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In this paper, a hybrid approach that combines a population-based method, adaptive elitist differential evolution (aeDE), with a
powerful gradient-based method, spherical quadratic steepest descent (SQSD), is proposed and then applied for clustering
analysis. +is combination not only helps inherit the advantages of both the aeDE and SQSD but also helps reduce computational
cost significantly. First, based on the aeDE’s global explorative manner in the initial steps, the proposed approach can quickly
reach to a region that contains the global optimal value. Next, based on the SQSD’s locally effective exploitative manner in the later
steps, the proposed approach can find the global optimal solution rapidly and accurately and hence helps reduce the com-
putational cost.+e proposedmethod is first tested over 32 benchmark functions to verify its robustness and effectiveness.+en, it
is applied for clustering analysis which is one of the problems of interest in statistics, machine learning, and data mining. In this
application, the proposed method is utilized to find the positions of the cluster centers, in which the internal validity measure is
optimized. For both the benchmark functions and clustering problem, the numerical results show that the hybrid approach for
aeDE (HaeDE) outperforms others in both accuracy and computational cost.

1. Introduction

Optimization has been widely applied in different fields such
as economics, finance, engineering, etc. Although there are
many optimization algorithms developed in various ways,
they can be decomposed into two major techniques:
population-based algorithms and gradient-based searching
algorithms.

Population-based algorithms including evolutionary
algorithms and swarm-based algorithms are types of global
searching techniques. Evolutionary algorithms [1–8] are

inspired by biological processes that allow population to
adapt to their surroundings: genetic inheritance and survival
of the best chromosomes; swarm-based algorithms [9–16]
that focus on the social behaviors of insects and animals can
solve the optimal problem as well. Among popular evolu-
tionary algorithms, the differential evolution (DE) algorithm
firstly introduced by Storn and Price [8] has been used in
many practical problems and has demonstrated good con-
vergence properties. In DE, individual solutions are selected
from a population of solutions according to their fitness
value to generate new offspring using some operators, such
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as the crossover and the mutation operators. Nevertheless,
similar to many other population-based optimization al-
gorithms, the DE is still costly to approximate the global
optimal solution. To overcome this drawback, the adaptive
elitist differential evolution (aeDE) [17] in which two
modifications are implemented was proposed. Firstly, an
adaptive technique based on the variations between the best
objective function and other objective functions in the
current generation is proposed to choose a suitable mutation
operator. +e purpose of this modification is to preserve the
balance between global and local searching abilities in the
DE. Secondly, an elitist selection technique is utilized to
speed up the convergence. +e aeDE with those modifica-
tions is more efficient than the DE and is considered as one
of the state-of-the-art methods in population-based algo-
rithms, currently. However, the aeDE is a not-so-radical idea
because of the characteristics of population-based tech-
niques existing in it. In the later steps, when the current best
solution is nearly obtained, the aeDE still utilizes the
crossover and mutation operators, which leads to an un-
expected additional number of function evaluations (FES)
but cannot ensure the improvement of the objective function
through iterations. Hence, it not only lacks locally effective
exploitative behavior but also increases the computational
cost.

On the other hand, gradient-based techniques only
compute a single solution at any time and move the solution
to a better one through iterations basing on gradient in-
formation. In comparison to population-based techniques,
gradient-based techniques have more advantages in terms of
locally exploitative behavior and computational cost, but
they usually give the optimal solution which gets stuck at the
local extreme values.

To avoid the disadvantages of both population-based and
gradient-based algorithms, this paper proposes a hybrid
approach that combines them together. Specifically, the
state-of-the-art population-based algorithm, aeDE, is per-
formed in the initial steps to explore the global searching
space. In the later steps, when the aeDE nearly converges to a
critical value, spherical quadratic steepest descent (SQSD)
[18], a gradient-based method, is utilized to help obtain the
fast and accurate optimal result. +e reason for choosing
SQSD instead of other gradient-based methods is its re-
liability and stability for solving extremely ill-conditioned
problems [19].+e proposed algorithm is illustrated in detail
through a bivariate function and compared with existing
optimization algorithms through 32 benchmark numerical
optimization functions. Finally, it is applied for clustering
which is an interesting problem in statistics, machine
learning, and data mining.

+e remainder of this paper is organized as follows. +e
following section presents the aeDE, the SQSD, and the
proposed algorithm. Section 3 evaluates the performance of
the proposed method via 32 benchmark functions. In Sec-
tion 4, the clustering method based on HaeDE and its
performance are presented and evaluated. After discussing
the advantages and disadvantages as well as the future re-
search direction in Section 5, the conclusion is given in
Section 6.

2. Materials and Methods

+is section reviews some theories regarding the aeDE al-
gorithm, SQSD algorithm, and proposes the hybrid HaeDE
algorithm. +e detail is presented as follows.

2.1. aeDE Algorithm. To clarify the notation used
throughout this article, we refer to the minimization of the
objective function f(x), where x is a vector of N variables in
the decision space D � [xl, xu]. +e aeDE seeks for optimal
solution through generations (iterations). In each genera-
tion, the aeDE evolves population, which is a set of NP
feasible solutions, P � x1, x2, ..., xNP{ }. Each element in this
set or each feasible solution xi, i � 1,NP is called a chro-
mosome, which is a vector of N variables, so-called genes.
+e four major phases of the aeDE algorithm, which include
initialization, mutation, crossover, and selection, are briefly
summarized.

