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Abstract: In this paper the orthogonal triangular function (TF) basedmethod is first applied to transform the Fredholm integral
equations and Fredholm system of integral equations to a coupled system of matrix algebraic equations. The obtained system is a
variant of coupled Sylvester matrix equations. A finite iterative algorithm is then applied to solve this system to obtain the coefficients
used to get the form of approximate solution of the unknown functions of the integral problems. Some numerical examples are solved
to illustrate the accuracy and the efficiency of the proposedhybrid method. The obtained numerical results are comparedwith other
numerical methods and the exact solutions.

Keywords: Fredholm integral equation, triangular functions, generalized Sylvester matrix equation, generalized iterative algorithm.

1 Introduction

Many problems in physics, mechanics, economics, sociologyand biological lead to the Volterra Integral Equations
(VIEs) [1]. These systems are dependent on a noise source, ona Gaussian white noise, so modeling such phenomena
naturally requires the use of various Volterra integral equations. The concerned with function spaces spanned by
polynomials for which the kernel of the corresponding transforming integral operator is separable being comprised of
polynomial functions only, then several approximate methods of solution of integral equations can be developed. A
computational approaches to solve integral equations is anessential work in scientific research, for interested reader see
to the recent work presented by Y. Suayip [2-7]. Fredholm integral equation is one of the most important integral
equations. A computational approach to solving integral equation is an essential work in scientific research. Some
methods for solving second kind Fredholm integral equationare available in the open literature. TheB-spline wavelet
method, the method of moments based onB-spline wavelets by Maleknejad and Sahlan [8], and variational iteration
method (VIM) by He [9–11] have been applied to solve second kind Fredholm linear integral equations. The learned
researchers Maleknejad et al. Numerical methods for solving linear Fredholm integral equations system of second kind
using Rationalized Haar functions method, Block-Pulse functions, and Taylor series expansion method [12–14]. Haar
wavelet method with operational matrices of integration [15] has been applied to solve system of linear Fredholm
integral equations of second kind. Quadrature method [16],B-spline wavelet method [17], wavelet Galerkin method [18],
and also VIM [19] can be applied to solve nonlinear Fredholm integral equation of second kind. Some iterative methods
like Homotopy perturbation method (HPM) [20–21] and Adomian decomposition method (ADM) [22] have been
applied to solve nonlinear Fredholm integral equation of second kind.

This paper is organized as follows. First the orthogonal triangular functions (TFs) and their properties are provided in
Section 2. In section 3 a finite iterative method is presentedto solve couple system of matrix equations. In section 4 the
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suggested hybrid method is presented. The illustrative examples and numerical results obtained via this method are
presented in section 5.

2 Review of orthogonal triangular functions

Triangular functions have been introuduced by Deb et al. [23] and studied and used by Babolian et al. [24]. In this section,
definitions of vector forms of TFs vector forms and their properties proposed by Babolian et al. [25] are reviewed.

Definition 1.A set of block-pulse functions (BPF) ψ(m)(t) containing m component functions in the semi-open interval (0,
T) is given by

ψ(m)(t) = [ψ0(t)ψ1(t) . . .ψi(t) . . . ψm−1(t)]
T (1)

where [. . .]T denotes transpose.

The ith componentψi(t) of the BPF vectorψ(m)(t) is defined as

ψi(t) =

{

1 (ih)≤ t < (i+1)h
0, elsewhere.

(2)

wherei = 0,1,2, · · · ,(m−1) andh = T
m , for more details see [26 ].

A square integrable time functionf (t) of Lebesgue measure may be expanded into an m-term BPF seriesin t∈[0,T) as

f(t)≈ [c0 c1 c2 · · · ci · · · cm−1 ]ψm(t)∼=CT ψm(t) (3)

The constant coefficientsci
,sin Eq. (2) are given by

ci = (1/h)

(i+1)h
∫

ih

f (t)dt (4)

whereh = T
m is the duration of each component BPF along time scale.

