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Abstract—Existing radio frequency (RF) integrated circuit (IC)
design automation methods focus on the synthesis of circuits
at a few GHz, typically less than 10 GHz. That framework is
difficult to apply to RF IC synthesis at mm-wave frequencies
(e.g., 60–100 GHz). In this paper, a new method, called efficient
machine learning-based differential evolution, is presented for
mm-wave frequency linear RF amplifier synthesis. By using
electromagnetic (EM) simulations to evaluate the key passive
components, the evaluation of circuit performances is accurate
and solves the limitations of parasitic-included equivalent circuit
models and predefined layout templates used in the existing
synthesis framework. A decomposition method separates the
design variables that require expensive EM simulations and the
variables that only need cheap circuit simulations. Hence, a low-
dimensional expensive optimization problem is generated. By the
newly proposed core algorithm integrating adaptive population
generation, naive Bayes classification, Gaussian process and
differential evolution, the generated low-dimensional expensive
optimization problem can be solved efficiently (by the online sur-
rogate model), and global search (by evolutionary computation)
can be achieved. A 100 GHz three-stage differential amplifier is
synthesized in a 90 nm CMOS technology. The power gain reaches
10 dB with more than 20 GHz bandwidth. The synthesis costs
only 25 h, having a comparable result and a nine times speed
enhancement compared with directly using the EM simulator
and global optimization algorithms.

Index Terms—Differential evolution, efficient global optimiza-
tion, expensive black-box optimization, Gaussian process, mm-
wave frequency, radio frequency (RF) circuit synthesis.

I. Introduction

I
N RECENT years, the demand for high-data-rate wireless

communication systems is constantly increasing. However,

low-GHz radio frequency (RF) integrated circuits (ICs) (i.e.,

below 5 GHz) are not able to support these high-data-rate com-

munications [1]. Hence, the design and optimization methods

for mm-wave RF ICs are attracting a lot of attention recently.

In particular, research on RF building blocks from 40 GHz
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to 120 GHz and beyond is increasing drastically and moving

to industrial applications. For example, 60 GHz RF ICs are

widely used for uncompressed HDTV and 94 GHz RF IC

is used for microwave imaging systems. On the other hand,

the challenge is that parasitic-aware lumped equivalent circuit

models for passive components (e.g., inductor, transformer)

that accurately match the electromagnetic (EM) simulation

results, are often difficult to find at these frequencies [2].

Some designers rely on experience and simulation verification

when designing high-frequency RF ICs. However, due to the

high performance and tightening time-to-market requirements,

the “experience and trial” method is often not good enough.

Powerful and efficient optimization techniques are therefore

largely needed.

Existing RF IC design automation methods focus on low-

GHz synthesis [3]–[11]. The framework of most of these

methods is shown in Fig. 1. Compared with the low-frequency

analog circuit sizing flow, a key part is the generation of the

parasitic-aware model of passive components. In RF IC design

at low-GHz frequencies, a simple lumped model is often

extracted to mimic the behavior of the key passive components

(transformer, inductor). Regression methods are then used to

fit the (calibrated) EM simulation results (S-parameters) to

parasitic-included equivalent circuit models. The generated

passive component models are accurate at low-GHz frequen-

cies and computationally efficient. To make the parasitic-

aware model reliable to provide the correct performances for

different design parameters, a strictly enforced layout template

is often necessary. References [7] and [8] used the parasitic

corner, rather than a strict layout template, to improve the

flexibility of the generated layout for circuits below 10 GHz,

yielding good results. In the development of the optimization

kernel, evolutionary algorithms (EAs) are introduced in RF IC

synthesis to achieve global search, getting very good results.

Reference [11] used particle swarm optimization and [10]

introduced the nondominated genetic algorithm to RF IC

synthesis in order to achieve multiobjective optimization.

Although these works make great contributions, they focus

on low-GHz RF synthesis, and the framework in Fig. 1

is difficult to extend to mm-wave frequency synthesis. The

reason is that the quality of the parasitic-aware models for

key passive components is determined by both the regression

method and the equivalent-circuit model. The inductor and

transformer equivalent circuit models in the existing methods
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Fig. 1. Framework of parasitic-aware optimization to RF IC (from [4]).

are simple and work well in low-GHz cases after good

regression. At frequencies above 60 GHz, due to the distributed

effects at these mm-wave frequencies, it is not accurate to

present a passive component by a lumped model over a wide

bandwidth. Besides, it is usually difficult and time consuming

to fit the S-parameters to a distributed model, which includes

quite a number of resistors, inductors, capacitors, and coupling

factors. Hence, even assuming that the regression method

works well, the parasitic-aware passive component model is

still difficult to generate, due to the lack of good lumped

models at mm-wave frequencies.

To address this problem, manual designers often directly

include S-parameters into the circuit simulations. In this paper,

we also directly include S-parameters by incorporating EM

simulation in the optimization loop, which has the advan-

tage of achieving very good accuracy and generality. The

EA is used to achieve global search. Combining these two

techniques, high-quality solutions can be obtained. However,

the challenge is that the EM simulations included in each

performance evaluation are very CPU time expensive and that

the standard EA needs more function evaluations compared

with nonpopulation-based optimization algorithms, although

the optimization ability is much higher [12]. Hence, compu-

tational efficiency becomes the main problem. In this paper,

we address the efficiency problem by proposing a different

approach that exploits techniques from computational intel-

ligence: a hierarchical machine learning-based evolutionary

optimization mechanism is designed. Compared with directly

using a EA with EM simulations in the loop, comparable

results can be obtained, but the new approach is nine times

faster in the tested 100 GHz three-stage differential amplifier.

Based on the above ideas, we then propose a new synthesis

framework for mm-wave RF linear amplifiers, called efficient

machine learning-based differential evolution (EMLDE). This

synthesis framework focuses on linear amplifiers, e.g., wide-

band amplifiers. Nonlinear analysis is beyond the scope of

this paper. The nonlinear simulations at mm-wave frequen-

cies sometimes cannot converge, and additional methods are

needed to address the problem. This paper aims to:

1) develop the first synthesis method for linear mm-wave

RF amplifiers beyond 60 GHz starting from a given

circuit topology, specifications and some hints on layout

(e.g., the metal layer to be used, the transistor layout

template with different number of fingers);

2) provide highly optimized results comparable to directly

using a EA with EM simulations in the optimization

loop, which is the best known method on the solution

quality aspect;

3) use much less computational effort compared with using

the standard EA, and as such make the computational

time of the synthesis practical;

4) be general enough for any technology and any frequency

in the mm-wave frequency range.

