the same order of accuracy using the standard
solve as with our efficient hierarchical algorithm.

In Figure 8, we proceed exactly as in Figure 7, but we let α = 5. This corresponds
to a strong stretch. In this case, the microstructure varies greatly. We observe that
as we move to the right of the domain, the deformation from our mapping is greatest.
Using the standard Galerkin FEM, we observe strong errors in Figure 8(a) when larger
values of hl are used. Comparing the standard solve with h = 1/6 to the standard
solve h = 1/24, we observe very large errors at x1 = 1. In Figure 8(b), we again
compare our efficient algorithm to the standard solve with the finest mesh h = 1/24.
We observe that we obtain the same order of accuracy. Moreover, we observe good
convergence in the right-hand side of the domain with our hierarchical solve.

Note that we observe low-frequency errors because of the one-dimensional macro-
grid used in Figure 6. For example, at x1 = 1/8 (h = 1/6), we correct with the solution
at x1 = 0 (h = 1/24), from the left, while at x1 = 3/8 (h = 1/6), we correct with the
solution at x1 = 1/2 (h = 1/24), from the right. This causes the low-frequency errors
in the permeability. To correct this, one may use a higher order interpolation. For
example, one may use a higher order interpolation on the right-hand side to correct
the solution, i.e.,

I
1/8
2 (v̄) =

1

2

(
v̄(0, ·) + v̄

(
1

2
, ·
))

.

These options will be explored in future work. The two examples serve as a “proof of
concept” and demonstrate that the algorithm can be simply implemented and is the
same order of accuracy as the standard full solve.

6. Conclusions. We developed an efficient multiscale FEM for computing ef-
fective coefficients in a medium with a slowly varying microstructure. We outlined
a general framework for building a dense hierarchy of macrogrids and a correspond-
ing nested sequence of approximation spaces. We applied our abstract framework
to computing the effective permeability of the Stokes equations in a slowly varying
porous medium that is obtained from a periodic domain by a smooth map. For a
dense hierarchy of different levels of macroscopic points, we obtained an accuracy for
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the effective permeability essentially equal to that for the full solve, with essentially
the same number of degrees of freedom as for solving a single cell problem. This was
achieved by considering the modified Stokes equations, more precisely, the ALE for-
mulation in the periodic domain. Using the ALE formulation, the general algorithm
framework can then be applied. Cell problems were solved with different levels of res-
olution depending on the level of macrogrid. Those macroscopic points at the lower
(sparser) levels in the hierarchy are solved more accurately, while points at the higher
(denser) levels are solved less accurately. Solutions for neighboring points at the lower
levels, which are solved with higher accuracy, are used to correct the finite element
error. Finally, a numerical example is implemented to demonstrate the algorithm. To
this end, a component of the permeability is compared. The full solve is compared to
the efficient hierarchical solve. The same order of accuracy is observed.

7. Appendix: Two-scale expansion in the ALE formulation. In this ap-
pendix, we apply the method of two-scale asymptotic expansion as in [20] to the
modified Stokes operator Lε

(
x, x

ε

)
given by (30). Recall that these equations are

presented in the periodic reference domain Ω. This is the so-called ALE formulation
of the Stokes equations; cf. [13]. From this procedure, we obtain modified cell and
homogenized operators Ly (x) and L (x), respectively.

To this end, we let y = x/ε, and thus derivatives transform as ∇ → ∇x + 1
ε∇y.

In addition, assume the following ansatz for the deformation x̃ε(x):

(41) x̃ε(x) = x̃0(x) + εx̃1(x, y).

We assume the regularities x̃0 ∈ C2(Ω̄) and x̃1(x, y) ∈ C2(Ω̄× Y ), and thus x̃ε(x) ∈
C2(Ω̄).

Remark. This ansatz is reasonable for many applications; cf. [19]. Essentially,
the mapping has a large macroscopic part and a small oscillatory correction. In the
context of FSI, we have some macroscopic deformation over the whole domain and
some small pore-scale deformation throughout.

We expand the gradient, Jacobian, and related tensors as

(42) Fε(x) = (∇xx̃0(x) +∇yx̃1(x, y)) + ε (∇xx̃1(x, y)) = F0(x, y) + εF1(x, y),

and

Gε(x) = G0(x, y) + εG1(x, y)+ · · · , Hε(x) = H0(x, y) + εH1(x, y) + · · · ,
(43a)

Jε(x) = J0(x, y) + εJ1(x, y) + · · · .(43b)

Here, the functions Ji, Fi, Gi, and Hi are y-periodic for i = 0, 1, . . ..
Remark. To ensure that we have a meaningful deformation, we assume the non-

degeneracy condition. There exists a c such that

(44) Jε(x) > c > 0 and J0(x, y) > c > 0 ∀x ∈ Ω.

In addition, F0(x, y) is of class C
1 and therefore bounded. Hence, there exists c such

that

(45)
∥∥F−T

0 (x, y)
∥∥ > c > 0 ∀x ∈ Ω.