2.1.1. Initialization. +e initialization phase of the aeDE is
similar to that of the original DE, in which an initial pop-
ulation, including NP individuals, is generated through a
random sampling technique. Specifically, each individual is
represented as a chromosome containing N genes and is
created by

xi,j � x
l
j + rand[0, 1] × x

u
j − x

l
j( ),

i � 1, 2, ...,NP; j � 1, 2, ..., N,
(1)

where xlj and xuj are, respectively, the lower and upper
bounds of xj, rand [0, 1] is the real number having the
uniform distribution within [0, 1], and NP is the population
size.

2.1.2. Mutation. In the case of the original DE, a mutant
vector vi is generated by individuals xi in the population
through mutation operations. Some mutation operations
that are regularly used in the DE can be listed as follows.

(i) rand/1: vi � xr1
+ F × (xr2 − xr3)

(ii) rand/2: vi � xr1
+ F × (xr2 − xr3) + F × (xr4 − xr5)

(iii) best/1: vi � xbest + F × (xr1 − xr2)
(iv) best/2: vi � xbest + F × (xr1 − xr2) + F × (xr3 − xr4)
(v) current to best/1: vi � xi + F × (xbest − xi) + F×

(xr1 − xr2)
where integers r1, r2, r3, r4, r5 are mutually exclusive integers
randomly selected from {1, 2, . . ., NP}, F is the scale factor
and randomly chosen within [0,2], and xbest is the best
individual in the current population.

In the case of the aeDE, a new adaptive mutation scheme
for themutation phase of the DE is proposed. In this scheme,
two mutation operators including “rand/1” and “current to
best/1” are utilized. +e “rand/1” aims to ensure diversity of
the population and prohibits the population getting stuck in
a local optimum and the “current to best/1” aims to ac-
celerate convergence speed of the population by means of
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guiding the population toward the best individual.+ese two
mutation operators are adaptively chosen based on delta, the
deviation modulus between the objective function of best
individual and the objective functions of entire population in
the previous generation. For more details, the new mutation
scheme is described as follows.

IF delta> threshold
vi � xr1

+ F × xr2
− xr3( ), (2)

ELSE

vi � xi + F × xbest − xi( ) + F × xr1
− xr2( ), (3)

ENDIF

In above pseudocode, delta is defined by delta �
|fmean −fbest|, where fbest is the objective function value of
the best individual and fmean is the mean objective function
value of the whole population; the choice of threshold is
presented in Section 3.

2.1.3. Crossover. After completing mutation, each target
vector xi produces a trial vector ui by substituting some
components of the vector xi by some components of the
mutant vector vi through the following binomial crossover
operation.

uij �
vij, if rand [0, 1]≤CR,
xij, otherwise,


 (4)

where i ∈ {1, 2, . . ., NP}; j ∈ {1,2,. . ., N}, and CR is the
crossover control parameter chosen within [0, 1].

2.1.4. Selection. In the selection process of the classical DE,
each trial vector ui created after crossover phase will be
evaluated and compared with the target vector xi to
choose a better individual for the next generation. In the
selection process of the aeDE algorithm, the elitist se-
lection technique that was introduced by Padhye et al. [20]
is utilized instead of the basic selection in the classical DE.
In this new mechanism, NP best individuals are chosen
from the set of NP trial vectors ui and NP parent vectors xi.
In this way, the current best individual of the whole
population is always stored for the next generation, but
with better convergence rate in comparison with the
classical DE.

2.2. SQSD Algorithm. +e SQSD algorithm is briefly sum-
marized through the pseudocode as follows (Algorithm 1).

In above algorithm, the step limit d and the test of
whether ‖xk −xk−1‖>d or not are used to control the step
size between xk−1 and xk in iterations. Generally, a small step
size can avoid oscillations and guarantee the algorithm
convergence but leads to slow convergence.

2.3. �e Proposed Algorithm. As mentioned earlier, both
aeDE and SQSD have their own advantages and

disadvantages; therefore, we propose a hybrid approach for
aeDE, called HaeDE, to create resonance between their
advantages and avoid their disadvantages. +e proposed
algorithm is presented by following pseudocode (Algo-
rithm 2) and Figure 1.

