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A hypothetical reasoning system & an important frame- 
work in the development of advanced knowledge-based 
systems. It can be effectively applied to many practical 
problems including model-based diagnosis, and designs. 
However, the inference speed of its PROLOG-based imple- 
mentation is slow, and this is particularly because of  inef- 
ficient backtracking. In order to overcome this problem, a 
fast hypothetical reasoning mechanism for propositional- 
logic knowledge has been developed by combining the 
advantages of forward and backward reasoning styles. 
This fast mechanism, however, cannot be applied to 
hypothetical reasoning with predicate-logic knowledge 
where variables are included as arguments. The paper 
presents a fast hypothetical reasoning mechanism for pre- 
dicate-logic knowledge as an extension of the above idea. A 
reasoning method developed in the deductive database area 
is effectively utilized to realize this fast mechanism, which 
can even manipulate recursive rules. 
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Knowledge is often incomplete; that is, it often involves 
exception or contradiction. The handling of incomplete 
knowledge in the knowledge-base is an important func- 
tion in expanding the capability of current knowledge 
bases [1]. Hypothetical reasoning can handle such incom- 
plete knowledge as hypotheses [2,3]. It can be directly 
applied to model-based diagnosis systems [2;3], design 
systems [4] etc. Thus the hypothetical reasoning system is 
an important framework for a next-generation know- 
ledge-based system both from the theoretical and the 
practical viewpoints. The most crucial problem in 
hypothetical reasoning is its slow inference speed due to 
its non-monotonic reasoning nature. 

One practical way to overcome this problem is to 
incorporate heuristic knowledge which serves to navigate 
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inference paths. However, this causes a knowledge acqui- 
sition bottleneck, because it is difficult to collect all the 
necessary heuristic knowledge to cover all the areas of a 
given problem domain. Therefore, it is necessary to find 
a fast hypothetical reasoning method working under 
declarative knowledge. 

We have developed two fast hypothetical reasoning 
systems for a propositional-logic knowledge base. The 
first one is based on the formation of an inference-path 
network for a given goal [6]; the second one adopts a 
parallel inference on a hypothetical-lattice structure [8]. 
In order to improve efficiency, both of them avoid inef- 
ficient backtracking caused by inconsistency among 
hypotheses. Parallel inference methods similar to 
ATMSs [5] are employed for this purpose. 

In general, variables play an important role in expand- 
ing the scope of the knowledge representation capability. 
If we represent knowledge in propositional logic with no 
variables, the scale of the knowledge base becomes too 
large for many practical cases. Using the variables in 
predicate logic representation, we can express necessary 
knowledge in a compact form. Thus it is required to 
develop a fast hypothetical reasoning system capable of 
working for predicate-logic knowledge with variables. 

The methods of the above fast hypothetical reasoning 
systems developed for propositional logic, however, can- 
not be applied in a straightforward manner to the predi- 
cate-logic case. In this paper we present a fast hypotheti- 
cal reasoning mechanism that is effective for predicate- 
logic knowledge (actually for function-free predicate 
Horn-clause knowledge). A reasoning method developed 
in the deductive database area is effectively applied to 
this mechanism. 

L O G I C - B A S E D  H Y P O T H E T I C A L  
R E A S O N I N G  SYSTEM 
Our hypothetical reasoning is based on a logic frame- 
work first presented in Theorist [2], where knowledge is 
divided into fact (complete knowledge) and hypothesis 
(incomplete knowledge). It can deal with incomplete 
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Figure 1. Logic-based hypothetical reasoning system 

knowledge as hypothesis, which is defeasible knowledge 
having the possibility of contradiction with other know- 
ledge. The basic behaviour of this hypothetical reasoning 
is as follows: if a given goal cannot be proved with only 
complete knowledge, the system adopts a consistent set 
of the hypotheses for proving the goal. 