The remainder of this paper is organized as follows. Sec-

tion II briefly introduces the authors’ previous work of the

synthesis of passive components for high-frequency RF ICs,

some of which ideas are used in this paper. Section III

introduces the general ideas and framework of the EMLDE

method. Section IV presents the detailed description of the

core algorithms in the EMLDE framework. Section V tests

the synthesis method on a 100 GHz three-stage amplifier in a

90 nm CMOS technology. The comparison is performed to the

method of directly using the EA with EM simulations in the

optimization loop, which is the method that can provide the

best result with respect to solution quality. A cheap and easy-

to-implement comparison and test framework for RF design

automation researchers is also constructed based on mathe-

matical benchmark problems in the evolutionary computation

(EC) field. Concluding remarks are presented in Section VI.

II. Memetic Machine Learning-Based Differential

Evolution (MMLDE) Method and Basic Techniques

The authors proposed the MMLDE algorithm, for the op-

timized synthesis of integrated passive components (three to

five design variables) in mm-wave frequencies [2]. MMLDE

can provide comparable results with the best framework in

terms of solution quality, but at far lower computational cost.

Some of the key ideas of MMLDE are used in EMLDE, and

are briefly described in the following.

A. Online Surrogate Model-Based Optimization for Low

Dimensional Problems

Although a EA can achieve global search, it often needs a

number of function evaluations. When the function evaluation

is expensive, such as when the user needs EM simulation, the

efficiency of the synthesis is low. The key idea of MMLDE is

to use an online surrogate model to increase the efficiency.

An initial Gaussian process (GP)-based surrogate model is

constructed first by using 11 × d − 1 Latin hypercube (LHS)

[13] samples that uniformly cover the design space, where d

is the number of design variables. This model can provide

a very rough estimation of the performances of the passive

component. In optimization, the constructed surrogate model

and the prescreening method evaluate the potential of the

candidate designs. The candidate designs are ranked and the

one with the best potential is selected to perform the EM

simulation. The new point will be used to update the surrogate

model. We iteratively repeat this process until the termination
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condition is met. An important advantage of MMLDE is

the use of the online surrogate model, which is constructed

based on the available data in the optimization process. The

promising solutions are selected meanwhile and guide further

candidate solution generation. The advantages on efficiency

and reliability of online surrogate model-based optimization

compared with offline surrogate model-based optimization

[14] are described and compared in [2].

On the other hand, the challenge of online surrogate-model-

based optimization is that the quality of the surrogate model

is not always good, as it is improving gradually. If the training

data is little in some area of the design space, especially in the

beginning stage, not enough information can be provided to the

learning machine, so the surrogate model might not be good

enough. When directly using the performance values predicted

by the surrogate model to judge the potentials of the candidate

designs, the search may go to wrong directions and can

finally be trapped in a local optimal point [2], [15]. To solve

this problem, the expected improvement (EI) prescreening

with a GP-based surrogate model focusing on global search

and an artificial neural network-based surrogate model [16]

focusing on local search is proposed. This method achieves

a good ranking and a high probability of correct selection

for promising candidates, even when a good enough surrogate

model is not available. More details are in [2].

B. GP-Based Machine Learning

Because a GP-based surrogate model is also used in

EMLDE, a brief introduction is provided, and more details are

in [2]. GP machine learning [17] assumes that the objective

function is a sample of a Gaussian stochastic process. The

distribution of the function value of a new point can be

predicted by the available points. Both a predicted value and

a prediction uncertainty for a new point are provided, which

are then used by the prescreening method to select promising

points to perform expensive function evaluations. The GP-

based surrogate model has a wide application in expensive

black-box optimization and gets very good results [15], [18].

We will now explain this.

Suppose that there are n training data x = (x1, x2, · · · , xn)

and their corresponding function values are

y = (y1, y2, · · · , yn). Using the GP model with the correlation

function Corr(xi, xj), the function value y(x∗) at a new point

x∗ can be predicted as

ŷ(x∗) = μ̂ + rT R−1(y − Iμ̂) (1)

where

Ri,j = Corr(xi, xj) i, j = 1, 2, · · · , n (2)

r = [Corr(x∗, x1), Corr(x∗, x2), · · · , Corr(x∗, xn)]T (3)

μ̂ = (IT R−1I)−1IT R−1y. (4)

The mean square error (MSE) of the prediction is

MSE(x∗) = σ̂2[I−rT R−1r+(I−rT R−1r)2(IT R−1I)−1] (5)

where

σ̂2 = (y − Iμ̂)T R−1(y − Iμ̂)n−1. (6)

The potential (using EI prescreening [15]) of the point x∗

is calculated as

E[I(x)] = (fmin − y(x))�

(

fmin − y(x)
√

MSE(x)

)

+
√

MSE(x)φ

(

fmin − y(x)
√

MSE(x)

) (7)

where fmin is the current best function value in the available

data. φ(·) is the standard normal density function, and �(·)
is the standard normal distribution function. I(x) is the im-

provement of f . EI is essentially the part of the curve of the

standard error in the model that lies below the best function

value sampled so far. It can be seen that the EI prescreening

considers both the predicted value and the possible prediction

error. Therefore, the quality of a new candidate is evaluated

in a global picture.

C. Differential Evolution Algorithm

The optimization kernel in MMLDE is the differential

evolution (DE) algorithm [19], which is also used in EMLDE.

The DE algorithm outperforms many other EAs in terms

of solution quality and convergence speed [19]. DE uses a

simple differential operator to create new candidate solutions

and a one-to-one competition scheme to greedily select new

candidates.

The ith candidate solution in the d-dimensional search space

at generation t can be represented as

xi(t) = [xi,1, xi,2, · · · , xi,d]. (8)

At each generation t, the mutation and crossover operators are

applied to the candidate solutions, and a new population arises.

