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Abstract. In 1985 Goldw~ser Micali and Rack08 proposed a new type of in- 

teractive proof ayatem which reveals no knowledge whatioever about the aaaertion 

except its validity. The practical aignijicance of these proofs wns demonstrated in 

1986 by Fiat and Shamir, who showed how to use eficient zero knowledge proof.3 

of quadratic reaidvoaity to establish user identitiea and to digitally sign messagea. 

In this paper we propose a new zero knowledge identification acheme, which U 

even faster than the Fiat-Shamir acheme, using a amall number of communicated 

bita, simple 8-bit arithmetic operations, and compact public and private keya. The 

security of the new scheme depends on an NP-complete algebraic problem rather 

than on factoring, and thus it widena the basis of public key cryptography, which 

has become dangerowly dependent on the dificulty of a Jingle problem. 

1. The Basic Scheme 

Notation: 

Throughout this paper, we use upper case letters to denote vectors and ma- 

trices, and lower case letters to denote values. Greek letters denote permutations 

over (1,. . . , n), and their effect V, on n-vectors V is defined as the vector W such 

that wj = “n(j) for 1 5 j 5 n. The effect of permutations on matrices is defined 

as the column permutation A, = [~i,cj,] so that for any matrix A and vector V, 

A,Vr = [cy=, aix(j)v,(j)] = [cy=, a;jvj] = AV. Permutations are composed a~ 

functions, and thus V,, is defined as the vector W such that wj = Vr(a(j)) for 

1 < j 5 n. All the arithmetic operations in this paper are carried out module p, 

where p is a (small) prime. We define the kernel K(A) of a rectangular rn x n 
matrix A as the set of n-vectors W such that AW = 0 (mod p), where 0 is the 

m-vector of zeroes. It is easy to see that K(A) is a linear subspace of ZF and that 

X(A,) = (K(A))a. 

The Permuted Kernel Problem (PKP) is: 

Given: a m x n matrix A, a n-vector V, and a prime p; 

Find: a permutation 7r such that V, E K(A). 

The related probIems of finding some, all, or randomly chosen vectors in K(A) 

can be solved by straightforward techniques in linear algebra. The problem of 
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&ding good approximations in K ( A )  to a given vector V (and in particular small 

non-zero vectors in K ( A ) )  can be solved by more complicated (but polyno&d) 

lattice reduction techniques. What makes the Permuted Kernel Problem difficult 

is that it forces us to choose a kernel vector with a particular set of entries. In 
fact, it is easy to see that the problem is NP-complete even for rn = 1 and V = 
(fl,  +1,. . . , +1, -1, -1,. . . , -1) since this is just the partition problem for the 
weights in A. A slightly more complicated reduction from the problem of 3- 
partition (Garey and Johnson [1979], pp 224) shows that the PKP is NP-complete 

in the strong sense (i.e., its difficulty grows exponentially in p rather than in log(p), 

under appropriate assumptions). This makes it possible to use small numbers 
in the proposed identification scheme, which greatly enhances its simplicity and 

speed. 

To use the permuted kernel problem as an identification scheme, the users 

agree on a universal matrix A and prime p ,  and then each user chooses a random 

permutation A (which serves as his secret key) and a random vector V such that 

V, E K ( A )  (which serves as his public key). Users can now establish their identity 

by proving their knowledge of the secret permutation x .  By using zero knowledge 

proofs, provers can guarantee that eavesdroppers and dishonest verifiers will not 

learn anything about A which will later enable them to misrepresent themselves 
as the prover to others. 

The following protocol uses a hash function which commits the prover to 

his chosen values without revealing them prematurely to the verifier. Since the 

function is applied to highly redundant inputs with a large compression ratio in a 

non-invertible way, we believe that efficient DES-like functions will be suEciently 
secure in practice. 

Zero knowledge proofs for the Permuted Kernel Problem: 

1. The prover chooses a random vector R and a random permutation u, and 
sends the cryptographically hashed values of the pairs (6, AR) and (TU,  Ezb) 
to the verifier. 

The verifier chooses a random value 0 5 c < p and asks the prover to send 

After receiving W ,  the verifier asks the prover to reveal either m or T U .  In 
the first case the verifier checks that (a, A,W) hashes to the first given value, 
and in the second case the verifier checks that (xg, W - cVrr) hashes to the 
second given value. 

An honest prover who knows x will always pass this test, since A,W = 
An(& + C K u )  = A(R + cV,) = A R  + cAV, = AR and W - cV,, = Re by 

definition. When a dishonest prover tries to choose the commited values in step 1, 

he should be prepared to answer 2p  possible questions. If he can answer correctly 
p + 2 questions, then for the same committed (n, X )  and (7, Y ) ,  there are at  least 

two distinct values c’ c“ whose response vectors W’ W” satisfy both conditions. 