This selected hypothesis set, which we call 'a solution 
hypothesis set', becomes an answer, that is, it may be a 
fault in a diagnosis problem or a combination of possible 
design components in a design problem. While the 
deductive inference mechanism is used to prove the given 
goal, it can be said that a reverse deductive inference 
mechanism is utilized to search the solution hypothesis 
set. Because of this generating function of the consistent 
solution hypotheses set, the system has the practical 
importance of being applicable to many problems, such 
as diagnoses [2,3] and design [4]. Furthermore, it 
becomes a framework of abduction. 

Figure 1 shows the basic structure of the hypothetical 
reasoning. The knowledge base consists of two parts. 
One is a set of complete knowledge CK (which is always 
true in the world); the other is a set of hypotheses or 
incomplete knowledge IK (which is not always true in the 
world and sometimes contradicts other knowledge). Let 
G be a given goal, and h be a subset of IK. Then the basic 
function of the system can be written as that of finding a 
solution hypothesis set h satisfying the following three 
logical equations: 

h ~ _ I K  

(h is a subset of IK), 

CK U h~-G 

(G can be proved from CK and h), 

CK U hVE3 

CK 

Ca :- b,c. d :- h,i. 
b : -d .  e : - i .  
b : -e .  f : - j .  
b : - f .  f : -k .  
c :- f,g. j :- I,m. 
inconsistent : - i , g .  
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Figure 2. Example of inefficiency of PROLOG-based 
hypothetical reasoning 

(CK and h are consistent). It is desirable in general that 
the solution hypothesis set h is a minimal one; that is, 
there is no solution hypothesis set h' such that h' c h and 
h' satisfies the above three logical equations. 

INEFFICIENCY OF S I M P L E  
I M P L E M E N T A T I O N  U T I L I Z I N G  P R O L O G  
INFERENCE M E C H A N I S M  

A hypothetical reasoning system can be easily imple- 
mented utilizing the inference mechanism of PROLOG. In 
this case, a necessary set of hypotheses is generated along 
the depth-first inference path. This generated hypothesis 
set is then subjected to a consistency check. If a contra- 
diction is found, a part of the generated hypothesis set is 
discarded and another hypothesis is generated in accord- 
ance with the backtracking mechanism of PROLOG. 
When the inference succeeds, the generated consistent 
hypothesis set becomes a solution hypothesis set. 

However, this simple implementation using the PRO- 
LOG inference mechanism is not efficient, as described 
below. Figure 2 exemplifies this inefficient inference 
behavior. 

• Search for non-promising branches: This is the case 
where a branch has a false node on the inference path. 
Since the node of this branch has no possibility of 
being true, it is useless to search this branch. For 
example, in Figure 2, the node j is always false 
because its child node m is false. Thus a search of the 
node j branch will be in vain. 

• Plural searches for the same branch: This is a general 
problem with PROLOG'S backtracking. After changing 
a hypothesis upon backtracking, no information 
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remains about the backtracked branch. If the same 
branch appears again, then it may be searched again. 
For example, in Figure 2, at node b, the child node dis 
first selected. At the search stage before node g, the 
candidate for the solution hypotheses set is [h, i, k]. 
Adding the hypothesis g, backtracking is invoked 
owing to the inconsistency between i and g. At this 
time the information about the node f branch is lost. 
Therefore, after searching the next child node e of the 
node b, the node f branch is searched again. In 
hypothetical reasoning, backtracking occurs more 
often than in the usual inference cases because of the 
possibility of inconsistent hypotheses. Hence this inef- 
ficiency is very serious in hypothetical reasoning. 

• Plural searches for the same sub-tree: There may be 
more than two identical sub-trees on the inference 
tree. Since these sub-trees cannot be identified, they 
are searched respectively. For example, in Figure 2, 
there are two nodes f on the inference tree. In the 
inference process, these nodes f are searched. This is 
also a general problem of PROLOG-based backward 
inference. 

• Search for redundant solutions: An obtained solution 
may not be a minimal one, i.e. it may be a redundant 
solution. Since the PROLOG inference mechanism 
retains just one solution at a time, it is impossible to 
know whether or not the solution is minimal. For 
example, in Figure 2, the solution hypothesis set at the 
node d is [h, i] and that of the node e is [i]. As [h, i] is 
redundant to [i], the search for the node d should be 
avoided. 