In above algorithm, NP is the population size. In case of
low dimensions, according to [17], when NP> 15, the
deviation of the optimal value is not significant but the run
time is significantly proportional to NP. In case of very high
dimensions, a popular method is to adapt NP according to
the dimensions N. +ere already exists some proposals as
NP � 10N or NP � 10N [1, 21–23], but most of them have
problems with premature convergence and high compu-
tational cost. Some studies deal with these problems by
separating NP individuals into islands for reducing the
computational cost [24, 25]. Another approach is to use a
low NP with center-based initialization which is mathe-
matically proved that it can increase the probability of
finding the global optimum, especially when N > 30
[21, 26]. In this paper, because most of functions have
N < 30, the approach of [17] is applied. +erefore, we
choose NP� 20 to balance the computational cost and the
quality of the solution. For the scale factor F, in general, a
small value of F cannot explore the search space effectively
and, as a result, cannot reach the optimal solution on the
completion of the algorithm. In contrast, using a high value
of F results in the occasional movement; hence, the al-
gorithm has a weak exploitation behavior for reaching the
global optimum in the later steps. For CR, the trial vector
tends to be the same with the mutant vector when CR⟶ 1
and the same with the target vector when CR⟶ 0. Al-
though the original version of DE uses fixed values of CR
and F, it can be obviously claimed that proper choices of F
and CR depend not only on the problem but also on the
stage of the optimization process; hence, they must vary
over time. +e varied control parameters F and CR have
demonstrated their successful performance in solving a
variety of large-scale multivariate problems [17, 27–30].
Based on the above discussions and for the sake of com-
parison with the aeDE, in this paper, at each iteration, the
values of scale factor F and crossover control parameter CR
are recorded as specified in the aeDE [17]. In particular, we
generate the F and CR values under uniform distributions
on [0.4,1.0] and [0.7,1.0], respectively. +e threshold, εm, is
chosen based on the tolerance εa and must be greater than
the tolerance. It has effects on the aeDE solutions as well as
the initial solution of SQSD. +e larger threshold is, the
faster convergence and less number of function evaluations
the aeDE has and vice versa. Normally, εa � 10−6 is chosen;
however, in the proposed method, the aeDE needs to stop
when εa > 10−6 for utilizing SQSD in later steps. +erefore,
we set εa � 10−5 and εm � 10−2 in the numerical examples.
For the SQSD, there are three parameters needing to be set
up: the convergence tolerances εg, εx, and the step limit d.
As mentioned earlier, the step limit d is used to keep the
step size smaller than d. If d is too small, the algorithm will
slowly converge, particularly for high dimensions. In
contrast, a too large value of d may result in excessive
oscillations occurring before convergence, particularly for
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INPUT: f(x) and its domain [a, b], convergence criteria εg, εx and step limit d> 0
Initialize a starting point x0, randomly
Compute ∇f(x0), c0 ≔ ‖∇f(x0)/d‖, k :�1
REPEAT

xk ≔ xk−1 − (∇f(xk−1)/ck−1)
IF ‖xk −xk−1‖>d

xk ≔ xk−1 −d(∇f(xk−1)/‖∇f(xk−1)‖)
ENDIF

IF ‖xk −xk−1‖< εx
x∗ � xc � xk

Stop the algorithm
ENDIF

Set ck ≔ (2[f(xk−1)−f(xk)−∇Τf(xk)(xk−1 −xk)]/‖xk− 1 −xk‖2)
IF ck < 0

ck � 10−60

ENDIF

k:� k+ 1
UNTIL ‖∇f(xk−1)‖< εg
x∗ � xc � xk−1

OUTPUT: x∗ and f(x∗)

ALGORITHM 1: Given the function f(x) and its domain [a, b] , this algorithm finds the x∗ ∈ [a, b] such that f(x∗) � minx∈[a,b]f(x).

INPUT: f(x) and its domain [a, b]; convergence criteria εm, εa (εm > εa),εg, εx, population size NP, scale factor F, crossover
control parameter CR, and step limit d
Use Formula (1) to generate an initial population of NP individuals
Compute delta � |fmean −fbest|

WHILE delta> εm
Run the aeDE using mutation operator “rand/1” (formula (2)), binomial crossover operator (formula (4)) and elitist selection
technique
Compute delta � |fmean −fbest|

ENDWHILE

WHILE delta> εa
Run the aeDE using mutation operator “current to best/1” (formula (3)), binomial crossover operator (Formula (4)) and
elitist selection technique
Compute delta � |fmean −fbest|

ENDWHILE

Initialize a starting point x0 � xbest
Run SQSD algorithm using convergences criteria εg and εx, step limit d> 0
OUTPUT: x∗ and f(x∗)

ALGORITHM 2: Given the function f(x) and its domain [a, b], this algorithm finds the x∗ ∈ [a, b] such that f(x∗) � min
x∈[a,b]

f(x).

Yes

No

Run aeDE with “rand/1”

delta > εm

Generate an initial population 

Input

Compute delta

delta > εα

Yes
Run aeDE with

“current to 

best/1”

No

Run SQSD Output

Figure 1: Flow chart of the HaeDE.
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low dimensions. +erefore, in case of two dimensions, a
relatively small value, for instance, d � 0.3, is required to be
used. In case of high dimensions, the step limit d hinges on
the number of function dimensions. Specifically, in case of
quadratic functions, no step limit d is required because it is
proved that the SQSD algorithm (without step size control)
is always convergent when it is applied to the general
quadratic function. +is characteristic is very useful for
optimizing a variety quadratic function problems, with
very high dimensions, for instance, N � 5000, as presented
in [18]. In this paper, because the number of dimensions is
varied from 2 to 30, the step limit d should hinge on the
number of dimensions. Furthermore, in the case of HaeDE,
to ensure the exploitation in the later steps, the variation
between xk−1 and xk through iterations needs to be smaller
than the aeDE variants. Hence, we choose the step limit
d � (‖xbest −xworst‖/100)

�
n

√
, where xbest and xworst are the

best and the worst individual in the latest step of aeDE and
n is the number of dimensions of function, respectively. For
the convergence tolerances, εg � 10−6 and εx � 10−8 are
applied.

3. Experiments on Benchmark Functions

+is section presents two examples to illustrate and test the
performance of the proposed method. Particularly, the
first example describes the details of the proposed method
when dealing with a well-known function, Bohachevsky1.
+e purpose of this experiment with a simple bivariate
function is to analyze the proposed method behavior. As a
result, we can illustrate how the new method works and
why it is better than aeDE. In the second example, the
performance of the proposed HaeDE algorithm is evalu-
ated on 32 benchmark functions. +ose functions are in
50 functions firstly performed by [31] and were often
utilized later in order to compare the performance be-
tween optimization algorithms [1, 32]. Because gradient-
based method can deal with unimodal functions that
have only one optimal value, it is unnecessary to utilize the
population-based algorithm to solve those functions.
+erefore, in current research, the HaeDE performance is
compared to those of the aeDE [17], particle swarm opti-
mization (PSO) [11], Selfish Herd Optimizer (SHO) [9], Salp
Swarm Algorithm (SSA) [14], and Dragonfly algorithm (DA)
[13] using 32/50 functions that are multimodal. For each
benchmark function, all methods are run 30 independent
times with the same initial population in each time. +e
obtained results are then compared using Wilcoxon’s paired
tests. Finally, the computational cost, especially the number of
FES of all methods, is examined.