Then, selection takes place, and the corresponding candidate

solutions from both populations compete to comprise the next

generation. The operators are as follows:

Mutation: Vi(t + 1) = xbest(t) + F̂i(xr1(t) − xr2(t)) (9)

where indices r1 and r2 (r1, r2 ∈ {1, 2, . . . , NP}) are randomly

chosen and mutually different, and also different from the

current index i. NP is the population size. xbest(t) is the best

individual of the current population. F̂ is the scaling factor. We

use a vector composed of Gaussian-distributed random vari-

ables with mean value μ and variance σ: F̂i,j = norm(μ, σ),

i = 1, 2, . . . , NP, j = 1, 2, . . . , d.

Crossover: a trial vector is generated as follows:

Ui(t + 1) = [ui,1(t + 1), . . . , ui,d(t + 1)] (10)

ui,j(t+1) =

{

vi,j(t + 1), if (rand(i, j) ≤ CR) or j = randn(i)

xi,j(t), otherwise
(11)

where rand(i, j) is an independent random number uniformly

distributed in the range [0, 1]. Parameter randn(i) is a ran-

domly chosen index from the set {1, 2, . . . , d}. Parameter
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CR ∈ [0, 1] is a user-defined constant called the crossover

parameter.

Selection:

xi(t + 1) =

{

Ui(t + 1), if f (Ui(t + 1)) < f (xi(t))

xi(t), otherwise
(12)

where the function f is the objective function, i.e., the func-

tion to be minimized or maximized. The candidate solution,

xi(t+1), becomes the candidate solution of the new population.

Then, the next iteration begins. For more details about the DE

algorithm, please see [2] and [19].

III. The EMLDE Method

Although MMLDE can solve low-dimensional expensive

optimization problems very well, the synthesis of mm-wave

RF linear amplifiers brings new challenges, which make the

MMLDE algorithm not workable in this problem. This is

also the “curse of dimensionality” in surrogate model assisted

evolutionary algorithms. For the problem of RF amplifier

synthesis, one stage of the amplifier often has 10–20 design

variables (Section V provides an example). However, most

GP-surrogate model assisted evolutionary algorithms normally

can handle expensive optimization problems with about five

variables very efficiently. Many works of expensive black-box

optimization in the computational intelligence field focus on

small-scale problems (e.g., [15], [20], [21]). When the number

of the dimensions increases, two challenges appear.

1) Solution quality: an initial surrogate model that can

roughly approximate the performance of the circuit

is often difficult to be constructed with a reasonably

small number of initial samplings. Because the initial

information is very little, promising areas are hard

to be selected correctly even with good prescreening

methods.

2) Efficiency: a linear increase of the number of design

variables causes an exponential increase of the search

space, which requires more training data in the online

optimization process. This also lowers the speed of

the synthesis considerably, because more samples and

iterations are needed and each of them is expensive.

In addition, the computational effort to construct the

GP model itself increases drastically with the num-

ber of design variables and the number of training

data.

To address this problem, the new contributions in this

paper focus on dimension reduction to transform the original

problem to a lower dimensional problem and on the effective

solution of this reformulated low-dimensional but more com-

plex problem. The dimension reduction method is introduced

in Section III-C and the proposed new algorithm to solve “hard

to predict” low-dimensional expensive optimization problems

is introduced in Section IV.

The general framework of the EMLDE method for mm-

wave RF linear amplifier synthesis is shown in Fig. 2. In the

following, the key ideas and main blocks of the flow will

be described. The core algorithms will be illustrated in a

separate section.

Fig. 2. Framework of the EMLDE method.

A. Active Components Library and the Look-Up Table for

Transmission Lines

In EMLDE, the active components library is the same as

the parasitic-aware active components library in existing low-

frequency RF IC synthesis methods, which is shown in Fig. 1.

For transmission lines, we use a look-up table to get the S-

parameters. In the case of a linear RF amplifier optimizing

performances according to S-parameters (e.g., power gain), the

computationally expensive parts are: the parasitic extraction

of active devices (transistors), the EM simulation of the long

transmission lines, and the EM simulation of transformers and

inductors. When the performance optimization is based on lin-

ear analysis (for many CMOS technologies, nonlinear analysis

results, such as output power, are difficult to be optimized

due to the high working frequencies), usually the most critical

problem is the impedance matching, and the transistors often

have clear design rules. For example, a typical method is to use

the minimum transistor length and a fixed width, while only

the number of fingers is changed. In addition, the transistor

layout is decided before any other components in many high-

frequency amplifier designs. Hence, we suggest first extracting

the parasitics of the transistors with different number of fingers

but with fixed width and length beforehand and then directly

use the extracted models in full-fletched optimization. Al-

though optimizing the transistors (by changing the number of

fingers) with already extracted models is not used in the exper-

iments of this paper because of not necessary, this method is

recommended when transistor sizing is necessary in synthesis.

The extraction consumes some computational effort, but it is a

one-time investment for each technology. Note that changing

the number of fingers brings a discrete design variable in the

optimization. A quantization technique [19] can be used to

make the floating-point-based DE method also workable for

mixed continuous and discrete optimization problems.

For the transmission lines, their S-parameters are highly

linear. We first sweep the transmission lines with different
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line widths, lengths and distances between two lines if using

differential transmission lines, and then build a look-up table

(LUT). Through experiments, we found that the S-parameters

generated by interpolation from the LUT have little difference

compared with the EM simulation results. The very small

difference can only add less than 1% error on the circuit

performances in our experiments. Like the active components,

the data generation of the transmission lines is also a one-time

investment. This solves the efficiency problem of performing

online EM simulations to newly generated long transmission

lines. Therefore, the most expensive and difficult part remain-

ing is the EM simulation of transformers and inductors, which

cannot be solved by the existing methods when going to mm-

wave frequencies. This is also the focus of the efficient global

optimization algorithm proposed in this paper.

B. Handling Cascaded Amplifiers

At high frequencies, to obtain a higher gain, the amplifier

often includes multiple stages, which are cascaded together.

For example, [22] designed the first fully differential 100 GHz

CMOS amplifier, which uses six cascaded stages to obtain

about 10 dB power gain. In manual design, the designer often

copies the design of one stage to construct the cascaded

amplifier. This result is less optimal because the impedance

matching of each stage is different. In contrast, the synthesis

method proposed optimizes the cascaded amplifier stage by

stage according to each stage’s own impedance matching.