We describe in the following section the fast hypothetical 
reasoning systems that we have developed for proposit- 
ional-logic knowledge in order to solve these problems. 

FAST H Y P O T H E T I C A L  R E A S O N I N G  F O R  
P R O P O S I T I O N A L - L O G I C  K N O W L E D G E  

There are two main inference methods, i.e. backward 
(top-down) inference and forward (bottom-up) infer- 
ence. The backward inference, as in PROLOG, has the 
advantage of searching only goal-related nodes, and the 
disadvantage of searching the same node more than 
twice. Especially in hypothetical reasoning, this disad- 
vantage is very serious, because backtracking is invoked 
frequently owing to the inconsistency between hypoth- 
eses, as described in the previous section. 

On the other hand, the forward inference, which is 
suitable for searching all the solutions, has the advantage 
of not searching the same node twice, and the disadvan- 
tage of searching the nodes that are not related to the 
given goal. In the ATMS [5], which is usually used in 
combination with a forward production system, an 
efficient parallel forward inference is realized by main- 
taining multiple consistent hypothesis sets (environ- 
ments). The control leading to a goal-directed inference 
path depends on heuristic rules written by a user in the 
ATMS. In our logic-based hypothetical reasoning, we 
cannot rely on this type of heuristic knowledge. 

The problems described in the previous section can be 
solved by combining the advantages of backward and 
forward reasoning. 

The first problem is due to the depth-first search 
mechanism of PROLOG. Even if a false node exists in the 
right space of an AND branch, it cannot be recognized 

before the search. Since synthetizing hypotheses is very 
expensive in hypothetical reasoning, it is important to 
prune non-promising branches (branches involving false 
nodes) before the hypothesis synthesis. This problem can 
be solved by forming a compiled inference path (back- 
ward inference process) before synthetizing the hypoth- 
eses (forward inference process). 

The second problem is due to the fact that the 
PROLOG-based version holds a single environment. This 
problem can be solved by using a parallel forward infer- 
ence with a multiple environment to avoid the backtrack- 
ing caused by inconsistency between hypotheses. 

The third problem can be solved by merging the identi- 
cal nodes into one to form a compiled inference-path 
network. 

The fourth problem can be solved by holding multiple 
environments at each node, and deleting redundant 
(non-minimal) hypothesis sets. 

Considering these points, we have so far developed the 
following two fast hypothetical reasoning systems for 
propositional-logic knowledge. 

Fast hypothetical reasoning using inference-path 
network 
In this method [6], a goal-directed initial inference-path 
network is first formed by connecting related knowledge. 
Identical nodes are merged into one. By propagating 
truth or false values from leaf complete knowledge 
nodes, inference paths known to be always-true or 
always-false regardless of the hypotheses are deleted. As 
a result, an inference-path network can be formed for the 
given goal. We call this process the 'inference-path for- 
mation phase'. The first and third problems can be 
solved in this phase. This inference-path formation phase 
is very efficient since it is based on a linear-time algor- 
ithm for testing the satisfiability of the propositional 
Horn formulae by Dowling and Gallier [7], Next, 
hypotheses are synthetized in 'a forward inference man- 
ner along this inference-path network. We call this pro- 
cess the 'hypothesis synthesis phase'. Since the hypoth- 
eses are synthetized with holding multiple combinations 
(environments), as in the ATMS [5], the second and 
fourth problems are solved. Figure 3 shows a formed 
inference-path network for the same knowledge base as 
is described in Figure 2. 

Parallel inference utilizing hypotheses-lattice 
structure 
In this method [8], a given goal is first unfolded using 
only complete knowledge into a number of sub-goals. 
Since always-true and always-false nodes, for which 
truth values are determined regardless of the hypotheses, 
disappear during this process, the first problem is solved. 
Next, supporting hypotheses for each sub-goal are 
mapped onto a hypotheses lattice. Since minimal 
hypothesis sets can be easily found on the lattice, the 
fourth problem is solved. Finally, these hypotheses on 
the lattices are synthetized into solution hypothesis sets. 
Since there is no backtracking, the second problem is 
solved. This method does not compile knowledge into a 
network structure; the third problem is not solved. 