These bounds will ensure a well-posed modified Stokes problem.
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We expand velocity and pressure as in the case of slowly varying media (3):

vε(x) = ε2 (v0(x, y) + εv1(x, y) + · · ·) ,(46a)

pε(x) = p0(x) + εp1(x, y) + · · · .(46b)

Using the above two-scale expansions (42)–(46), we can write the momentum equation
(30a) as

−
(
divx +

1

ε
divy

)
((p0(x) + εp1(x, y) · · ·) (G0(x, y) + εG1(x, y) + · · ·))

+ µ

(
divx +

1

ε
divy

)[((
∇x +

1

ε
∇y

)(
ε2v0(x, y) + ε3v1(x, y) · · ·

))

× (H0(x, y) + εH1(x, y) + · · ·)
]
= f(x) (J0(x, y) + εJ1(x, y) · · ·) ,

and for the conservation of mass equation (30b)

(
divx +

1

ε
divy

)((
GT

0 (x, y) + εGT
1 (x, y) + · · ·

) (
ε2v0(x, y) + · · ·

))
= 0.

Collecting the ε0 terms from the conservation of momentum, we have

−divx (p0(x)G0(x, y)) − divy(p0(x)G1(x, y)) − divy(p1(x, y)G0(x, y))

+µdivy (∇yv0(x, y)H0(x, y)) = f(x)J0(x, y),(47)

and for the ε1 terms from the conservation of mass equation

(48) divy
(
GT

0 (x, y)v0(x, y)
)
= 0.

We may simplify (47) by noting that Piola transform Gε(x) is divergence-free via the
identity

∫

Pε

divx(Gε(x))dx =

∫

∂Pε

Gε(x) · n(x)dx

=

∫

∂P̃ε

I · ñ(x̃)dx̃ =

∫

P̃ε

divx̃(I)dx̃ = 0.

From here, we see that the tensor Gε(x) satisfies divx(Gε(x)) = 0. Using the asymp-
totic expansions (43a), we obtain

(
divx +

1

ε
divy

)
(G0(x, y) + εG1(x, y) + · · ·) = 0.

Gathering similar terms in ε, we see that for ε−1

divy(G0(x, y)) = 0,

and for ε0

divx(G0(x, y)) + divy(G1(x, y)) = 0.
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Using these identities, we deduce that

−divx(p0(x)G0(x, y)) − divy(p0(x)G1(x, y)) − divy(p1(x, y)G0(x, y))

= −G0(x, y)∇xp0(x) −G0(x, y)∇yp1(x, y).

Using the above identity, we simplify (47) along with the incompressibility equation
(48). We write the cell problem for the modified Stokes equations in the periodic fluid
cell YF as

−G0(x, y)∇yp1(x, y) + µdivy(∇yv0(x, y)H0(x, y)) = G0(x, y)∇xp0(x) + f(x)J0(x, y),

divy(G
T
0 (x, y)v0(x, y)) = 0,

where v0 and p1 are y-periodic, v0 = 0 on YΓ, and 〈p1〉Y = 0. Note that the right-hand
side of the above problem contains components that depend on the fast variable y,
unlike in the slowly varying case in section 2.1. Indeed, we let

v0(x, y) = w1(x, y)∇xp0(x) + w2(x, y)f(x),(49a)

p1(x, y) = π1(x, y)∇xp0(x) + π2(x, y)f(x),(49b)

where (wi
j(x, y), π

i
j(x, y)), i = 1, . . . , d, are the solutions to the modified Stokes cell

equations

−G0∇yπ
i
1 + µdivy

(
∇yw

i
1H0

)
= G0ei in YF ,

divy(G
T
0 w

i
1) = 0 in YF ,

and for the second cell

−G0∇yπ
i
2 + µdivy

(
∇yw

i
2H0

)
= J0ei in YF ,

divy(G
T
0 w

i
2) = 0 in YF ,

where wi
j and πi

j are y-periodic, w
i
j = 0 on YΓ, and

〈
πi
j

〉
Y
= 0. The above equations are

the modified Stokes cell operator Ly (x) with differing right-hand-side data. Taking
the next term in the two-scale expansion of (30b), we have

divx(G
T
0 (x, y)v0(x, y)) + divy(G

T
1 (x, y)v0(x, y)) + divy(G

T
0 (x, y)v1(x, y)) = 0.

Taking the average over the unit cell, using y-periodicity, vε(x, y) = 0 on Γε, and
the divergence theorem, the divy terms vanish. We obtain the homogenized operator
L (x) in the periodic reference domain

divx

(〈
GT

0 (x, y)v0(x, y)
〉
Y

)
= 0 in Ω.

Using the relation (49), we see that

divx

(〈
GT

0 (x, y)w1(x, y)
〉
Y
∇xp0(x)

)
+ divx

(〈
GT

0 (x, y)w2(x, y)
〉
Y
f(x)

)
= 0.

Letting

K(x) =
〈
GT

0 (x, y)w1(x, y)
〉
Y

and f̄(x) =
〈
GT

0 (x, y)w2(x, y)
〉
Y
f(x),

we write this effective homogenized equation as

divx
(
K(x)∇xp0(x) + f̄(x)

)
= 0 in Ω.
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Here, we may make comparisons parallel to Darcy law (9). We have the x-dependent
modified permeabilityK(x) and the modified Darcy velocity ξ = K(x)∇xp0(x)+f̄(x).
We also require the boundary conditions ξ · ν = 0 on ∂Ω, where ν is the unit normal.

Remark. Note here that if our mapping is the identity, that is, x̃ε(x) = x, all the
related tensors are the identity matrix. In this case, we observe that the equations
are the same as the purely periodic setting.
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