In EMLDE, instead of dividing the circuit by active com-

ponents like in manual design, transformers and inductors

are the main objects for circuit division. Even for single-

stage amplifiers but with a complex structure, dividing the

circuit by key passive components is also workable in most

cases. The division rules are: 1) one stage includes one and

only one computationally expensive passive component; 2) the

components in each stage must be connected together; and

3) there should not exist components that do not belong to any

stage, such as the input/output pads. More details of division

will be shown by the example in Section V.

C. Two Optimization Loops

In this subsection, we introduce our method to reduce the

number of dimensions to a stage of the RF amplifier.

Usually, the design parameters of a stage of the RF ampli-

fier include the parameters of the transformers or inductors,

the parameters of the transistors, and the parameters of the

connecting transmission lines. The overall circuit performance

is decided by all of them. But with the help of the active

components library and the look-up table for transmission

lines in Section III-A, only the parameters of the transformers

or inductors need expensive EM simulation. In addition, the

number of parameters of a transformer or inductor is not large

(often four to five). Hence, a natural idea is to separate these

design variables. Our method to reformulate the problem is as

follows and also shown in Fig. 2.

The parameters of the transformer or inductor are set as the

design variables (input), and the performances of the amplifier

with the decided transformer or inductor and the correspond-

ing optimized transistors and transmission lines are the output

variables. In this way, the GP-based machine learning can be

used for the outer optimization loop to decrease the number

of expensive EM simulations. In other words, the original

plain optimization problem is reformulated as a hierarchical

optimization problem. The outer loop is the optimization of

the transformer or inductor parameters, whose function values

are the optimized performances of the amplifier stage, which

is obtained by the inner optimization loop. The inner loop

is the optimization of the transistors and transmission lines

for the decided transformer or inductor provided by the outer

loop. Although the inner loop needs more computational effort

(an optimization is needed, rather than a single simulation),

with the efficient models for transistors and transmission

lines, and fast S-parameter circuit simulation, the evaluation

of the inner function is very cheap. In addition, because of

the independence of the candidates in the population of EAs,

parallel computation is used to further decrease the computa-

tional time. An 8-core CPU is used in this paper. We use the

selection-based differential evolution (SBDE) algorithm [23]

for the inner optimization. Details are described in Section IV.

However, the price to pay for lowering the number of

dimensions of the problem by decomposition is that the

GP prediction and the EI prescreening of the potential of a

candidate design become more difficult. The reason is that

the original performance is explicitly correlated to 10–20

variables, while in the new problem formulation it is predicted

by four to five variables only and more than ten variables are

hidden. Hence, the problem to be predicted is more complex.

Through experiments, we found that only using the standard

GP method and EI prescreening is not good enough to make

the selection of the promising solutions effectively. This

means that more iterations are necessary, which naturally

leads to more EM simulations and more inner optimizations.

Hence, we propose a new GP surrogate model assisted

evolutionary algorithm: adaptive population generation, naive

Bayes classification, and Gaussian process-based differential

evolution (ABGPDE). Using the ABGPDE algorithm, highly

optimized designs can be obtained efficiently, with a solution

quality comparable to directly using a global optimization

algorithm with EM simulations in the function evaluations. In

the test example of a 100 GHz differential amplifier, the speed

is nine times faster and the total synthesis time only costs

25 h, which makes the computational time practical. ABGPDE

will be described in Section IV and the comparison with

the standard GP-model-based efficient global optimization

method [15] is shown in Section V.

IV. Key Algorithms in EMLDE

EMLDE includes decomposition into two optimization

loops (see Section III-C): the SBDE algorithm for inner

optimization and the ABGPDE algorithm for outer optimiza-

tion. This section will introduce the ABGPDE and SBDE

algorithms. The naive Bayes classifier is a component of

ABGPDE, so it is introduced first.

A. Naive Bayes Classification

As said in Section III-C, by lowering the number of dimen-

sions of the original optimization problem, the drawback is that
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the performances of the generated low-dimensional expensive

optimization problem are more difficult to predict. Naive

Bayes classification [24] is used to help the EI prescreening

to select the most promising candidate design.

The naive Bayes classification is very efficient and outper-

forms many existing classification methods, even some newly

developed methods [25]. A classifier is a machine that maps

the input feature space F to the output class label space C.

Naive Bayes classification is a supervised learning method,

which learns from a training data set of input vectors (input

features) and their corresponding classes. In the following, we

introduce how the naive Bayes classifier works.

Suppose that the input vector is d-dimensional, so we have

feature variables from F1 to Fd . Each input vector is classified

to a class Ci (i = 1, ..., n). For a new input vector x, the class

it belongs to is decided by the maximum probability of the

hypothesis that x belongs to Ci, that is

class(x) = arg max
Ci

p(C = Ci|F1 = x1, . . . , Fd = xd). (13)

The naive Bayes classifier assumes that each feature Fk

(k = 1, . . . , d) is conditionally independent of every other

feature. Hence, the conditional probability p(C|F1, . . . , Fd)

can be highly simplified to

p(C|F1, . . . , Fd) =
p(C, F1, . . . , Fd)

p(F1, . . . , Fd)

=
p(C)

∏d
k=1 p(Fk|C)

p(F1, . . . , Fd)

(14)

where p(F1, . . . , Fd) is common to all and does not affect the

ranking of (13). In this paper, we assume that the input vector

values associated with each class are Gaussian distributed.

According to the training data, the mean and variance of the

data associated with each class can be calculated. Using the

probability density function of the Gaussian distribution and

plugging (14) into (13), the corresponding class for a new

vector x can be calculated.

Although the basic assumption of independence of all

the features is often not accurate enough, the naive Bayes

classifier uses the maximum of posteriori rule [24]. Therefore,

the classification is decided by the ranking, rather than the

accurate estimation of p(C = Ci|F1 = x1, . . . , Fd = xd). This

is the main reason why the naive Bayes classifier can still be

very effective, even when using such a simplified assumption.

