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Abstract: In this study, an indoor positioning shift correction architecture was developed with an
improved adaptive Kalman filter (IAKF) algorithm for the people interference condition. Indoor
positioning systems (IPSs) use ultra-wideband (UWB) communication technology. Triangulation
positioning algorithms are generally employed for determining the position of a target. However,
environmental communication factors and different network topologies produce localization drift
errors in IPSs. Therefore, the drift error of real-time positioning points under various environmental
factors and the correction of the localization drift error are discussed. For localization drift error,
four algorithms were simulated and analyzed: movement average (MA), least square (LS), Kalman
filter (KF), and IAKF. Finally, the IAKF algorithm was implemented and verified on the UWB indoor
positioning system. The measurement results showed that the drift errors improved by 60% and
74.15% in environments with and without surrounding crowds, respectively. Thus, the coordinates of
real-time positioning points are closer to those of actual targets.

Keywords: indoor positioning system; ultra-wideband; Kalman filter; RSSI; AoA

1. Introduction

Intelligent Following systems installed on carts have widespread use on farms and
shopping malls [1]. In the present study, time of flight (ToF) was used to develop a distance
estimated architecture. The advantage of ToF is that it is free from the time errors caused
by differences in the internal calculations of the anchors and the tag. After the anchor–tag
distance is determined, the Kalman filter algorithm can be used to converge sensor data and
eliminate errors caused by noise. Obtaining anchor distance and angle to the tag enables
the system to determine the tag’s relative position and control the cart to follow the tag.
Because the follower system cannot provide the location in the vast field, the management
center is disabled to control the real-time information of the vehicle location. Therefore, the
current UWB technology was used to expand the positioning function. To allow the tag to
be positioned clearly, this study proposed the development of an indoor positioning shift
correction architecture based on the improved adaptive Kalman filter (IAKF) algorithm.

Outdoor and indoor positioning technologies have a wide range of applications.
Drones, vans, and self-driving cars rely on positioning systems to perform functions such
as satellite navigation, one-button four-rotor return flight, car parking location determina-
tion, and auto-navigation. Most common indoor positioning systems [2,3] use received
signal strength indicator (RSSI) [4,5] as the distance calculation method. Although the
development cost of distance calculation technology is relatively low, its wireless trans-
mission frequency is 2.4 GHz, which is susceptible to Wi-Fi signal interference and causes
positioning errors [6]. The angle of arrival (AoA) [7] distance calculation method involves
the use of array antennas, and the absolute position coordinates are calculated according
to the signal return angle; nevertheless, the overall cost is the highest among all indoor
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positioning systems, due to the high cost of array antennas. An ultra-wideband (UWB)
indoor positioning system was employed in this study. The system uses the time difference
of arrival (TDoA) positioning method [8–10] to calculate the distance between the anchor
and the tag. The signal transmission frequency range of the system is 3.1–10.6 GHz [11–13],
which is less susceptible to interference by 2.4-GHz Wi-Fi signals. The TDoA [14,15] po-
sitioning method does not influence the positioning accuracy because of signal strength
weakening. UWB indoor positioning systems are employed in various applications [16–20],
such as unmanned smart object–finding systems in supermarkets, navigation of airport
terminal lobbies and complex station maps, and security positioning for elderly care centers,
due to their high transmission rate and low power consumption. Elsanhoury [21] presented
a compact review focusing on using multi-sensor fusion-based systems in specific applica-
tions. The researcher designed a concise tutorial for researchers seeking an overall view
of UWB positioning technology. Schwarzbach [22] discussed a procedure which allows
the synthetic generation of UWB distance measurements with respect to theoretical error
sources and parameterization based on a conducted measurement campaign.

In this study, the problem of shifting of the positioning point observed in UWB indoor
positioning systems in indoor spaces was analyzed. A UWB indoor positioning system
was used in the experimental method to locate the target point. MATLAB was used to
analyze the shifting error of the positioning point. In addition to external environmental
noise, UWB indoor positioning systems also generate signal processing noise. The noise
causes shifting of the positioning point, decreasing the positioning accuracy. Therefore,
four algorithms were employed in this study to address the problem of shifting of the
positioning point: moving average, least square, Kalman filter, and IAKF. Then, the actual
measured coordinate points were input into the algorithms to decrease the shifting of the
positioning point.