These two hypothetical reasoning systems greatly 
improved the inference speed for propositional-logic 
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Figure 3. Example of efficient hypothetical reasoning uti- 
lizing inference-path network 

knowledge. In particular, the first system achieved an 
inference speed that was thousands of times faster than 
that of the system implemented utilizing the inference 
mechanism of PROLOG. 

EXTENSION TO P R E D I C A T E - L O G I C  
KNOWLEDGE 

In this section, we consider the application of these fast 
hypothetical reasoning mechanisms to the predicate- 
logic case. They cannot, however, be applied easily 
owing to the unification among the nodes. 

First, we consider an extension of the first method, 
using the inference-path network [6]. Figure 4 shows an 
example of the initial inference-path network for the 
predicate-logic knowledge base. In Figure 4, different 
variable names are assigned to the same node since the 
variable of each rule is independent. Rule recursion is 
included in this example. 

If a goal is g 1 (a), the instantiation X to a is propagated 
along this initial network; then a contradiction occurs 
because of different instantiations X to a and b (X/a and 
X/b through X/XI/X3/a, X4/X1/b). This is because gl(a) 
and g l(b) are expressed as the same node g l(X), although 
these nodes should be different nodes. In general, the 
truth value of the node cannot be determined before the 
node is instantiated. Therefore, in order to form the 
inference-path network for predicate-logic knowledge, 
knowledge has to be expanded in the Herbrand universe. 
However, the size of network in this case will become too 
large for practical use. 

CK IK G 
~gl(X) : - g2(X). ] ["hl(a). ] ~  
gl(X) :- hl(X). ] ]hl(b). ] 
g2(X) :- h2(X,Y),gl(Y). /|h2(a,b). I 

inconsistent :- h2(X,Y),h2(Y,Z)J [h2(b,c).J 

(gl (X))  .............................. 
X/X1. ................. X/X2 

@1 ' 

I 
 2(Xl)) 

Xl/X3 i 
@2(X3)) 

( h 2 ( X 3 ~ X 4 ) ) x 4 . / .  x . . . . . . . . . . . . . . . . . . . . .  

X3/a,X4!b.. ....................... X3/b,X4/c 
........................... , ~ ................... .................................. 2".'~ . . . . . . . . . . . . . . . . . . .  

Figure 4. Example of initial network for predicate-logic 
knowledge base 

Thus we consider an extension of the second method, 
i.e. parallel inference utilizing a hypothetical-lattice 
structure [8]. However, the unfolding method in the pro- 
positional-logic case cannot be applied to the predicate- 
logic case for the following reasons 

Cases where unfolding is inefficient without 
hypotheses 

Since the variables of the nodes may remain as they are 
unless hypotheses are adopted, unnecessary branches not 
related to the goal may be searched. Figure 5, for exam- 
ple, shows this type of inefficiency with respect to the 
application of the unfolding method. Since the node 
g3(X1, X) would be instantiated to g3(a, b) with the 
adoption of the hypotheses hl(a) and h2(b), the system 
needs to prove only the node g3(a, b) for this node g3(Xl, 
X) in this case. However, as the variables X and X1 of the 
node g3(Xl, X) cannot be determined without adopting 
hypotheses, the system goes on to prove the node g3(Xl, 
X). This search is inefficient. In this example, the unfold- 
ing method without the adoption of hypotheses searches 
hypotheses h3(a), h3(b), h4(a) and h4(b), although only 
h4(a) needs to be searched. 

Cases where unfolding is impossible without 
hypotheses 

Without determining the variables of the nodes, the 
unfolding may become impossible, especially when some 
rules are recursive. A recursive rule should be excluded in 
propositional logic because the inference does not termi- 
nate. However, in the predicate-logic case, the inference 
terminates even with recursive rules after the instantia- 
tion of the variables. Thus it is natural to permit recur- 
sive rules in a predicate-logic knowledge base. Figure 6 
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gl (X) :- hl (X), g2 (X). 
g2 (X) :- h2 (Xl), g3 (Xl ,X). 
g3 (a,X) :- h3 (X). 
g3 (b,X) :- h4 (X). 
inconsistent :- h2 (X), h3 (X). 