B. ABGPDE Algorithm

The proposed ABGPDE algorithm is a surrogate model

assisted evolutionary algorithm for low-dimensional expen-

sive optimization problems, especially suitable for problems

with difficult to predict data sets. In EMLDE, the ABGPDE

algorithm solves the outer loop optimization. The input are

the design parameters of the transformer or inductor (four

to five dimensions), and the output is the performance of a

stage of the linear amplifier with its corresponding optimized

transistors and transmission lines. The function evaluation

includes EM simulation of the transformer or inductor and

the inner optimization loop.

1) Structure of ABGPDE: Due to the dimension reduction,

the basic structure of MMLDE (see Section II-A) can therefore

be used in ABGPDE. The constraint handling method is

the static penalty function method [26]. The differences with

MMLDE are as follows.

1) The inner optimization is included. Both in initialization

and optimization, an inner optimization is performed to

each passive component design to obtain the correspond-

ing optimal performance of the amplifier stage.

2) Although the EI prescreening [15] (7) is still used, the

evaluation of the potential of the candidates is different

from [2], which is described in the next subsection.

3) The population setting is different. In ABGPDE, there

are two populations: one is the population containing all

the simulated candidates, which is the same as [2]; the

other is adaptively constructed in each iteration, which

is described in the next subsection.

It can also be mentioned that the EM simulations for the

initial points can be done beforehand for one technology,

which is also a one-time investment and can be used in all the

stages. Only the inner optimization loop for the initial points

needs to be done for each stage, because the best matching

can be different from stage to stage.

2) Handling Difficult to Predict Data Set: After lowering

the original plain optimization problem with 10–20 design

variables to a hierarchical optimization problem with four

to five variables, the predictions are more difficult. Through

experiments, we found that using MMLDE [2], a satisfactory

solution often needs many iterations, and each iteration is

expensive (see Section V-B). The reason is that because of the

complexity of the prediction problem, the number of wrong

selections using the EI prescreening increases a lot.

We address the problem in two ways: 1) improving the

potential evaluation of the candidates; and 2) revising the EA.

For the EI prescreening, at the same time of achieving

global search, it also bears the unavoidable risk of not selecting

good candidates. For a candidate whose tail of the probability

density function is smaller than fmin, the possibilities exist

both of the candidate being truly a promising one or being

not promising but having a large estimation variance. But EI

cannot classify them. Hence, rather than improving EI, we add

the naive Bayes classification to help EI for this classification.

As said above, if the function is continuous, the function

values of two points xi and xj should be close if they are

highly correlated. We use the naive Bayes classifier which only

considers the input space x to make classifications. This is a

good supplement to GP machine learning which considers both

the input space and the output space. If a candidate has a high

EI value but is classified into the unpromising points class,

there is a high probability that the point has an unpromising

function value but with a large estimation variance.

In ABGPDE, we use the mean performance of the current

circuit being synthesized (e.g., power gain of two stages of the

circuit) for all the candidate designs of the current population

as the threshold. The candidates with function value better

than the threshold are classified as promising points; otherwise,

they are classified as unpromising points. These construct the
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training data. For a new population, we select the candidate

solution with the highest EI value in the promising point class

as the most promising one and evaluate it.

Although the naive Bayes classifier helps EI to evaluate the

potential of the candidate solutions, it only contributes to the

identification of promising solutions. On the other hand, the

problem of how to make promising solutions being generated

more efficiently is still not answered. The EA we use for

expensive optimization is different from the standard EAs.

In standard EAs, the solution quality of the population is

improving in the evolution process, so beneficial information

to generate promising candidates keeps increasing in the con-

secutive populations. After some iterations, a high percentage

of the information in the current population is beneficial to

generate a candidate with good quality. In contrast, for surro-

gate model-assisted optimization, besides the initial samples,

only one or few good new individuals are evaluated and added

to the population in each iteration to increase the efficiency.

Hence, in many occasions, the majority of the population

are the initial samples. The goal of the initial samples is

to cover the design space, but many of them may not be

good solutions. Consequently, the percentage of beneficial

information in the consecutive populations increases slowly.

In evolutionary optimization, the new population is generated

according to the information of the previous population by

evolution operators. If the beneficial information in the previ-

ous population is less, generating promising candidates is more

difficult.

Our idea to solve this problem is to artificially increase

the amount of beneficial information by constructing a new

population for evolution. In each iteration, we rank all the

candidates in the original population and select the top 75%

candidates to enter the new population for evolution. The

remaining 25% of the new population is filled by randomly

selecting the candidates from the top 75% candidates of the

original population. This operation may sacrifice the diversity

a little bit but causes fast convergence to a satisfactory result,

which fits the needs for expensive optimization problems.

After all, in EMLDE, because all the simulated candidates

are included in the original population, the diversity is quite

high. Hence, if we replace some low-quality candidates, the

diversity does not decrease too much.

Based on the above ideas, the ABGPDE algorithm is

constructed. Experimental results show that ABGPDE

enhances the speed and solution quality considerably

compared to only using the GP-based surrogate model and

EI prescreening, which is the idea of standard efficient global

optimization (EGO) in computational intelligence [15]. The

experimental comparisons are given in Section V. The flow

diagram and the ABGPDE algorithm description will be

shown in Section IV-D.

C. SBDE Algorithm

The SBDE algorithm is used for the inner optimization loop

of the synthesis system. The inputs are transistor parameters,

transmission line parameters, and DC voltages. The used

transformer or inductor and its EM simulation result are

provided from the outer loop. The output is the performance

Fig. 3. Flow diagram of EMLDE.

of one stage of the RF amplifier with optimized transistors,

transmission lines, and biasing voltages.

The construction of SBDE is quite simple. The optimization

core is the standard DE algorithm (see Section II-C) with a

change of the selection operator. Constraints (e.g., bandwidth

≥ 20 GHz) are handled by using the selection rules in [27].

The selection rules are: 1) given two feasible solutions, select

the one with the better objective function value; 2) given

two infeasible solutions, select the solution with the smaller

constraint violation; and 3) if one solution is feasible and the

other is not, select the feasible solution. More details are in

[23] and [27].

Although the S-parameter simulation is fast, the inner opti-

mization needs to evaluate a full population in each iteration

and the optimization needs several iterations. Because the eval-

uation of different candidate designs in a population is inde-

pendent of each other in SBDE, we use parallel computation.