3.1. Experiment on Function Bohachevsky1. In this sub-
section, we perform experiment on function Bohachevsky1,
a simple bivariate function, to analyze the proposed
method in detail. In the first phase, we run the aeDE al-
gorithm with delta � |fmean −fbest|< 10−5 to determine the
best individual in the current population x0 which will be
the initial point for the next phase. In the second phase, two

cases are examined in which the usage of the aeDE is kept in
the first case, and the SQSD is utilized in the second case to
look for the final optimal solution. +e first case is hence
exactly the original aeDE, while the second case is named
HaeDE which is the proposed algorithm in this study. +e
performance of the aeDE and HaeDE are then measured
using the corresponding best fitness value (FBEST) and
number of function evaluations (FES). In addition, the
effect of step limit d on HaeDE performance is also ex-
amined. We need to look for the minimum of function
Bohachevsky1 whose formulation, surface, and contour are
presented as follows.

f(x) � x21 + 2x22 − 0.3 cos 3πx1( )− 0.4 cos 4πx2( ) + 0.7.

(5)
It can be seen from Figure 2 that the Bohachevsky1 is

a multimodal function which has a large number of local
solutions; as a result, gradient-based method that may
be easily trapped to local minimum is unsuitable in this case.
A more feasible strategy to solve this problem is to use
evolution-based algorithm, like aeDE algorithm, for in-
stance. As evidenced by Figure 3, aeDE (the blue line) has a
good explorative manner when the FBEST rapidly decreases
in the initial steps. However, in the later steps, when the
number of iterations is about 30 or the number of function
evaluations (FES) is about 600, the FBEST exhibits a slow
decrease if the aeDE continues to be used (the red line). +e
primary reason is that aeDE still utilizes the crossover and
mutation operators, which leads to unexpected additional
FES but cannot ensure the improvement of fitness value in
iterations. In contrast, if the SQSD algorithm is utilized in
the later steps, FBEST value can quickly decrease through
each step depending on the gradient information (the green
line). As a result, it not only makes a better result but also
saves the computational cost when taking only one FES for
each iteration.

In addition to comparing with aeDE, the convergence
behavior of HaeDE itself with different step limit parameters
is examined. It can be seen from Figure 4 that when d is not
small enough, for instance d� 10−4, the algorithm converges
after one or two iterations but FBEST is still far from the true
optimal value of 0. On the contrary, the convergence speed
of the HaeDE with a too small d, for instance d� 10−7, falls
behind others. +e proposed step limit d � (‖xbest − xworst‖/
100)

�
n

√
in this paper takes more than ten iterations to

converge, but it can help the algorithm reach the feasible
FBEST which approximates the true optimal value of 0.
Moreover, the proposed step limit in this paper can adapt to
many cases of problems using different number of di-
mensions and can adapt to the quality of the last population
in aeDE.

3.2. Experiment on 32 Benchmark Functions. In this sub-
section, we compare the performance of the proposed
method with those of five well-known algorithms consisting
of the aeDE, PSO, SHO, SSA, and DA over 32 benchmark
functions. +e control parameter settings for the HaeDE are
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chosen as mentioned in Section 2. For other methods, we set
the parameters as follows:

(i) aeDE: the population size NP� 20, the stop criterion
Δ � 10−6, the maximum number of iterations
maxiter� 5000, the mutant factor F ∈ [0.4, 1], the
crossover control parameter CR ∈ [0.7, 1], and the
threshold ε � 10−2.

(ii) PSO: the population size NP � 20, the stop criterion
Δ � 10−6, the maximum number of iterations
maxiter � 5000, the initial velocity of particles is
v ∈ [0, (Ub − Lb/7)]where Ub and Lb are the upper

and lower bounds of solutions; acceleration fac-
tors c1 and c2 are 0.5 and 1, respectively; the in-
ertia weight w � wmax − (wmax −wmin/max iter)iter
where wmax and wmin denote the maximum and
minimum values of the inertia weight; maxiter
denotes the maximum number of iterations and
iter is the current number of iterations.

(iii) SHO, SSA, DA: the population size NP � 20, the
stop criterion Δ � 10−6, the maximum number of
iterations maxiter � 5000; for detailed description
of other parameter setting, please refer to
[9, 13, 14].
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Figure 2: Surface and contour of function Bohachevsky1.
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Figure 3: ¢e convergence behavior of aeDE and HaeDE.
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For each benchmark function, we run HaeDE, aeDE,
PSO, SHO, SSA, and DA 30 independent times. To ensure
the fairness, initial population for comparative methods is
chosen such that they are the same. To determine whether
HaeDE reaches a statistically better solution than other
methods or not, Wilcoxon’s paired tests are examined.
During the test, if the optimal value is below 10−9, a very
small positive number, it will be considered as zero. ¢e
benchmark functions and their characteristics are summa-
rized in Table 1. ¢e descriptive statistics of the comparative
methods are presented in Table 2 where the first number is
the mean of FBEST, and the number in parentheses is the
rank of method in ascending order of FBEST. ¢rough 32
benchmark functions, it can be seen that HaeDE is the best
with the smallest total of ranks.