Definition 2.Let ψi (t) be the ith component of an m-set of BPFs, we introduce

ψi(t) = T1i(t)+T2i(t). (5)

WhereT1i(t) and T2i(t) are theith components of two m-sets of triangular functions over theinterval [0,T ) as the
following form

T1i(t) =

{

1− t−ih
h ih ≤ t < (i+1)h

0, elsewhere.
(6)

T2i(t) =

{

t−ih
h ih ≤ t < (i+1)h

0, elsewhere.

wherei = 0,1,2, · · · ,m− 1, with the number of elementary functionsm, we considerh = T
m and T1i(t) as the ith left-

handed triangular function and T2i(t) as the ith right-handed triangular function. We assumed that T = 1, so TFs are
defined over [0, 1) andh = 1

m . From the definition of TFs, it is clear that TFs are disjoint,orthogonal, and complete [23].
Therefore, we can write

1
∫

0

T1i(t)T1j(t) =

1
∫

0

T2i(t)T2j(t) =

{

h
3, i = j
0, otherwise.

(7)
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Let T(t)be a 2m-vector defined as

T(t) =

(

T1(t)
T2(t)

)

(8)

The set of TFs may be written as the two vectorsT1(t) andT2(t) as follows

T1(t) = [T10(t), · · · ,T1m−1(t)],T

T2(t) = [T20(t), · · · ,T2m−1(t)],T
(9)

whereT1(t) and T2(t) are called the left-handed triangular function (LHTF) vector and the right-handed triangular
function (RHTF) vector respectively.

2.1 Multiplication of TFs

Multiplication of triangular functions and related properties were first treated in [26]. It can be concluded from
orthogonality of TFs that

T1(t) ·T1T (t) =













T10(t) 0 · · · 0
0 T11(t) · · · 0
...

...
.. .

...
0 T1m−1(t)













,

T2(t) ·T2T (t) =













T20(t) 0 · · · 0
0 T21(t) · · · 0
...

...
.. .

...
0 T2m−1(t)













and
T1(t) ·T2T(t)∼= 0,
T2(t) ·T1T(t)∼= 0.

(10)

where0 denotes anm×m zero matrix.

T
∫

0
T1(t) ·T1T (t)dt =

T
∫

0
T2(t) ·T2(t)T (t)dt ∼= h

3I

T
∫

0
T1(t) ·T2T (t)dt =

T
∫

0
T2(t) ·T1T (t)dt ∼= h

6I
(11)

in which I is m×m identity matrix, for more details see [27]. We propose a numerical method based on TFs to obtain the
solution of Fredholm integral equation and the coupled system of Fredholm integral equation.

2.2 Triangular functions (TFs) for function approximation

Let f (t) be anL2 [0,T) function, the expansion of any function f(t) with respect to TFs can be written as follow.

f (t)∼= FT
1 T1(t)+FT

2 T2(t) (12)
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whereF1and F2 are the coefficients of TFs withF1i = f (ih)andF2i = f ((i+1)h), for i = 0,1, · · · ,m−1 so 2m- vectorF
is defined as,

F =

(

F1
F2

)

(13)

Moreover, for each functionk(t,s) is a function of two variables. It can be expanded with respect to TFs as follows
k(t,s) ∼= TT(t)K T(s), where,T(t) andT(s) are 2m1- dimensional and 2m2-dimensional triangular vectors and K is a
2m1×2m2 coefficient matrix of TFs. For convenience, we putm1=m2= m. So, matrix K can be written as

K =

(

(K11)m×m (K12)m×m

(K21)m×m (K22)m×m

)

(14)

whereK11, K12, K21 andK22 arem×m matrices and can be obtained easily by sampling the functionk(t,s) at points
si and t j suchthat si = ih and t j = jh, f or i, j = 0,1, · · · ,m−1. Therefore,

(K11)i j = k(ih, jh), i = 0,1, · · · ,m−1, j = 0,1, · · · ,m−1
(K12)i j = k(ih,( j+1)h), i = 0,1, · · · ,m−1, j = 0,1, · · · ,m−1
(K21)i j = k((i+1)h, jh), i = 0,1, · · · ,m−1, j = 0,1, · · · ,m−1
(K22)i j = k((i+1)h,( j+1)h), i = 0,1, · · · ,m−1, j = 0,1, · · · ,m−1.