In our implementation, a 8-core CPU is used. Experiments

show that the inner optimization of one candidate transformer

design can be finished in 5 to 6 min for the test circuit. This

time consumption is quite general, because the time cost of

the inner loop is mainly dominated by the S-parameter circuit

simulation, which is correlated to the size of the simulated

circuit stage. Using the same hardware and the circuit division

method based on passive components, the size of each stage

often does not vary much even for different amplifiers.

D. Flow Diagram of EMLDE

The general flow of the high-frequency linear RF amplifier

synthesis system is shown in Fig. 2. The flow diagram of the

EMLDE algorithm is shown in Fig. 3. ABGPDE and SBDE

are included in EMLDE.

The EMLDE algorithm works as presented in Algorithm 1.

In EMLDE, the parameters that need to be set by the user

can be classified into the DE parameters, the GP parameters,

the number of initial samples, and the parameters for the

inner optimization loop. The rules for determining the settings

and the robustness for the first three classes are elaborated in

[2], and will not be repeated here. For the inner optimization

loop, the population size and the number of iterations need to

be considered. We suggest setting the population size to be

20. Normally, for an optimization problem with about 10–15
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Algorithm 1 The EMLDE algorithm

Step 0: Decompose the problem of optimizing an amplifier

stage into hierarchical optimization with outer and inner

loops according to the method in Section III.

Step 1: Initialize the parameters, e.g., the DE algorithm

parameters.

Step 2: Initialize the population by LHS sampling of the

design space and perform EM simulation to the samples

(can be done beforehand for one technology). Perform the

inner optimization loop for the samples. SBDE, the active

component library and the transmission line LUT are used in

this step.

Step 3: Update the population A by adding newly generated

samples and their performances. In the first iteration, the

added samples are from step 2; afterward, they are from step

11. Update the best solution obtained so far.

Step 4: Check if the stopping criterion (e.g., a convergence

criterion or a maximum number of iterations) is met. If yes,

output the result; otherwise go to step 5.

Step 5: Train the GP surrogate model according to population

A.

Step 6: Construct the population for evolution (population B)

as described in Section IV-B2).

Step 7: Use population B and perform the mutation operation

according to (9) to obtain each candidate solution’s mutant

counterpart.

Step 8: Perform the crossover operation between each

candidate solution and its corresponding mutant counterpart

according to (10) and (11) to obtain each individual’s trial

individual.

Step 9: Calculate the EI value of all the trial individuals from

step 8.

Step 10: Use the population A as the training data, perform

naive Bayes classification as described in Section IV-A to all

the trial individuals from step 8.

Step 11: Select the individual with the best potential

according to Section IV-B2) and evaluate it using the same

way as in step 2. Go back to Step 3.

variables, which is very typical for one stage of the mm-wave

RF amplifier without the inductor or transformer, this setting

can often obtain a near-optimal result and is widely applied

for real-world problems. A larger value of the population size

often has very little or no improvement on the result, but costs

more time because the convergence may slow down [19]. The

number of iterations, on the other hand, depends on the engi-

neering problem being optimized. For S-parameter optimiza-

tion in a RF amplifier stage, using 30 iterations is an empirical

setting. Through our experiments, we found that the objective

function value improvement when using a population of 30

individuals and 100 iterations to different problems (amplifier

stages and some mathematical benchmark problems) com-

pared with the above settings is only 2–3%. If the hardware

resources are sufficient, such as a 12-core CPU or a cluster,

we therefore suggest using 30 individuals in the population

and about 30–40 iterations. After all, the designer can always

Fig. 4. One stage of the 100 GHz amplifier (the full amplifier needs three
such stages).

perform tests on a few samples with given fixed passive

devices to decide the optimal setting of the number of

iterations, which is easy to be done. For an amplifier stage,

after finding the best candidate of the transformer or inductor,

the user can re-do the specific inner optimization using more

iterations. Because only one inner optimization is done this

time, it is very cheap. Normally the re-optimization of the

inner loop needs less than 10 min, which will not affect the

total synthesis time much.

V. Experimental Results and Comparisons

In this section, the EMLDE method is demonstrated for the

synthesis of a 100 GHz three-stage transformer-coupled fully

differential amplifier [22] in a 90 nm CMOS technology. One

stage of the circuit configuration is shown in Fig. 4. Using

the same configuration but different sizing for each stage,

the different stages are cascaded together. The optimization

goal is the power gain (S21 at 100 GHz); the constraints

are bandwidth ≥ 20 GHz and the Rollet stability factors

(K factors) [28] > 1. Note that at 100 GHz, design for high

gain is difficult due to the limitation of the fT of the 90 nm

technology. Achieving similar performances, [22] used six

stages (measurement result), while EMLDE uses three stages.

Although simulation result and measurement result cannot be

compared directly, the manual design result is a good reference

to verify the high solution quality of EMLDE.

The transmission line used is a high-Q slow-wave coplanar

transmission line [29]. The differential lines (CPW line) are

on the top metal layer and the floating metal strips are on

the lower metal layer. For the transformer, the top metal layer

is used. All the transistors have the same size to make sure

that each stage can drive the next stage. All the transistors

have 1 μm width, 90 nm length and 15 fingers as in [22]. In

a cascaded multistage RF amplifier with the same transistor

size, the optimal design parameters of the transformers often

do not differ much from one stage to the other. As said

above, the manual design method of copying the design of one

stage to construct the whole amplifier receives less optimal

results. Because of this, all the passive components are re-

synthesized, but after performing the inner optimization to the

initial samplings in the synthesis of the previous stage, we can

delete a few samplings which have very bad performances,

when synthesizing the next stage. The design variables are as

follows. For transformers, the design variables are the inner

diameter of the primary inductor (dinp), the inner diameter

of the secondary inductor (dins), the width of the primary

inductor (wp), the width of the secondary inductor (ws), and
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TABLE I

Design Parameters and Their Ranges

Parameters Lower Bound Upper Bound

dinp, dins (μm) 30 110

wp, ws (μm) 2 10

sp (μm) 8 23

lw (μm) 1 10

ll (μm) 2 80

ls (μm) 7 23

Fig. 5. Amplifier synthesized without machine learning.

the spacing between two ports (sp). For transmission lines,

the design variables are the metal width (lw), the metal length

(ll), and the spacing between the differential lines (ls). Two DC

voltages (VD and VBias) are included in each stage. The output

load impedance is 50 �. The ranges for the design variables

are given in Table I, which are provided by the designer. There

are in total 51 design variables.

