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ABSTRACT In this work, an efficient image encryption based on S-boxes and fractional-order logistic
map is proposed. The features of the fractional-order chaotic system in dynamical behaviors are exhibited.
By simulation and comparison with the traditional logistic map, it is proved that the fractional-order logistic
map contains larger key space and more parameters. Therefore, the fractional-order logistic system has
better efficiency and security against cryptanalyst attacks. The S-boxes construction algorithm is proposed.
By comparing with the S-boxes of the former schemes, the proposed S-boxes have good performance
under Bits Independence Criterion (BIC), the Strict Avalanche Criterion (SAC) and the nonlinearity. Finally,
the image encryption scheme is proposed for the verification. In the encryption process, the proposed S-boxes
are used for scrambling and confusion. The simulation and experimental results indicate that the fractional-
order method is a preferred approach to integer-order chaotic system.

INDEX TERMS Chaos, fractional-order, logistic map, S-box, image encryption.

I. INTRODUCTION

Chaos is applied in many fields, such as meteorology,
physics, computer science, cryptography and so on [1],
[3]–[7], [59]–[61], [80]. In recent decades, chaos and image
encryption have attracted wide attention [1], [2], [39],
[42], [38], [46]–[79], [81]. Chaotic systems have high initial
sensitivity and randomness, so they can be used to design
cryptosystem [58]–[61], [79]. Chaotic sequence can produce
confusion and diffusion in the S-box [3]–[22] and image
encryptions [40], [41], [43]–[45], and [47]–[55]. Therefore,
the image encryption based on S-box and chaotic system is
feasible.
In recent years, fractional-order differential equations and

their application have attracted wide attention [25]–[34].
In comparisons with the integer-order equations, the
fractional-order nonlinear dynamic systems exhibit new
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dynamic behaviors in attractors, bifurcations and chaotic
behaviors. Therefore, the motivation of the study is to exam
the feasibility of applying the fractional-order chaotic sys-
tems in encryptions.

In this study, we mainly apply fractional-order differen-
tial logic map to design the encryption scheme. Jakimoski
and Kocarev [24] proposed a four-step method to generate
S-boxes by using employing chaotic maps. Farah et al. [13]
proposed an S-box construction method based on two dimen-
sional chaotic map and Chen et al. [9] ameliorated it by
using a three dimensional map. Khan et al. [8] proposed a
method for S-boxes generation based on multi-chaotic sys-
tems. Wang et al. [11] proposed a new method for design-
ing S-box based on genetic algorithm and chaotic map.
Hussain et al. [16] used a linear fractional transformation
to construct a new S-box. Tang et al. [23] proposed a novel
method to design S-boxes using chaotic maps. The aforesaid
S-box construction methods are fast because the computa-
tional complexity of low-dimensional system is less than
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that of high-dimensional systems; however, low-dimensional
systems have limited and fixed parameter ranges due to
the integer-order systems, which leads limited and fixed
key space in encryptions. To overcome these problems,
Hussain et al. [18] proposed an efficient LFT S-boxes con-
struction method based on chaotic logistic map with the
exponent as a parameter for good nonlinearity. Hussain’s
algorithm [18] achieves the larger parameter space. However,
its fractional exponent is not continuous, which leads the
uncertainty of employing the fractional exponent as a key.
To overcome the above-mentioned shortcomings, we pro-

pose an efficient algorithm for constructing S-boxes by using
the fractional-order logistic map. In comparisons with the
integer-order logistic map, the fractional-order logistic map
contains good features: 1) larger key space; 2) unfixed range
of parameters; 3) more parameters; 4) the low computa-
tional complexity as the one-dimensional logistic map. Fur-
thermore, it breaks the limit of the range of the parameter
µ ∈ (3.57, 4] and has better chaotic ergodicity. Mean-
while, the fractional-order is continuous and can be used
as a key parameter. Additionally, the Lyapunov exponent
curves indicate the parameter µ has a much larger range in
the fractional-order logistic equation than in the traditional
logistic map. Therefore, the proposed algorithm has better
randomness and security against common attacks.
In this paper, we thoroughly analyze the dynamics

of the fractional-order Logistic map. Then, we introduce
the construction scheme of S-boxes and give an efficient
image encryption scheme that exemplifies the feasibility of
fractional-order logistic map. To the best of our knowledge,
few literatures apply the fractional-order chaotic system and
S-boxes to design the encryption Scheme. The simulation and
experimental results indicate that the proposed encryption
scheme have high security performance.
The rest of this paper is arranged as follows: Section II

introduces the fractional-order differential equation and its
discretization. Section III shows features of the fractional-
order differential logistic map in dynamical behaviors.
In Section IV, we present the chaotic S-box generation
algorithm and related performance evaluation. In Section 5,
the details of the image encryption scheme are proposed as
well as the experimental results and performance analysis.
In Section 6, the conclusions are drawn.