Although Table 2 provides a first insight into the per-
formance of the algorithms, it is more reliable if we compare
the performance by using statistical test. For this purpose,
with the null hypothesis “there is no difference between two
methods”, the obtained results are tested using Wilcoxon
signed-rank test with a statistical significance value α � 0.1.

In Table 3, “+” indicates the case in which the null
hypothesis is rejected and the HaeDE is better than the
comparative method, “−” indicates the case in which the null
hypothesis is rejected and the HaeDE is worse than the
comparative method, and “‘�” indicates the case in which we
cannot reject the null hypothesis. According to the total
count of (+/�/−) presented in the last row of Table 3, it can
be seen that the HaeDE outperforms aeDE, PSO, SHO, and
DA, and it is competitive with SSA in terms of approxi-
mating the optimal value.

Finally, we examine the convergence behaviors of the
comparative methods. Figure 5 illustrates some results for
large problems with 30 dimensions. It can be seen that the
PSO, SHO, and DA have slow convergence in general. ¢e
SSA is a competitive method with HaeDE as mentioned
earlier but easily gets stuck in a specific point and takes a

large number of FES for moving to a better individual.
According to Figure 5, while the HaeDE quickly converges
and stops, the convergence curve of SSA is nearly a straight
line or FBEST is nearly constrained for a long time. As a
result, it becomes the worst method in terms of the con-
vergence speed (see more in Figure 6). ¢e aeDE is an
improved version of DE, which utilizes the mutation op-
erator “current to best/1” and elitist selection technique to
speed up the convergence.¢erefore, it is not surprising that
the aeDE outperforms PSO, SHO, SSA, and DA and ranks
second (the red line). As explained in example 1, the HaeDE
(the green line) is again computationally inexpensive
compared to the aeDE. Figures 6 and 7 illustrate an overview
of the number of FES and total CPU time consumed by all
methods for all the benchmark functions over 30 in-
dependent runs. Clearly, in most cases, the HaeDE is the best
in terms of computational cost. ¢e results obtained from
the above experiments demonstrate the promising perfor-
mance of the proposed method when solving the optimi-
zation problems and especially when solving continuously
differentiable functions. In addition, we can estimate the
gradient numerically, for instance Euler approximation, if
the function itself is nondifferentiable. Hence, the HaeDE
can be utilized for further practical problems with discon-
tinuous, nondifferentiable, and implicit objective functions.
¢e above discussion and the research results have shown
that the HaeDE is a competitive optimization algorithm and
can be utilized in further application as the clustering
problem.

4. An Application of HaeDE for
Clustering Analysis

Clustering is a data mining technique that can partition
unknown large data into groups so that elements in each
group have the similar properties. It is the important first
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Figure 4: Convergence behavior of HaeDE with different step limit value.
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step to understand some basic information from data before
implementing deeper analysis [33–37]. +erefore, the
clustering problem has been extensively researched in many
areas such as pattern recognition, bioengineering, image
processing, renewable energy prediction, etc. [33, 38–41].

Mathematically, let X � x1, x2, ..., xN{ } be a set of N
elements given in Rn, we need to find an optimal way to
partition them into k clusters U � C1, C2, ..., Ck{ }, Ci ∩Cj �
ϕ so that the elements belonging to the same cluster are as
similar as possible, in terms of a given internal validity
measurem(U). It implies that the clustering problem can be

transformed into an optimization problem where m(U)
needs to be maximized or minimized.+e formulation of the
optimization problem for clustering in this paper is present
in Section 4.1.

4.1. �e Formulation of the Optimization Problem for
Clustering

4.1.1. Chromosome Representation. In optimization prob-
lem, each individual or each partition of clustering result is a

Table 1: +e benchmark functions and their characteristics.

No N Name Formulation

1 2 Branin f(x) � (x2 − (5.1/4π2)x21 + (5/π)x1 − 6)2 + 10(1− (1/8π))cosx1 + 10

2 2 Bohachevsky 1 f(x) � x21 + 2x22 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

3 2 Booth f(x) � (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

4 30 Rastrigin f(x) � ∑ni�1[x2i − 10 cos 100(2πxi) + 10]
5 30 Schwefel f(x) � ∑ni�1−xi sin(

���
|xi|
√

)
6 2 Michalewicz 2 f(x) � −∑ni�1sin(xi)(sin(ix2i )/π)20
7 5 Michalewicz 5 f(x) � −∑ni�1sin(xi)(sin(ix2i )/π)20
8 10 Michalewicz 10 f(x) � −∑ni�1sin(xi)(sin(ix2i )/π)20
9 2 Schaffer f(x) � 0.5 + sin2(

������
x21 + x22
√

)− 0.5/(1 + 0.001(x21 + x22))
2

10 2 Six hump camel back f(x) � 4x21 − 2.1x41 + (1/3)x61 + x1x2 − 4x22 + 4x42

11 2 Bohachevsky 2 f(x) � x21 + 2x22 − 0.3 cos(3πx1)(4πx2) + 0.3

12 2 Bohachevsky 3 f(x) � x21 + 2x22 − 0.3 cos(3πx1 + 4πx2) + 0.3

13 2 Shubert f(x) � [∑5
i�1i cos((i + 1)x1 + i)][∑5

i�1i cos((i + 1)x2 + i)]