IK G 

l 
'hl (a).l ~ -  ~ 
h2 (b)./ 
h3 (a). I 
h3 (b). I 
h4 (a). I 
h4 (b).J 

Figure 5. Example in which unfolding is inefficient without 
adoption of  hypotheses 

CK 

g (X,X) :- hl (X). 
(X,Y) :- h2 (X,Z), g (Z,Y). 

inconsistent :- hl (X), hl (Y) 
Xd=Y. 

IK G 
hl (a). " l ~  
hl (b). / 
h2 (a,b).J 

Cg(a, x) 

.......... i i 
, t TS°  . . . . . . . . . .  i . . . . . . . . . . . . . . . .  

::~ii!~ii~i~:~l!!'~ :.L :iiii~ijii~::~"~:~:~:::~ ~. : : i : !~.  ~:~:. ~i : . ~  

Figure 6. Example in which unfolding is impossible with- 
out adoption of  hypotheses 

shows an example where the unfolding is impossible 
unless hypotheses are adopted. The goal could be proved 
even in this example if all the variables of the nodes were 
determined by adopting hypotheses. 

Consequently, it becomes necessary in the case of pre- 
dicate logic to determine the variables of the node by 

< g(X) ,  - -  > 

Reasoner I 

< g(a),  [hl  ,h3] > 
< g(b), [h2] > 

Initial Node 

Settled Node 
• true node 
• false node 

node where all 
the supporting 
hypothesis sets 
are determined 

Figure 7. Function of KICK-HOPE reasoner 

adopting hypotheses, and to propagate this unification 
information among the nodes under search. Considering 
the above issues, we have developed a fast hypothetical 
reasoning system called KICK-HOPE (Knowledge-Base 
Handling Incomplete Knowledge - -  by Holding Parallel 
Solution on Environment Lattice) which is applicable to 
function-free predicate-logic Horn-clause knowledge. 
The inference mechanism of KICK-HOPE corresponds 
to that of the QSQR method [9, 10] in deductive database 
technology, but KICK-HOPE can also manipulate 
hypotheses (defeasible knowledge). 

KICK-HOPE:  A FAST H Y P O T H E T I C A L  
R E A S O N I N G  S Y S T E M  A P P L I C A B L E  T O  
P R E D I C A T E - L O G I C  K N O W L E D G E  

While rule-type incomplete knowledge is allowed in our 
knowledge base, we transform it by pre-processing into 
newly introduced unit-clause incomplete knowledge and 
a modified complete knowledge version of this rule-type 
knowledge. (The rule-type knowledge corresponds to 
IDB in deductive databases.) For example, incomplete 
knowlege 'a:-b.' is transformed before reasoning into 
complete knowledge 'a:-b,c.' and incomplete knowledge 
'c.'. Then all incomplete knowledge becomes unit clauses 
(fact-type), which are placed at the leaf position of the 
inference tree. 

The data structure of a node in KICK-HOPE is 

(Node-Name, Supporting Hypothesis Sets) 

At the initial stage, Node-Name may have variables and 
Supporting Hypothesis Sets is undecided. These inital 
nodes are transformed into settled nodes through the 
reasoner of KICK-HOPE. (See as an example Figure 7). 
We call this transformation process 'solving the node' to 
obtain all the settled nodes for a certain node as in this 
example. The settled nodes are classified into the follow- 
ing three categories (each Node-Name is instantiated): 

• True node: always true (no need for hypotheses): 

(Node-Name, true) 
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Figure 8. Behavior o f  K I C K - H O P E  reasoner 

• False node: always false: 

(Node-Name, false) 

• Node: where all the supporting hypothesis sets are 
determined: 

(Node-Name, supporting hypotheses sets) 

Figure 8 shows the behavior of the KICK-HOPE rea- 
soner. First, a node is judged as any of 'and-node', 'or- 
node' or others. If the node is 'and-node', 'and-node 
processing' is executed. If the node is 'or-node', 'or-node 
processing' is executed. Otherwise, 'knowledge-base 
(external DB) search processing' is executed. Algorithms 
for 'and-node processing' and 'or-node processing' are as 
follows: 

((Algorithm for node (A and B))) 

(l) Solve the node A. (Settled nodes for the node A 
are obtained.) 