The algorithm parameter settings are as follows. In ABG-

PDE, the parameters are the same as in [2], where the

robustness has been analyzed. For the GP model used in

ABGPDE, the DACE toolbox [30] is used. For SBDE, we

set the population size to 20 and the number of iterations

is 20. The purpose of this setting is to call for a good

balance between the solution quality and the efficiency of

the inner optimization. EMLDE stops when the performance

cannot be improved for 20 consecutive generations or when

the number of outer iterations reaches 90 (including initial

points). The examples are run on a PC with Intel 2.66 GHz

dual Xeon 2×6 core-CPU (only eight cores are used) under the

Linux operating system. All the time consumptions mentioned

in the experiments are clock time. Advanced design system

momentum is used as the EM simulator. Note that each EM

simulation is parallelized automatically by momentum using

the eight cores in all the methods. Synopsys HSPICE is used

as the circuit simulator with S-parameter models.

We synthesize the amplifier stage by stage, from the output

stage forward to the input stage. For the current stage being

optimized, the S-parameter models of the passive components

(transformer, transmission lines) are separated for HSPICE

simulation, while the already synthesized stage is described by

a single S-parameter model integrating all the passive compo-

nents. For example, when optimizing stage 2, the transformer

and the transmission lines have their own S-parameter models

to enter the HSPICE simulation. For stage 3, which is already

synthesized, the pad, transformer and transmission lines are

connected together to perform a EM simulation, whose result

will be used for stage 2. Because the amplifier includes four

parts (see Fig. 5) to synthesize, and the matching impedances

of each part are different, four test problems are included

Fig. 6. S-parameters curve from 80 GHz to 110 GHz (experiment 1).

Fig. 7. Amplifier synthesized by EMLDE.

Fig. 8. S-parameter curve from 80 GHz to 110 GHz (experiment 2).

in this example. The performance of the whole amplifier is

affected by all of the four test problems, which shows the

robustness of EMLDE.

A. Three-Stage Linear Amplifier Synthesis

We first use the method of the DE algorithm with EM

simulation for transformers as the performance evaluation. No

machine learning method is used. This method can provide

the best result, which can serve as a reference result, but is of

course very CPU time expensive. Parallel computation of the

HSPICE simulations is not included. The synthesized circuit

is shown in Fig. 5 and the simulation results are shown in

Fig. 6. The power gain is 10.53 dB and the time consumption

is about nine days.

Then, we use the proposed EMLDE-based synthesis system.

The synthesized circuit is shown in Fig. 7 and the simulation

results are shown in Fig. 8. The power gain is 10.41 dB and

the time cost is only 25 h. The constraints are satisfied for

both methods.

It can be seen that the proposed high-frequency RF linear

amplifier synthesis system can achieve a comparable result

compared with directly using the DE algorithm and EM

simulation, which is the comparison benchmark. We can also
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see the high solution quality from the mm-wave frequency RF

IC design aspect. It is well known by designers that achieving

3 dB power gain per stage requires very good matching beyond

60 GHz, and that the higher the working frequency, the more

difficult it is to achieve high gain. The result shows that the

average power gain of each stage reaches nearly 3.5 dB in the

synthesized amplifier at 100 GHz considering the loss of the

passive components and the pads. In terms of computational

efficiency, about nine times speed enhancement is achieved.

The time cost of 25 h is very reasonable for practical use.

In this synthesis, a total of 48 EM simulations are used

(excluding the 49 initial sampling points which can be done

beforehand in a given technology). The time spent on EM

simulations is 2.5 h. The inner loop optimization costs 22.7 h.

When directly using the DE algorithm and EM simulation,

nearly 4000 EM simulations are needed. It can be seen that

EMLDE decreases the number of expensive EM simulations

by about 80 times. Although there are much more circuit

simulations in EMLDE, the linear circuit simulation is cheap.

We can also conclude that the more complex the key passive

components, which need more EM simulation time, the higher

the advantage of EMLDE.

B. Comparisons

To show the advantages of the proposed ABGPDE al-

gorithm, a comparison with the prescreening method used

in standard EGO [15] is performed. Both methods use GP

machine learning and the EI prescreening method. DE is

selected as the optimization core to both methods. The differ-

ences between ABGPDE and the comparison method can be

summarized into two main points: 1) ABGPDE uses the naive

Bayes classifier to help the EI prescreening in order to make

the selection of the promising candidate more reliably; and

2) the population is adjusted to increase the amount of bene-

ficial information in each iteration. The purpose is to enhance

the efficiency of generating promising candidates.

The test problem is the synthesis of the most difficult stage

(the third stage) in the amplifier to show the different ability

of the two algorithms. Because the output pad is included, the

matching is more difficult and the gain is lower than a middle

stage (e.g., second stage) due to the parasitics and loss caused

by the pad. In addition, because this stage is handled first in

synthesis, all the initial samples need to perform the inner

optimization. The design variables include the parameters

from the one transformer, the two transmission lines and the

two DC voltages. In this experiment, the maximum number

of iterations of the outer optimization loop was set to 150

(including the 49 initial samples). Ten runs are performed

for each method. The results are summarized in Table II,

where N(inner) is the number of inner optimization loops when

obtaining the best solution, including the inner optimization of

the 49 initial samples.

From Table II, we can see that the naive Bayes clas-

sifier and the adaptive population generation method in

ABGPDE improve both the solution quality and the efficiency

clearly.

We also compared with the method of directly using EI

prescreening (but not using naive Bayes classifier and adaptive

TABLE II

Analysis of ABGPDE

ABGPDE Comparison Method

Best gain 2.41 dB 2.24 dB

Worst gain 2.12 dB 1.87 dB

Average gain 2.28 dB 2.06 dB

Best N(inner) 61 70

Worst N(inner) 98 150

Average N(inner) 75 109

Average clock time 8.0 h 12.8 h

population generation) without an inner loop, i.e., the 13

variables plain optimization problem. Because the inner loop

does not exist in the plain optimization problem, we set the

run time to be 13 h (almost the average clock time of a run

of the comparison method in Table II) and look at the results.