For the experimental analysis, the IAKF algorithm was employed. The algorithm was
installed in the firmware of the UWB indoor positioning system (IPS). Based on the test
conditions, the experimental analysis was mainly divided into static positioning analysis
(analyzing the signal processing noise generated by the UWB IPS), human interference
factor positioning analysis (analyzing the external environmental factors), and dynamic
positioning analysis (analyzing the real-time positioning performance and noise processing
capabilities). The experimental conditions were in line with the actual scenario encountered
by the IPS during positioning. The IAKF algorithm was found to improve the shift error of
the positioning point, thereby serving the purpose of decrease in shift error distance and
increase in positioning accuracy.

UWB IPSs comprise four anchors: a coordinator, a router, a server, and a tag. In the
positioning process, these anchors are used to measure the distance to the static tag. The
anchors return the ranging values to the coordinator and then return the ranging data to
the server through the router for triangulation calculation [23–25]. Finally, the position
coordinates of the positioning target are obtained.

The remainder of this paper is organized as follows. Section 2 describes the system
architecture design. In Section 3, the algorithms employed to address the positioning
point shift problem are described, and the simulation results are presented and compared.
In Section 4, the experimental results are presented, and positioning performances are
compared and discussed. Finally, in Section 5, the conclusions are presented.

2. System Architecture

Figure 1 presents a typical following system comprising three UWB sensors, one on
each lateral side of the cart (Anchor0 & Anchor1) and the third carried by the user (Tag).
The demand for high precision and long endurance makes UWB the first choice for wireless
sensors. To prevent collisions caused by sensing errors, ToF and Kalman filter algorithms
were employed for error convergence. Furthermore, an error compensation algorithm that
substantially reduces the magnitude of errors was also proposed. Finally, distance and
angle formulae were applied to determine the user’s position relative to the cart. Actual
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measurement results indicate that, after optimization by the sensing error compensation
algorithm, the error in cart–tag distance was reduced from 29–40 cm to within 5 cm for any
distance and angle (Figure 2), thus confirming the effectiveness of the algorithm.
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Although the following system can accurately obtain the information of distance and
angle, it cannot provide the position of the user (Tag). Therefore, anchors were set around
the environment according to the circuit presented in Figure 1, and relevant distance
information between the tag and anchors was obtained for the positioning computing.
The system architecture of the UWB indoor positioning system is shown in Figure 3. This
system architecture mainly consists of four anchors, a coordinator, a router, a server, and a
tag. The hardware positioning process of the indoor positioning system was as described
herein. Four anchors were used to measure the distance from the tag. All anchors send
the distance value to the coordinator, which then sends the received distance information
to the server through the router for the triangulation positioning algorithm to obtain the
absolute position of the tag. Finally, the hardware architecture process of the positioning
function of the UWB indoor positioning system was completed.
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3. Improvement in Algorithm of Positioning Point Shift and Simulation Results

In this section, the moving average method, least square method, Kalman filter algo-
rithm, and proposed IAKF algorithm are discussed.

For the source of material analyzed by the algorithm, the anchor and tag in the system
architecture shown in Figure 3 are used to calculate the distance information through
ToF. Then the information is sent to the server through the Ethernet for a triangulation
positioning algorithm to calculate the position of the original measurement (x-axis and
y-axis coordinates). UWB IPS causes the floating phenomenon of positioning points and
reduces the positioning accuracy because the wireless communication system is affected
by noise and the environment. Then, four algorithms are used to simulate and analyze
the positioning coordinates of the original measurement and compare the positioning
improvement range of each algorithm. Finally, an algorithm that can best improve the
positioning is determined for use in this UWB IPS positioning system. The algorithm is
used mainly to perform a software algorithm by C language program in the server so that
the tag can obtain more accurate coordinate positions during actual measurement.