(2) Unify all the settled nodes for the node A with 
the node B. 

(3) Solve all the unified nodes B. 

(4) Synthetize supporting hypotheses sets among 
the mutually unified nodes A and B. Delete 
inconsistent or redundant hypothesis sets. 

((Algorithm for node (A or B))) 

(1) Solve the node A and the node B. (Settled nodes 
for both node A and node B are obtained.) 

(2) Delete redundant hypothesis sets. 

'Knowledge-base search processing' is executed when the 

node is not either "and-node" or 'or-node', that is, the 
node is a unit clause. This processing is as follows. 

((Algorithm for unit clause A)) 

(I) Obtain a list of return nodes for all knowledge 
unified with the node A in the knowledge base. 

The return node is classified into the following four 
cases, according to the knowledge to be unified: 

• Case I: In this case, the node is unified with rule-type 
complete knowledge. Node-Name is the body of the 
unified complete knowledge, and Supporting Hypoth- 
eses Sets remains undecided. Since this return node is 
not yet a settled node, this node is solved afterwards. 

• Case 2." In this case, the node is unified with fact-type 
complete knowledge. The return node becomes a true 
node (a settled node). 

• Case 3." In this case, the node is unified with incom- 
plete knowledge. Node-Name is this unified incom- 
plete knowledge (hypothesis), and Supporting 
Hypothesis Set is a list of this hypothesis. This return 
node is a settled node. 

• Case 4: In this case, there is no knowledge to be 
unified. The return node is a false node (a settled 
node). 

Reasoning systems holding parallel solutions, like 
KICK-HOPE,  take a lot of time for merge operations 
such as the synthetizing of hypotheses and the deleting of 
redundant hypotheses. In KICK-HOPE,  where the 
hypotheses are expressed as bit vectors as in the ATMS, 
this merge operation is executed efficiently by bit ope- 
rations on the hypothesis lattice as in the propositional- 
logic case, because this operation is done after the nodes 
have been settled. 

ESTIMATION OF INFERENCE SPEED 

Figures 9 and 10 show Example 1 and Example 2, respec- 
tively, of predicate knowledge bases and corresponding 
inference-tree structures. Using these examples, we esti- 
mate the inference speed of KICK-HOPE compared 
with that of  the implementation utilizing the inference 
mechanism of PROLOG. 

While the CK of both the examples is the same, the IK 
of Example 2 is an incomplete knowledge set excluding 
such knowledge as shape h ( ,1 )  from the IK of Example 
1. When we represent the scale of knowledge of the 
incomplete knowledge h(X,Y)  [X = 1,2 . . . . .  N -  1, 
Y = 1,2,3] as N, then the number of nodes on the infer- 
ence tree is 6N + 4 for both examples. Example 1 is an 
example in which the same branches are searched multi- 
ply because of the backtracking invoked by the inconsis- 
tent condition (inconsistent :-h(X,1) & h(X,3).) in the 
inference of PROLOG. On the other hand, Example 2 is an 
example in which no plural search happens in both 
KICK-HOPE and the PROLOG-based inference. 