The best result in five runs is only 1.04 dB. This confirms the

dimensionality problem for Gaussian process surrogate model-

based optimization.

C. Test and Comparison Framework for RF Amplifiers

There are three main issues which are interesting for circuit

design automation researchers. They are the comparison to

other methods, the examination of newly developed algorithms

and their robustness. However, unlike for low-frequency ana-

log ICs, it is often not easy to do experiments for high-

frequency ICs. The reason is that the computation is very

expensive; even 25 h in this paper is not a short time com-

pared with 10–20 min for low-frequency analog circuit sizing.

Testing new algorithms and performing more runs to test the

robustness then becomes very time consuming. For compar-

isons, because the published RF circuits often use different

technologies, which are critical in mm-wave circuit design, it is

also difficult to make a fair comparison between publications.

To address these problems, instead of adding a new circuit

example, we present a test and comparison framework by

reconstructing mathematical benchmark problems in the EC

field for RF IC designers.

In the EC field, there are a bunch of mathematical bench-

mark problems with different properties, such as having many

local optimal points, having discontinuous and nondifferen-

tiable. More details of the functions and the corresponding

search domains can be found in [31] and [32]. We select

unconstrained single objective optimization benchmark prob-

lems to construct the test problems for RF IC synthesis. An

example is provided in the following and more examples can

be constructed using the same way.

The benchmark problem selected is the Ackley function

(minimization). The objective function is shown in

f (x)= −20 · exp

⎛

⎝−0.2 ·

√

√

√

√

1

n

n
∑

i=1

x2
i

⎞

⎠

− exp

(

1

n

n
∑

i=1

cos(2πxi)

)

+ 20 + exp(1).
(15)

The search domain of this test function is −32.768 ≤ xi ≤
32.768 (i = 1, . . . , n). The global optimal point is that all the

xi are 0 and the corresponding objective function value is 0.
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Because this problem is scalable, we choose n = 17 to mimic

a RF amplifier stage. Five of the design variables are used

to mimic the passive component design. Therefore, the new

problem is shown in

f (x) = Ackley13 dim(x1, . . . , x12, Ackley5 dim(x13, . . . , x17))

subject to :

17
∑

i=1

xi ≤ 10.
(16)

The constraint is reasonable. We do not suggest using

constrained optimization benchmark problems, because the

constraints in those problems are often very severe to test

the constraint handling ability of an algorithm, which is not

the case for RF IC synthesis. When the 5-D Ackley function

(passive component) is fully optimized, the objective function

is 0, which is just the global optimal point of the 13rd design

variable of the 13-D Ackley function (the amplifier stage) in

the decision space. We consider the 5-D Ackley function to

be expensive (in reality it is not) and only require a limited

number of simulations.

With the constructed problems, the method to judge if an

obtained solution is optimal is interesting for RF IC synthesis

researchers. Because many benchmark problems are often

more difficult than real-world problems, besides comparing

with the known global optimal solution, the information on the

extent of difficulty of the problem is also necessary. Here, we

take the Ackley test function as the example. The Ackley func-

tion has numerous local optimal points, and available state-of-

the-art surrogate model assisted evolutionary algorithms often

get an optimal function value of about 4 to 6 (e.g., [18]) in

about a thousand expensive function evaluations for the 20-D

Ackley function, compared with the global optimal function

value 0. Although we cannot compare with these methods

directly, because they do not assume the hierarchical structure

which appears in linear RF IC synthesis, those results are an

indication of the difficulty of the test problem. For the Ackley

function, synthesis algorithms obtaining an average function

value smaller than 1 using the obtained optimal solutions

should be good for application.

We run the EMLDE algorithm to this problem for 20 times.

Because this problem has numerous local optimal points, we

replace the last 10% low-quality candidates by candidates with

beneficial information to maintain the diversity and lower the

threshold of classification to avoid beneficial candidates being

removed. The number of iterations in the inner loop is set to

350. As stated above, the number of runs in the inner loop

is decided by the kind of engineering problem. The other

settings are the same as Section V-A. The best, worst, and

average results are 0.0452, 3.95, and 0.67, respectively. In the

20 runs, the results of 16 runs are below 1, 15 of them are

below 0.5, and a few of them are below 0.1. Hence, EMLDE

can obtain a good solution in 80% probability, which is quite

robust, especially in surrogate model assisted evolutionary

algorithms.

The proposed framework has three advantages.

1) The experiment is fast. Therefore, it is easy to have

sufficient runs to test the robustness, test new methods,

and do comparisons between different methods.

2) The comparison is not limited by the technology used,

and allows us to compare different methods fairly.

3) The global optimal solution and the extent of difficulty

of the problem is known, which provides a criterion

to judge the quality of the method. For the synthesis

of mm-wave circuits, it is difficult to know the global

optimal point, since there does not exist any viable

method till now. But using this framework, we can still

evaluate new methods using the available information.

The limitation of this framework is that the parameter

settings cannot be directly used to RF IC synthesis algo-

rithms, because these mathematical benchmark problems

are normally more difficult than real-world problems.

VI. Conclusion

In this paper, the first synthesis method, EMLDE, for mm-

wave frequency linear RF amplifiers was presented. The core

ideas were the decomposition method, which reformulates the

problem to a hierarchical structure, and the proposed ABG-

PDE algorithm to solve low-dimensional but more complex

expensive optimization problems. The parallel computation

technique also contributed positively to the EMLDE method.

EMLDE can provide results that are comparable to directly

using a global optimization algorithm with EM simulations as

performance evaluation, which is the best framework in terms

of solution quality, but at far lower computational cost. As an

example, we showed a 100 GHz three-stage linear amplifier

successfully being synthesized with more than 10 dB gain,

20 GHz bandwidth, while only using 25 h clock time (nine

times speedup). The goals of high optimization ability, high

efficiency, and high generality were therefore met. In addition,

a test and comparison framework for future use by RF IC

design automation researchers was presented.
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