14 2 GoldStein-Price
f(x) � [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)].[30 + (2x1 − 3x2)2(18− 32x1+

12x21 + 48x2 + 36x1x2 + 27x22)]
15 4 Kowalik f(x) � ∑11

i�1ai − ((x1(b2i + bix2))/(b2i + bix3 + x4))
16 4 Shekel 5 f(x) � −∑5

i�1∑4
j�1[(xj − aij)(xj − aij)T + ci]

17 4 Shekel 7 f(x) � −∑7
i�1∑4

j�1[(xj − aij)(xj − aij)T + ci]
18 4 Shekel 7 f(x) � −∑10

i�1∑4
j�1[(xj − aij)(xj − aij)T + ci]

19 4 Perm f(x) � ∑nk�1[∑ni�1(ik + β)((xi/i)k − 1)]2

20 4 PowerSum f(x) � ∑nk�1[(∑ni�1xki )− bk]2
21 3 Hartman 3 f(x) � −∑4

i�1ci exp[−∑3
j�1aij(xj −pij)2]

22 6 Hartman 6 f(x) � −∑4
i�1ci exp[−∑6

j�1aij(xj −pij)2]
23 30 Griewank f(x) � (1/4000)∑ni�1x2i −∏n

i�1 cos(xi/
�
i

√
) + 1

24 30 Ackley f(x) � −20 exp(−0.2
����������
(1/n)∑ni�1x2i
√

)− exp((1/n)∑ni�1cos(2πxi)) + 20 + e

25 30 Penalized
f(x) � (π/n) 10 sin2(πy1) +∑ni�1(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2{ } +∑ni�1u(xi, 10, 100, 4),

yi � 1 + (1/4)(xi + 1), u(xi, a, k,m) �
k(xi − a)m, xi > a,
0, −a≤xi ≤ a,
k(−xi − a)m, xi <−a.




26
30 Penalized 2

f(x) � 0.1 sin2(πx1) +∑n−1i�1 (xi − 1)2[1 + sin2(3πxi+1)] + (xn − 1)2[1 + sin2(2πxn)]{ }+
∑ni�1u(xi, 5, 100, 4)

27 2 Langerman 2 f(x) � −∑mi�1ci exp[−1/π∑nj�1(xj − aij)2]cos[π∑nj�1(xj − aij)2]{ }
28 5 Langerman 5 f(x) � −∑mi�1∑ ci exp[−(1/π)∑nj�1(xj − aij)2]cos[π∑nj�1(xj − aij)2]{ }
29 10 Langerman 10 f(x) � −∑mi�1ci exp[−(1/π)∑nj�1(xj − aij)2]cos[π∑nj�1(xj − aij)2]{ }
30 2 Fletcher Powell 2 f(x) � ∑ni�1[∑nj�1aij sin αj + bij cos αj − aij sin xj − bij cos xj]2

31 5 Fletcher Powell 5 f(x) � ∑ni�1[∑nj�1aij sin αj + bij cos αj − aij sin xj − bij cos xj]2

32 5 Fletcher Powell 5 f(x) � ∑ni�1[∑nj�1aij sin αj + bij cos αj − aij sin xj − bij cos xj]2
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chromosome that represents the position of cluster centers.
Because each center is a n-dimensional vector and we need
to identify k clusters or k cluster’s centers, each chromosome
is a string with total length equals kn. In particular, the
general form of each chromosome is represented by
Figure 8.

4.2. Objective Function. As mentioned before, the clustering
quality is usually evaluated via an internal validity measure
m(U) such as Intra index [42], Xie-Beni index [43], Dunn
index [44], Davis–Bouldin index [45], Silhouette coefficient
[46], etc. Here, we choose the Intra index, an internal validity
measure used in the well-known k-means, to be the objective
function.

Let U � C1, C2, ..., Ck{ }, Ci ∩Cj � ϕ where Ci stands for
the cluster i which is a partition needing to be evaluated. +e
Intra index m(U) is defined as follows.

m(U) �∑
k

i�1
∑
x∈Ck

d2 x, vk( ), (6)

where vk is the center of cluster k and d is the Euclidean
distance. From the above expression, it is seen that the value

of m(U) becomes smaller when the elements in cluster are
more similar to those in cluster center. Hence, minimizing
the Intra index is to optimize the compactness of established
clusters, which leads to a suitable partition.

After identifying the objective function and chromo-
some representation, we can utilize the HaeDE to find the
optimal partition for clustering problem.

4.3. Experiments and Results. In this subsection, the per-
formance of the HaeDE in clustering is tested using the Iris
flower dataset, a well-known benchmark dataset introduced
by Fisher [47]. +e dataset consists of 3 flower classes
(clusters) named Iris setosa, Iris virginica, and Iris versicolor,
with 150 samples and 4 independent variables representing
for the length and width of the sepals and petals. To visualize
the clustering results, only the petal length and width are
used as predictors; therefore, the clustering problem is now
the minimization problem with six variables in range [0, 1]
and the objective function is the Intra index mentioned
earlier. In this case, parameters setting is similar to Section 3
for all methods. Because we have the reference of the actual
classes of data, the final clustering results of the HaeDE are
compared with those of aeDE, PSO, SHO, SSA, and DA

Table 2: +e descriptive statistics.