3.1. The Moving Average Method

In the moving average method [26], a set of recently sampled data are used to predict
the trend of future data. This algorithm is most commonly used in data smoothing methods.
One or a certain number of values are calculated based on a time series to predict the trend
of data. Therefore, when the value of a time series is affected by random fluctuations, it
becomes difficult to understand the trend of a series of data. The moving average method
eliminates random fluctuations in the data so that the future data trend can be predicted
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accurately. The non-weighted average of N samples before the current input (including the
current input) is considered in this method as follows:

y(n) =
1
N

N−1

∑
i=0

x(n− i) (1)

3.2. The Least Square Method

The least-square method [27] is an algorithm for data smoothing. It finds the best
matching function by minimizing the sum of squared errors. The least-square method can
quickly predict the future trend of the data:

LS =
1
N

N

∑
i=1

(
yp

i − yi

)2
(2)

where N is the number of sampled data points, yp
i is the actual measured value, and yi is

the target value. The position of the tag is (xm, ym). The position coordinates of the anchor
are (x1, y1), (x2, y2), (x3, y3). However, triangulation and least square methods are used for
calculation. The equations used for the least square method are as follows:

(xm − x1)
2 + (ym − y1)

2 = d2
1

(xm − x2)
2 + (ym − y2)

2 = d2
2

(xm − x3)
2 + (ym − y3)

2 = d2
3

(3)

3.3. Kalman Filter Algorithm

The Kalman filter [28] algorithm was proposed in the paper titled “A New Approach
to Linear Filtering and Prediction Problems”, published by Hungarian émigré Rudolf E.
Kálmán in 1960. The algorithm uses phase-locked loops, a technology that uses feedback
control to achieve frequency and phase synchronization. The algorithm is used in many
communication devices, such as frequency-modulation radios. The basic dynamic system
of the Kalman filter algorithm can be represented using a Markov chain model, where linear
transformation is interfered with by Gaussian noise. The system state can be represented
by a vector whose element is a real number, which is added to each time interval in discrete
time. This linear transformation operates on the current state and then produces a new
state. During state transformation, some noise is produced. System control factors are
also added to the system. Another linear transformation interfered by noise produces the
output states. Kalman filter algorithm is an optimized discrete data recursive algorithm,
and the flowchart is shown in Figure 4. The estimated value of the previous state and the
measured value of the current state are convoluted to calculate the estimated value of the
current state. After each recursion, the estimated value is closer to the dynamic system
state, resulting in a smoother data trend [29].
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The equation of the Kalman filter algorithm can be written as follows:

⇀
X = F·

⇀
Xd + B·⇀u (4)

where
⇀
X is the predicted value vector, F is the optimized prediction matrix,

⇀
Xd is the previ-

ous state estimate vector, B is the control factor matrix, and
⇀
u is the external environmental

factor vector. Furthermore,
P = F·Pd·FT + Q (5)

where P is the covariance matrix between the predicted value and the last state estimate,
Pd is the covariance matrix between the last estimate and the last actual measured value,
and Q is the noise matrix of the external environment uncertainty.

K = P·HT ·
(

H·P·HT + R
)−1

(6)

where K is the Kalman gain, H is the measurement parameter matrix, and R is the sensing
noise matrix generated by the sensor.

⇀

X′ =
⇀
X + K·

(
⇀
Z −H·

⇀
X
)

(7)

where
⇀

X′ is the new estimated value after an arithmetic operation and
⇀
Z is the actual

measurement value matrix.
P′ = P−K·H·P (8)

where P′ is the covariance matrix of the new estimated value and the actual measured value.

3.4. Improved Adaptive Kalman Filter Algorithm

The Kalman filter can only predict the best estimate of the target point under the
linear Gaussian model. However, in practice, UWB IPSs always have some nonlinear
interference noise. The noise of the nonlinear function may exhibit a square relationship,
logarithmic relationship, exponential relationship, trigonometric function relationship, etc.
Some nonlinear functions can be converted into approximate linear functions by using
linear differential equations. However, the system state cannot be estimated in certain
nonlinear systems, such as missile trajectory estimation systems, aircraft flight paths,
satellite positioning navigation, and indoor positioning system. In nonlinear systems, the
nonlinear shift factor of the positioning point cannot be ignored; the system cannot achieve
real-time calculation, which causes positioning delay and positioning point shift. Therefore,
in this study, IAKF, an improved algorithm, was proposed to tackle the positioning point
shift problem in nonlinear systems. The IAKF algorithm uses the linearization method
and converts a nonlinear system into an approximate linear filtering problem based on
the Kalman filter. The optimized prediction matrix F and the measurement parameter
matrix H of the Kalman filter are expanded into the Taylor series. Next, to establish an
approximate linearized mathematical model, the Jacobi matrix is calculated to omit terms
above the second order. Thus, the IAKF algorithm solves the limitation of the Kalman filter,
which cannot be applied to nonlinear systems. The IAKF architecture is shown in Figure 5.
Assume that the state variable has n dimensions, x(k) = [x1 x2 . . . xn]

T ; then the Jacobi
matrix [30] can be calculated as follows:

F′ =
∂F
∂x

=


∂ f11
∂x1

· · · ∂ f1n
∂xn

...
. . .