(15)

3 Solving coupled system of matrix equations using finite iterative algorithm

We concerned with iterative solutions to coupled system of like forms of the Sylvester matrix equations [26]. There are
many variant forms of finite iterative algorithms for solving matrix equation.

AV +BW =C (16)

and coupled system of Sylvester matrix equations

A1V+B1W=C1

A2V+B2W=C2

(17)

A finite iterative algorithm is constructed to solve the matrix equation (16) as follows,

3.1 Algorithm

1- inputA,B,C

2- choose arbitrary matricesV11 ∈ ℜn×p and V21 ∈ ℜr×p

3- set

R1 =C−AV1−BW1

P1 = AT R1

Q1 = BT R1

K = 1

4- if Rk = 0 then stop andVk ,Wkis the solution else letk = k+1 go to step 5,
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5- compute

Vk+1 =Vk +
‖Rk‖

2

‖Pk‖
2+‖Qk‖

2 Pk, Wk+1 =Wk +
‖Rk‖

2

‖Pk‖
2+‖Qk‖

2 Qk

Rk+1 =C−AVk+1−BWk+1 = Rk −
‖Rk‖

2

‖Pk‖
2+‖Qk‖

2 [APk +BQk]

Pk+1 = AT Rk+1+
‖Rk+1‖

2

‖Rk‖
2 Pk,Qk+1 = BT Rk+1+

‖Rk+1‖
2

‖Rk‖
2 Qk

This algorithm is a special form of the algorithm consideredby M. A Ramadan et al [29].

For the coupled system of Sylvester matrix equations (17), afinite iterative algorithm is presented as follows.

3.2 Algorithm

1- inputA1,B1,A2,B2,C1,C2

2- choose arbitrary matricesY11 ∈Cn×p and Y21 ∈Cr×p

3- set

R1 = diag(C1− f (Y11 ,Y21),(C2− g(Y11 ,Y21))

S1 = A1
T (C1− f (Y11 ,Y21))+A2

T (C2− g(Y11 ,Y21))

T1 = B1
T (C1− f (Y11 ,Y21))+B2

T (C2− g(Y11 ,Y21))

4- if Rk=0 then stop andY1k ,Y2k is the solution else letk=k+1 go to step 5.

5 - compute

Y1k+1 = Y1k +
‖Rk‖

2

‖Sk‖
2+ ‖Tk‖

2 Sk

Y2k+1 = Y2k +
‖Rk‖

2

‖Sk‖
2+ ‖Tk‖

2 Tk

Rk+1 = diag(C1− f (Y1k+1 ,Y2k+1),(C2− g(Y1k+1 ,Y2k+1))

= Rk −
‖Rk‖

2

‖Sk‖
2+ ‖Tk‖

2 diag( f (Sk,Tk),g(Sk,Tk))

Sk+1 = A1
T (C1− f (Y1k+1 ,Y2k+1))+A2

T (C2− g(Y1k+1 ,Y2k+1))+
‖Rk+1‖

2

‖Rk‖
2 Sk

Tk+1 = B1
T (C1− f (Y1k+1 ,Y2k+1))+B2

T (C2− g(Y1k+1 ,Y2k+1))+
‖Rk+1‖

2

‖Rk‖
2 Tk

This algorithm is a special form of the algorithm consideredby M. A Ramadan et. al. [28].