2. 

W = R, + c V ~ , .  

3. 
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This leads to the following system of equations: 

A,W' = X A,W" = X W' - c'v, = Y W" - c"V, = Y 

This implies that (W' - Wll) E K(A, )  and (Wl - W") = ( d  - d')VT. Since 

d - c" # 0 ,  V,,-i E K(A)  and thus the secret penimtation 7r = 7.g-I can be 
extracted from any p + 2 correct answers. Consequently, the probability of success 

when such a~ 7r is not known is at most ( p  + 1)/2p. Since this value is essentially 

1/2, only 20 iterations are required to reduce the probability of cheating bellow 

the practical security threshold of 1/1,000,000 for each misrepresentation attempt. 

The technical proof that this protocol is zero knowledge will be given in the 

full version of the paper, but the intuition behind it is very simple: The randomness 

of R makes the vectors W ,  AR and completely random, and the randomness of 

c makes the permutation x u  completely random. The individual messages sent by 

the prover convey no knowledge, and it is only the prover's willingness to answer 

both questions for all the possible ds which convinces the verifier that the prover 

is genuine. 

2. Implementation details 

The minimum recommended size of n has not been determined so far, but 

we believe that it should be between 32 and 64. For these n the number of 

permutations 7r ranges between 32! = 2120 and 64! = 2296, while the fastest 

attacks we are aware of require between 276 and 21a4 steps. The prime p should 

not be too small (since multiple occurrences of values in V (mod p )  reduce its 

number of distinct permutations), and should not be too large (since multiprecision 

arithmetic is slow). The best choice of p for 8 bit microprocessors seems to be 
p = 251. The choice of rn should be based on the approximationp* x n!, which 

describes the combination of parameters at which a randomly chosen instance of 

PKP is likely to have a unique solution (p" > n! implies that some of the rn rows 

of A can be discarded without adding spurious PKP solutions, while p" < n! 

implies that some of the entries in T can be arbitrarily Gxed without losing all the 

PKP solutions). For p = 251 and n = 32, rn should be about 16, and for p = 251 

and n = 64, m should be about 37. 

The matrix A should be randomly chosen. Without loss of generality we can 

assume that A is given in the block form A = [A' 1 I ]  where A' is a random 
rn x (n - m) matrix and I is the m x rn identity matrix, since both users and 

opponents can apply Gauss elimination to the published A without changing its 

kernel. Calculating AR (or A,W) is particularly easy in this representation. To 

demonstrate the actual time complexity of the new zero knowledge proofs, we 

consider the concrete case of a 16 x 32 matrix A = [A' I r ]  and p = 251. The 
application of permutations and the addition of vectors of size 32 require negligible 

amounts of time. In addition, the prover performs one matrix-vector multiplication 

per iteration, and the verifier performs one matrix-vector multiplication every two 

iterations (on the average). The simplified 16 x 16 matrix-vector multiplications re- 

quire 256 single-byte multiplications, which can be carried out in a few milliseconds 



on today’s microprocessors. This compares very favorably with number-theoretic 

schemes, in which the calculation of the product of two 512 bit numbers requires 

4096 single-byte multiplications (in addition to the overhead caused by the carry 
propagation and the modular reduction in multiprecision arithmetic). Since two 

hashed values (64 bits each) one vector (256 bits) and one permutation (120 bits) 

are sent in each iteration, the total communication is about 500 bits per round. 

Another advantage of the new scheme (which is particularly important in 
smart card applications) is that it needs very little memory: The public key V of 
each user can be stored in 256 bits, and the secret key x can be stored in 120 bits. 

The universal matrix A’ can be stored as a pseudo random function of i and j, 

rather than as an explicit matrix. Since we believe that most A’ are usable, fairly 
simple pseudo random functions can sufEice in practice. The elements of A’ can 

be generated upon demand (in the original or permuted order) by invoking this 

function with appropriate arguments, and thus the calculation of the matrix-vector 

product needs only a few bytes of working space. 

3. Extensions 

The basic scheme can be extended in a variety of obvious ways. The underly- 

ing field Z, can be replaced by other ring structures, the homogeneous equations 

can be replaced by non-homogeneous equations, and the matrix-vector products 

can be replaced by higher order tensor products. By adding the message rn to the 

list of hashed arguments the prover can authenticate the contents of the message 

in addition to proving his identity, and by using the general technique introduced 

in Fiat and Shamir [1986] this authentication scheme can be turned into a signa- 

ture scheme. However, PKP-based signatures are much longer than Fiat-Shamir 

signatures, and their practical significance is unclear. 

A detailed analysis of the security of the new identification scheme for various 
choices of the parameters is underway, and its results will be published in the full 

version of this paper. In the meantime, we encourage readers to attack the scheme 

and wasn potential users not to adopt it prematurely. 
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