No Min
FBEST mean (rank)

HaeDE aeDE PSO SHO SSA DA

1 0.398 0.3979 (4) 0.3979 (5) 0.3979 (1) 0.3979 (2) 0.3979 (3) 0.3979 (6)
2 0 0 (1) 0 (3) 0.0413 (6) 0.0138 (5) 0 (2) 0.0014 (4)
3 0 0 (4) 0 (5) 0 (1) 0 (3) 0 (2) 0 (6)
4 0 20.1717 (1) 20.6465 (2) 183.3748 (6) 55.2204 (3) 72.7645 (4) 149.0701 (5)
5 −12569.5 −12027.9391 (1) −11886.7727 (2) −6470.1728 (5) −10658.3841 (3) −7816.4553 (4) −5825.5215 (6)
6 −1.8013 −1.8013 (2) −1.8013 (4) −1.8013 (1) −1.7817 (6) −1.8013 (3) −1.8013 (5)
7 −4.6877 −4.6527 (1) −4.6486 (2) −4.5941 (3) −4.1299 (5) −4.3921 (4) −3.854 (6)
8 −9.6602 −9.4678 (2) −9.4813 (1) −7.6207 (5) −7.8455 (3) −7.7399 (4) −6.1953 (6)
9 0 0.0058 (3) 0.0068 (4) 0.0103 (6) 0.01 (5) 0 (1) 0.0016 (2)
10 −1.03163 −1.0316 (4) −1.0316 (5) −1.0316 (1) −1.0316 (2) −1.0316 (3) −1.0316 (6)
11 0 0 (1) 0 (3) 0.0218 (6) 0.0146 (5) 0 (2) 0.002 (4)
12 0 0 (3) 0 (4) 0 (1) 0.0151 (6) 0 (2) 0.0018 (5)
13 −186.73 −186.7309 (2) −186.7309 (4) −186.7309 (1) −184.6258 (6) −186.7309 (3) −186.7289 (5)
14 3 3 (3) 3 (4) 3 (1) 5.7 (6) 3 (2) 3 (5)
15 0.00031 0.0013 (4) 0.0006 (2) 0.0005 (1) 0.0042 (5) 0.0008 (3) 0.0042 (6)
16 −10.15 −8.3881 (4) −8.8613 (3) −7.4454 (5) −6.6581 (6) −9.4795 (1) −9.296 (2)
17 −10.4 −9.5579 (2) −9.4621 (3) −7.8864 (4) −5.8977 (6) −10.0486 (1) −7.7742 (5)
18 −10.53 −9.7993 (2) −9.9541 (1) −8.5676 (4) −5.3894 (6) −9.2793 (3) −6.8984 (5)
19 0 0.1427 (4) 0.0989 (3) 0.8412 (6) 0.0497 (2) 0.0251 (1) 0.4327 (5)
20 0 0.0056 (3) 0.0066 (4) 0.0168 (6) 0.0004 (2) 0.0002 (1) 0.0107 (5)
21 −3.86 −3.8628 (5) −3.8628 (4) −3.8628 (1) −3.8628 (3) −3.8628 (2) −3.8623 (6)
22 −3.32 −3.2747 (2) −3.2866 (1) −3.238 (6) −3.2745 (3) −3.2429 (5) −3.2719 (4)
23 0 0.079 (3) 0.1389 (4) 33.4143 (6) 0.0135 (1) 0.0146 (2) 3.5681 (5)
24 0 1.1253 (1) 1.2893 (2) 12.1837 (6) 2.888 (4) 2.1901 (3) 5.6063 (5)
25 0 0.2291 (2) 0.0915 (1) 57.75 (6) 3.1098 (3) 21.3042 (4) 41.9515 (5)
26 0 0.0492 (3) 0.0591 (4) 163.2041 (6) 0.0003 (1) 0.0034 (2) 20.0337 (5)
27 −1.08 −1.0764 (3) −1.0764 (4) −1.0809 (1) −1.0629 (5) −1.0809 (2) −1.0272 (6)
28 −1.5 −1.4175 (2) −1.4212 (1) −0.9667 (4) −0.7674 (5) −1.3188 (3) −0.5915 (6)
29 −0.2872 (3) −0.3065 (2) −0.1523 (5) −0.26 (4) −0.3763 (1) −0.0818 (6)
30 0 0 (2) 0 (4) 0 (1) 94.0393 (6) 0 (3) 0.0004 (5)
31 0 14.7267 (2) 83.2492 (3) 1.3738 (1) 395.239 (5) 189.9685 (4) 637.8159 (6)
32 0 356.7752 (1) 1168.6692 (2) 7531.9408 (5) 1495.7068 (3) 3859.5778 (4) 9598.2252 (6)
Sum of ranks 80 96 118 130 84 164
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using the total accuracy and the Adjusted rand index (ARI)
[48] where “0” indicates that the clustering results are not
fitted with the actual data classes and “1” indicates that the
clustering results and the actual classes are exactly the same.
+e distribution of Iris dataset, the actual classes, and the
clustering results for the comparative methods are presented
in Figure 9 and Table 4.