4 Problem statement

In this section, we present a hybrid method. The suggested technique is first applying TF method to transform the
Fredholm integral equations to a coupled system of matrix algebraic equations. The obtained system is a variant of
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coupled Sylvester matrix equations then we apply algorithm3.2 to solve the resultant coupled system of Sylvester matrix
equations to compute our solution function for the originalproblem. First, consider the following equation.

y(t) = f (t)+λ
1
∫

0

k(t,s)y(s)ds (18)

wheref (t) ∈ L2([0,1)), k(t,s) ∈ L2([0,1))×L2([0,1)) andy(t) is the unknown function. This problem is to determine TF
pair coefficients ofy(t) in the interval [0,1); from the known functionsf (t) and kernelk(t,s). We expandf (t) andy(t) by
TFs (LHTF and RHTF) as follows,

f (t)∼= FT
1 T1(t)+FT

2 T2(t)
y(t)∼= Y T

1 T1(t)+YT
2 T2(t)

(19)

We can expandk(t,s) in the interval [0,1) by TFs. Suppose that this approximation be as follows,

k(t,s) = T1(t)T (t) ·K11·T1(s)+T1T (t) ·K12·T2(s)+T2T (t) ·K21·T1(s)+T2T (t) ·K22·T2(s) (20)

whereK11, K12, K21and K22 are obtained from Eqs. (15). Then, we have

Y1
T T1(t)+Y2

T T2(t) = F1
T T1(t)+F2

T T2(t)+λ
1
∫

0

[(T1T (t)K11T1(s)+ T1T (t)K12T2(s)

+ T2T (t)K21T1(s)+ T2T (t)K22T2(s))(Y1
T T1(s)+ Y2

T T2(s))ds].

We have

Y1
T T1(t)+Y2

T T2(t) = F1
T T1(t)+F2

T T2(t)+λ [K11T T1(t)Y1
T

1
∫

0
T1(s)T1T (s)ds

+K12T T1(t)Y1
T

1
∫

0
T1(s)T2T (s)ds+K21T T2(t)Y1

T
1
∫

0
T1(s)T1T (s)ds

+K22T T2(t)Y1
T

1
∫

0
T1(s)T2T (s)ds+K11T T1(t)Y2

T
1
∫

0
T2(s)T1T (s)ds

+K12T T1(t) Y2
T

1
∫

0
T2(s)T2T (s)ds+K21T T2(t)Y2

T
1
∫

0
T2(s)T1T (s)ds

+K22T T2(t)Y2
T

1
∫

0
T2(s)T2T ds]

Then by using Eqs. (11) we have

Y1
T T1(t)+Y2

T T2(t) = F1
T T1(t)+F2

T T2(t)
+λ [Y1

T ( h
3K11T T1(t)+ h

6K12T T1(t)+ h
3K21T T2(t)+ h

6K22T T2(t))
+Y2

T ( h
6K11T T1(t)+ h

3K12T T1(t)+ h
6K21T T2(t)+ h

3K22T T2(t))]

The coefficients ofT1(t) andT2(t)on both sides of the above equation must be equal; hence, we have the following
equations for the corresponding coefficients of TFs,

Y1
T (I −λ (

h
3

K11T +
h
6

K12T ))−λY2
T (

h
6

K11T +
h
3

K12T ) = F1T (21)

−λY1
T (

h
3

K21T +
h
6

K22T ))+Y2
T (I−λ (

h
6

K21T +
h
3

K22T )) = F2T
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set

A1 = (I −λ (
h
3

K11T +
h
6

K12T ))

A2 =−λY2
T (

h
6

K11T +
h
3

K12T )

B1 =−λY1
T (

h
3

K21T +
h
6

K22T ))

B2 = (I −λ (
h
6

K21T +
h
3

K22T ))

Then, we have the following linear system:

A1Y1+B1Y2 = F1 (22)

A2Y1+B2Y2 = F2.

Now, let f (Y1,Y2) = A1Y1+B1Y2 andg(Y1,Y2) = A2Y1+B2Y2

For the above linear system we can findY1andY2 using the suggested efficient finite iterative algorithm 3.2.