Figure 11 depicts an inference-time result for Example 
1. The inefficiency of the PROLOG-based inference is 
apparent in Figure 1 I. For example, the inference time at 
N = 3 is 0.12 s in KICK-HOPE and 0.13 s in the PRO- 
LOG-based inference mechanism, whereas at N =  15 it is 
2.22 s in KICK-HOPE and 2693.86 s in the PROLOG- 
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f (X,O) :- f (X,1), f (X,2). 
f (X,1) :- h (X,1). 
f (X,1) :- h (X,2). 
f (X,2) :- f (X+1,0). 
f (X,2) :- h (X,3). 
inconsistent :- h (X,1), h (X,3). 
inconsistent :- h (X,2), h (Y,3), i 

X=~Y. 
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h (0,1). 
h (0,2). 
h (0,3). 

h (1,3). 
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h In-1 R~ 

G CK 
"f (X,O) :- f (X,1), f (X,2). 
f (X,1) :- h (X,1). 
f (X, 1 ) :- h (X,2). 
f (X,2) :- f (X+1,0). 
f (X,2) :- h (X,3). 
inconsistent :- h (X,1), h (X,3), 
inconsistent :- h (X,2), h (Y,3), 

X ~ Y .  

IK 
(0,2). 

h (0,3). 
h (1,2). 
h (1,3). 

h (n-1,2) 
h (n-1,3). 

G 

Figure 9. Knowledge base and corresponding inference- 
tree structure (Example 1) 

based inference mechanism. (These data are measured on 
a Sun-4.) 

Figure 12 depicts an inference-time result for Example 
2. This shows that the PROLOG-based inference mecha- 
nism infers slightly faster than KICK-HOPE. This phe- 
nomenon is due to the high processing cost of the merge 
operation in KICK-HOPE whereas no inefficiency of 
plural searches in the PROLOG-based inference appears in 
this case. However, the slope of the inference-time 
increase of KICK-HOPE is not steep, and its inference 
speed does not exceed a constant times (only 2-3 times) 
the range of the PROLOG-based inference mechanism. 

These two graphs reveal that the inference speed of the 
PROLOG-based inference is extremely affected by back- 
tracking, but the KICK-HOPE speed is not; that is, it 
depends only on the number of nodes on the inference 
tree. In practical knowledge bases, the number of back- 
trackings is expected to lie between those in Example 1 
and Example 2. Thus KICK-HOPE is superior to a large 
extent in inference speed over the hypothetical reasoning 
system using the PROLOG-based inference mechanism. 

C O N C L U S I O N S  

We have described the fast hypothetical reasoning 
system called KICK-HOPE for function-free predicate- 
logic Horn-clause knowledge. KICK-HOPE has solved 
the second and fourth problems described in the third 
section. 

The second problem regarding wasteful multiple 
searches for the same branch is a crucial one, especially 
in hypothetical reasoning, because of the backtracking 

Figure 10. Knowledge base and corresponding inference- 
tree structure (Example 2) 
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invoked by inconsistency between hypotheses. By solv- 
ing this problem, the inference speed has been largely 
improved (see the previous section). 

For the fourth problem, the deletion of redundant 
hypothesis sets at each node is very important for predi- 
cate-logic knowledge. In KICK-HOPE, at each node, 
after settling the left-positioned child node, the right- 
positioned child nodes are unified. Deleting redundant 
hypothesis sets at the left-positioned child node decreases 
the number of the right-positioned child nodes to be 
unified: this contributes to narrowing down the right 
search space. 

Thus the feature of KICK-HOPE is that it searches 
just once for only the necessary inference path related to 
proving the goal. In general, the number of nodes on the 
inference trees, however, increases exponentially with 
respect to the scale of knowledge. Accordingly, the infer- 
ence speed of KICK-HOPE increases exponentially, as 
seen in Figures 11 and 12. To make KICK-HOPE faster, 
we should investigate techniques for lowering the cost of 
the merge operation, such as synthetizing hypotheses and 
deleting redundant hypothesis sets. There are some 
efficient techniques for join operations with bit vectors in 
relational database technology [11, 12]. Still, since the 
computational complexity of non-monotonic reasoning 
including hypothetical reasoning has been proved to be 
NP-complete or NP-hard [13], even in the propositional- 
logic case, the inference speed in the worst case cannot 
exceed the limit of the exponential order if we stay in 
ordinal search mechanisms. To overcome this limit, the 
transformation of knowledge (learning) [14] and the util- 
ization of past reasoning results (analogy) [15] are pro- 
mising approaches. We .are now exploring these 
approaches for further efficient hypothetical reasoning 
systems. 
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