As can be seen from Figure 9 and Table 4, the actual Class
1 is sufficiently well separated from the other two clusters
which are strongly and significantly overlapping. In this case,
the SHO obtains a quite good solution when it can separate
actual Class 1 to others but cannot separate the remaining
two clusters. As a result, it ranks second in terms of ARI,
with ARI� 0.5149. For the aeDE, it can well recognize Class
3, but incorrectly assigns most of the Class 1 elements to
Class 2.+is method ranks second in terms of accuracy, with
66.67%. +e best clustering result is given by the HaeDE
when actual Class 1 is properly grouped. Although there are
some misclustering elements in case of actual Class 2 and
actual Class 3 due to their high overlapped degree, the
HaeDE is still the best with ARI� 0.8857 and accuracy is
about 96%. +e other methods make poor performance in
this case with ARI< 0.5. In terms of computational cost, it

can be observed that the HaeDE is also the best when it takes
only 641 FES for convergence. +e aeDE ranks second when
taking 880 FES and the others are worse than both aeDE and
HaeDE when taking from 30000 to 100000 FES for con-
vergence. All of above experiments and analyses demon-
strate the superiority of HaeDE over the comparative
methods in solving the clustering problems.

5. The Drawbacks and Future
Research Direction

Although the proposed method possesses some advantages
in terms of finding the global optimum and reducing
computational cost, some disadvantages can be indicated as
follows:

(i) Using the proposed method for solving unimodal
functions is not efficient but causes large compu-
tational costs in comparison with gradient-based
methods.

(ii) A parallel version of the proposed method is out of
scope of this article. Parallelism is a feasible method
to reduce the high computational cost by dividing

Table 3: Wilcoxon signed-rank test results.

Function
HaeDE vs aeDE HaeDE vs PSO HaeDE vs SHO HaeDE vs SSA HaeDE vs DA

p value Winner p value Winner p value Winner p value Winner p value Winner

1 0.000 + 0.000 − 0.000 − 0.000 − 0.000 +
2 1.000 � 0.083 + 0.317 � 1.000 � 0.008 +
3 1.000 � 1.000 � 1.000 � 1.000 � 0.180 +
4 0.877 � 0.000 + 0.000 + 0.000 + 0.000 +
5 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
6 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
7 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
8 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
9 0.949 � 0.296 � 0.246 � 0.000 − 0.001 −
10 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
11 1.000 � 0.083 + 0.180 � 1.000 � 0.018 +
12 1.000 � 1.000 � 0.180 � 1.000 � 0.012 +
13 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
14 0.000 + 0.000 − 0.018 − 0.959 � 0.000 +
15 0.102 � 0.003 − 0.004 + 0.478 � 0.000 +
16 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
17 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
18 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
19 0.237 � 0.015 + 0.006 − 0.000 − 0.289 �
20 0.810 � 0.040 + 0.001 − 0.005 − 0.047 +
21 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
22 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
23 0.159 � 0.000 + 0.000 − 0.000 − 0.000 +
24 0.629 � 0.000 + 0.000 + 0.000 + 0.000 +
25 0.318 � 0.000 + 0.581 � 0.000 + 0.000 +
26 0.000 + 0.000 + 0.073 + 0.225 � 0.000 +
27 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
28 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
29 1.000 � 1.000 � 1.000 � 1.000 � 1.000 �
30 1.000 � 1.000 � 0.046 + 1.000 � 0.001 +
31 0.198 � 0.701 � 0.001 + 0.002 + 0.000 +
32 0.057 + 0.000 + 0.001 + 0.000 + 0.000 +
+/�/− 4/28/0 10/19/3 7/20/5 5/22/5 16/15/1
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Figure 5: Convergence behaviors of comparative methods. (a) Schwefel, (b) Griewank, (c) Penalized, (d) Ackley, (e) Penalized 2.
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the computational cost between multiple pro-
cessors. +eoretically, in case that the network is
homogeneous, we can predict the speedup by the
number of processors (the efficiency� 1). However,
the actual speedup obtained may be less than the
number of available processors because the actual
computer network is often a heterogeneous envi-
ronment. In addition, for the proposed method,
only the first stage, which is the aeDE, can typically
be parallelized at all. After the first stage, the SQSD

must be run sequentially. Certainly, enhancing the
proposed method with parallel programming is an
interesting future research direction for a wide
range of researchers.

(iii) Another drawback of the paper is that the appli-
cation of the proposed method to the clustering still
requires a given number of clusters. In future, an-
other encoding method can be proposed to apply
the HaeDE to the clustering problem with unknown
number of clusters.
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Figure 9:¢e clustering results. (a) HaeDE, FES� 641, ARI� 0.8857; (b) aeDE, FES� 880, ARI� 0.4124; (c) PSO, FES� 31420, ARI� 0.4730;
(d) SHO, FES� 100000, ARI� 0.5149; (e) SSA, FES� 91220, ARI� 0.3775; (f ) DA, FES� 50700, ARI� 0.4347.
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6. Conclusion

In this paper, an efficient hybrid optimization approach
based on adaptive elitist Differential Evolution and Spherical
Quadratic Steepest Descent was proposed and then applied
for clustering problem. +e new method benefits from the
aeDE’s global explorative manner in the initial steps and
from the SQSD’s locally effective exploitative manner in the
later steps to improve the aeDE performance and reduce the
computational cost significantly. +e behavior of HaeDE is
examined by a simple function, and its performance is
evaluated on a set of 32 benchmark functions as well as an
application in clustering problem. In summary, the HaeDE
can be considered as a competitive optimization algorithm
and can be utilized effectively in clustering and other ap-
plications in future. In addition to the mentioned advan-
tages, the proposed method has a few disadvantages, e.g., it
wastes the computational resource in case of unimodal
functions, a parallel processing strategy for the proposed
method is not considered, and the application of the pro-
posed method to the clustering still requires a given number
of clusters. +ey are also interesting future research di-
rections for a wide range of researchers.
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