In this section a generalization of the method introduced inthe above is presented to tackle the coupled system of
Fredholm integral equation [30].

yi(t) = fi(t)+λ
n

∑
i=1

1
∫

0

ki j(t,s)y j(s)ds , i = 1... ,n, (23)

where fi(t) ∈ L2([0,1)), and the kernelski j(t,s) ∈ L2([0,1))×L2([0,1)) are known,i, j = 1,2, ...,n. andyi(t) are the
unknown functions. This problem is to determine TF pair coefficients of yi(t) in the interval [0,1); from the known
functions fi(t) and kernelki j(t,s). We expandf (t) andy(t) by TFs (LHTF and RHTF) as follows,

fi(t)∼= FT
1i

T1(t)+FT
2i

T2(t) (24)

yi(t)∼= Y T
1i

T1(t)+Y T
2i

T2(t)

By using Eqs. (11) and (20), we approximate the kernelki j(t,s) by TFs as

1
∫

0

ki j(t,s)y j(s)ds = [Y1j
T (

h
3

K11i j
T T1(t)+

h
6

K12i j
T T1(t)+

h
3

K11i j
T T2(t)

+
h
6

K22i j
T T2(t))+Y2j

T (
h
6

K11i j
T T1(t)+

h
3

K12i j
T T1(t) (25)

+
h
6

K21i j
T T2(t)+

h
3

K22i j
T T2(t))]

Substituting the Eqs. (24) and (25) into Eq. (23) and equating the like coefficients of TFs, we get the following system.

n

∑
j=1

[Y1
T (∆i j −λ (

h
3

K11i j
T +

h
6

K12i j
T ))−λY2

T (
h
6

K11i j
T +

h
3

K12i j
T )] = F1i

T

n

∑
j=1

[−λY1
T (

h
3

K21i j
T +

h
6

K22i j
T ))+Y2

T (∆i j −λ (
h
6

K21i j
T +

h
3

K22i j
T ))] = F2i

T
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set

A1i j = (∆i j −λ (
h
3

K11i j
T +

h
6

K12i j
T ))

B1i j =−λY1
T (

h
3

K21i j
T +

h
6

K22i j
T )) (26)

B2i j = (∆i j −λ (
h
6

K21i j
T +

h
3

K22i j
T ))

and

∆i j =

{

I , i = j,
0 i 6= j,

for i, j = 1,2, ...n andI is an identity matrix. Then, we have the following linear system,

A1i jY1+B1i jY2 = F1i

A2i jY1+B2i jY2 = F2i.

For the above system we can findY1 andY2 using the suggested finite iterative algorithm 3.2.

5 Illustrative numerical examples

In this section, we represent some examples and their numerical results to show the high accuracy of the solution obtained
by TFs and then we compare all results with the exact solution.

Example 1.Consider the Fredholm integral equation of the second kind

y(t) = et −1+

1
∫

0

sy(s)ds (27)

where f (t) = et − 1, k(t,s) = s and the exact solution isy(t) = et . by using TF method, the problem can be solved, for
m = 4 and 32 are listed in tables 1 and 2 clearly compares estimation of the solution obtained via TF method by the direct
method using maple and a finite iterative algorithm. We note that the iterative method is obtained the same results as the
inverse with the direct method as shown in Table 1.