...
∂ fn1
∂x1

· · · ∂ fnn
∂xn

 (9)
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H′ =
∂H
∂x

=


∂h11
∂x1

· · · ∂h1n
∂xn

...
. . .

...
∂hn1
∂x1

· · · ∂hnn
∂xn

 (10)
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3.5. Simulation Results

MATLAB was used to realize the analyzed positioning point shifting error and im-
provement in the results. Four algorithms were used in the simulation process: moving
average method, least square method, Kalman filter algorithm, and the IAKF algorithm.
The shifting error of the positioning point was analyzed through simulation and the im-
provement range of the positioning point shift achieved by each algorithm was compared.
The simulation environment of the UWB IPS involved four anchors for the measurement of
the positioning point of a static tag. The coordinate values were measured every second
by the IPS for a total of 30 s; thus, 30 coordinates were obtained. Next, the shifting of the
positioning point was analyzed. For an improved simulation of positioning point shifting,
the actual measured coordinate values were substituted into MATLAB, and the positioning
point shifting of the x and y coordinates was analyzed. The simulation environment was
the same as that shown in Figure 3.

Figure 6 shows the positioning point shift error distance yielded by the algorithms.
The horizontal axis is the time axis (unit: s), and the vertical axis is the shift error distance
(unit: cm) of the positioning point. The deviation distances of the positioning point of all
algorithms were compared and revealed that the IAKF algorithm yielded the line with the
smoothest positioning point shift error distance.
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The average shift error distance (ASED) obtained using the IAKF algorithm reduced
from 12.91 to 2.13 cm, showing an improvement of 83.5% (Table 1). Therefore, compared
with other algorithms, the best improvement was observed using the IAKF algorithm. The
equation of improvement is defined as

Improvement =
Original ASED − IAKF ASED

Original ASED
× 100% (11)

Table 1. Comparison of average drift error distance and improvement range.

Algorithm Average Shift
Error Distance (ASED) Improvement (%)

Original Measurement 12.91 cm N/A
Moving Average 8.05 cm 37.65%

Least Square 7.01 cm 45.7%
Kalman Filter 4.65 cm 63.98%

Improved Adaptive
Kalman Filter 2.13 cm 83.5%

4. Experiment Results

In this section, the measurement results obtained using the IAKF algorithm on the
UWB IPS are presented to demonstrate the reduction in positioning point shift. The test
environment was set as static (with/without surrounding interference) and dynamic.

4.1. Improvement Result of Static Positioning Point Shifting

The test environment of the static positioning point shifting analysis was the same as
that shown in Figure 3, which included four anchors to locate a static tag. The experimental
method involved measuring the positioning point coordinates of the static tag in an indoor
positioning test environment. The shifting of the tag was analyzed in the static state and in
the absence of external interference factors.

Figure 7 shows the distribution without drift correction of the original measurement
positioning point at the coordinate (210, 735). The positioning point signal was converged
using the IAKF algorithm, as shown in Figure 8.
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Figure 7. Distribution of the original measurement positioning points without drift correction.

The static assumption was used as a priori knowledge to obtain the results in Figure 9.
The ASED of the positioning point before improvement was 11.42 cm, and 3.50 cm after
correction. In Figure 9, the orange line indicates that the shift error distance after correction
tends to be smooth, and the improvement rate is 69.33% compared with the original signal.



Sensors 2022, 22, 5697 9 of 14

Sensors 2022, 22, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. Distribution of the original measurement positioning points without drift correction. 

 
Figure 8. Distribution of the improved positioning points after being converged using the IAKF 
algorithm. 

The static assumption was used as a priori knowledge to obtain the results in Figure 9. 
The ASED of the positioning point before improvement was 11.42 cm, and 3.50 cm after 
correction. In Figure 9, the orange line indicates that the shift error distance after correction 
tends to be smooth, and the improvement rate is 69.33% compared with the original signal. 