Table 1: Numerical results obtained form = 4 in Example 1 via TF method by using a finite iterative algorithm.

t Direct method Iterative method
Y1 Y2 Y1 Y2

0 1.01033142 1.29435683 1.01033142 1.29435683
0.25 1.29435683 1.65905269 1.29435683 1.65905269
0.5 1.65905269 2.12733143 1.65905269 2.12733143
0.75 2.12733143 2.72861324 2.12733143 2.72861324
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Table 2: Numerical results obtained form = 32 in Example 1 via TF method by using a finite iterative algorithm.

t TF method Exact solution
0 0.999844 1

0.1 1.105420 1.105171
0.2 1.492294 1.2214027
0.3 1.349645 1.3498588
0.4 1.492103 1.4918246
0.5 1.648884 1.6487212
0.6 1.822071 1.8221188
0.7 2.013375 2.0137527
0.8 2.225963 2.2255409
0.9 2.459956 2.4596031
1 2.718444 2.7182818

Example 2.Consider the Fredholm integral equation of the first kind

(ex+1−1)
(x+1)

=

1
∫

0

exy f (y)dx (28)

wherek(x,y) = exy and the exact solution isf (x) = ex. By using TF method, the problem can be solved, form=32
and m=64 are listed in Tables 3. We compare estimation of the solutionobtained via TF method by the finite iterative
algorithm. By increasing m, the computed results have appropriate accuracy and the error of the solution decreases.

Table 3: Numerical results obtained form = 32 and 64 in Example 2 via TF method by using a finite iterative algorithm.

t M=32 m=64 Exact
0 1.0072935427 1.001519304 1

0.1 1.105610016 1.105063274 1.105171
0.2 1.215828568 1.221760050 1.2214027
0.3 1.339368626 1.344218523 1.3498588
0.4 1.477424094 1.494374050 1.4918246
0.5 1.630883490 1.644547770 1.6487212
0.6 1.800235075 1.819785795 1.8221188
0.7 2.027848210 2.013982342 2.0137527
0.8 2.231443992 2.228538315 2.2255409
0.9 2.400063129 2.451819326 2.4596031
1 2.700265588 2.718717609 2.7182818

The numerical results are shown in table 1, 2 and table 3. For examples 1 and 2 we obtained our solution (Y1 , Y2) after
seven iterations.

Example 3.Consider the following system of linear integral equationsof the second kind

u1(x) =
3
4
+

1
∫

0

xu1(t)ds+

1
∫

0

(x − t)u2(t)dt

u2(x) =−
1
12

− x+3x2+

1
∫

0

(x− t)u1(t)ds+

1
∫

0

tu2(t)dt (29)
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with the exact solutionu1(x) = 2x andu2(x) = 3x2.

By using TF method, the problem is solved, for m=256 and the obtained solutions are listed at different value of x in
Tables 4. We compare estimation of the solution obtained viaTF method by the finite iterative algorithm. We obtained
our solution (Y1 , Y2) after five iterations.

Table 4: Numerical results obtained form = 256 in Example 3 via TF method by using a finite iterative algorithm.

x TF method Exact value of
u1(x) u2(x) u1(x) u2(x)

0 0.00000 0.00000 0 0
0.1 0.19999 0.03001 0.2 0.03
0.2 0.399996 0.12001 0.4 0.12
0.3 0.599997 0.26999 0.6 0.27
0.4 0.799999 0.47999 0.8 0.48
0.5 1.000000 0.74999 1 0.75
0.6 1.200001 1.07999 1.2 1.08
0.7 1.400002 1.46999 1.4 1.47
0.8 1.600003 1.91999 1.6 1.92
0.9 1.800005 2.42999 1.8 2.43
1 2.000004 3.00000 2 3

6 Conclusion

In this article we present a new technique for solving VIEs numerically. Here, a hybrid method of triangular functions and
an iterative method are considered. The benefits of this method are lower cost of setting up the system of equations without
any integration and to recover the singularity, moreover, the computational cost of operations is low. These advantages
make the method easier to apply. It follows from the numerical results that the accuracy of the solutions obtained using the
TFs is quite good. The structural properties of TFs are utilized to reduce the Fredholm integral equations to an algebraic
equation. It seems that present method is appropriate for linear integral equations system. We test the proposed algorithm
using Maple and the results verify our theoretical findings.The numerical results have demonstrated the superiority and
efficiency of the proposed method where our method exhibits fast convergence behavior.
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