 
Figure 9. Shifting error distance analysis chart of the static positioning point. 

715

720

725

730

735

740

745

750

755

190 195 200 205 210 215 220 225 230

Y
-a

xi
s 

(c
m

)

X-axis (cm)

715

720

725

730

735

740

745

750

755

190 195 200 205 210 215 220 225 230

Y
-a

xi
s 

(c
m

)

X-axis (cm)
Figure 8. Distribution of the improved positioning points after being converged using the IAKF algorithm.
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4.2. Result of Improved Surrounding Crowd’s Influence

The test environment of positioning point shifting analysis for the people interference
condition is shown in Figure 10. Here, the positioning point coordinates of a static tag in
an indoor positioning test environment were measured. Approximately 1–10 people were
asked to walk around the positioning space to create people interference factors. Then, the
impact of positioning point shifting caused by people moving in the positioning space was
analyzed. The actual measurement values and the shifting of the positioning point were
analyzed. Finally, the improvements achieved after interference by different numbers of
people were compared.

Figure 11 shows the ASED of the positioning point for various people interference
factors (1–10 people). The blue line shows a considerably lower (by 50–60%) ASED com-
pared with the original ASED denoted by the orange line.
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4.3. Improvement Result of Dynamic Positioning Point Shifting

The test environment of dynamic interference positioning point shifting analysis
is shown in Figure 12. Four anchors were used to locate the moving tag in an indoor
positioning space to analyze the movement trajectory of the tag. The actual positioning
point movement trajectory was set as routes 1 and 2. The results reveal that the IAKF
algorithm yielded improved dynamic positioning point-shifting error.

The actual movement trajectories 1 and 2 of the static tag are shown in Figures 13 and 14.
The blue line indicates the movement trajectory of the original measurement. The red line
shows the improved movement trajectory achieved using the IAKF algorithm; the red line is
closer to the ideal trajectory shown by the black line, thus indicating that the IAKF algorithm
successfully tackles the dynamic positioning point shifting problem.
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An ideal uniform rectilinear motion was used as a priori knowledge to obtain the
results in Figures 15 and 16. The movement trajectories 1 and 2 of dynamic positioning
point shift error analysis are shown in Figures 15 and 16. The red dotted line shows the
actual measurement values of the shift error distance of the dynamic positioning point,
and the green dotted line shows the improved shift error distance of the positioning point
achieved using the IAKF algorithm.
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Figure 16. Shift error distance analysis of movement trajectory 2.

The average shift error distance (ASED) of the positioning point before the improve-
ment in movement trajectory 1 was 13.19 cm. The ASED of the improved positioning point
was 3.87 cm and the percentage improvement was 70.63%. The ASED of the positioning
point before the improvement of movement trajectory 2 was 12.86 cm. The ASED of the
improved positioning point was 2.91 cm; thus, the percentage improvement was 77.36%.

Table 2 shows that the ASED obtained using the IAKF algorithm was 2.25 cm, with an
improvement of 74.15%. Compared with the improvement results of other algorithms, the
shift error distance obtained using the IAKF algorithm is the shortest.
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Table 2. Comparison of improvement results obtained using different algorithms.

This Work [31] [32] [33] [34]

Original ASED (cm) 8.69 30~34 21.35 74.46 88
Improved ASED (cm) 2.25 18~20 10.189 57.25 26

Improvement
Percentage (%) 74.15 40.76 52.28 23.11 70.45

5. Conclusions

In this study, there was an improvement in the positioning point shift. In addition, the
IAKF algorithm was successfully implemented in the UWB indoor positioning system, and
the shifting of positioning points caused by environmental and other factors in the UWB
IPS was analyzed. As a result, there was a significant decrease in the shift error distance of
the positioning point. Using the IAKF algorithm, the real-time positioning measurement
point was closer to the actual target point, thereby showing improved positioning accuracy
and system stability in the UWB IPS.
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H.-H.C.C.; writing—original draft preparation, K.-H.L. and G.-J.L.; writing—review and editing,
S.-H.L., H.-H.C.C. and W.-W.W.; visualization, S.-H.L., H.-H.C.C. and W.-W.W.; supervision, S.-H.L.,
H.-H.C.C. and W.-W.W.; project administration, S.-H.L.; funding acquisition, S.-H.L. All authors have
read and agreed to the published version of the manuscript.
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