II. DISCRETE THE FRACTIONAL-ORDER DIFFERENTIAL

LOGISTIC MAP

Consider the following fractional differential equations [34]:

Dαx(t) = µx(t)(1 − x(t)), t > 0, (1)

where D = d
dt

with the initial condition x(0) = x0. In the
following section, we introduce the discretization process
of Eq. (1) with piecewise constant arguments

Dαx(t) = µx(

[

t

r

]

r)(1 − x(

[

t

r

]

r)), (2)

where, the initial condition x(0) = x0.

Set t ∈ [nr, (n + 1)r) and n is a positive integer with
n = 0, 1, 2, 3 . . . , then t

r
∈ [n, n + 1). And hence, Eq. (2)

is converted [34] into

xn+1(t) = xn(nr) + Iαµxn(nr)(1 − xn(nr))

= xn(nr) + µxn(nr)(1 − xn(nr)) ×
∫ t

0

(t − s)α−1

Ŵ(α)
ds

= xn(nr) + µxn(nr)(1 − xn(nr))
(t − nr)α

Ŵ(α + 1)
.

Set t → (n+ 1)r, the above equation can be converted into

xn+1((n+ 1)r) = xn(nr) + µxn(nr)(1 − xn(nr))
rα

Ŵ(α + 1)
.

Consequently, the following iteration equation is obtained:

xn+1 = xn + µxn(1 − xn)
rα

Ŵ(α + 1)
. (3)

III. FEATURES OF THE FRACTIONAL-ORDER

DIFFERENTIAL LOGISTIC MAP IN DYNAMICAL

BEHAVIORS

A. BIFURCATION

The bifurcation diagram can directly reflect the dynamic
behavior of the system in various parameter assignments.
The fractional-order logistic system in Eq. (3) is analyzed,
shown in Fig.1, with different values of the fractional-order
parameter α.

In Fig. 1, the fractional-order logistic differential equa-
tion contains the same period-doubling bifurcations approach
chaos as in the classical logistic map. However, the
parameter µ in the fractional-order logistic differential map
breaks the range of µ ∈ (3.57, 4) in the traditional logistic
map. In addition, the value of the chaotic sequence xn also
breaks the range of (0, 1). In this work, the fractional-order
parameters α and µ are chosen as secret keys to construct
S-boxes. The different orders of this chaotic map con-
tribute various ranges of parameters. Therefore, the proposed
scheme has a larger key space than the traditional logistic map
does.

B. LYAPUNOV EXPONENTS

Lyapunov exponent is an important index to evaluate the
dynamic behavior of chaotic systems. The maximum Lya-
punov exponent is related to its predictability. Any system
with chaotic behaviors has at least one positive Lyapunov
exponent. We calculate the Lyapunov exponent curves of
the fractional-order logistic map with different values of the
parameter α and the traditional logistic map in Fig. 2.
In Fig.2, the fractional-order logistic map has amuch larger

interval of the Lyapunov exponent than the traditional logistic
map does. Therefore, the fractional-order logistic map has a
large range of parameters for dynamical behaviors.

C. THE CHAOTIC TRAJECTORY

The value of the chaotic sequence xn, shown in Fig.3, breaks
the range of (0, 1). It has the better randomness than the
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FIGURE 1. Bifurcation diagrams (a) The traditional logistic chaotic system
(b) the fractional-order chaotic logistic system with α = 0.80, r = 0.25
(c) the fractional-order chaotic logistic system with α = 0.85,

r = 0.25 (d) the fractional-order chaotic logistic system with
α = 0.95, r = 0.25.

FIGURE 2. Lyapunov exponent curves (a) The traditional logistic chaotic
system (b) the fractional-order chaotic logistic system with
α = 0.80, r = 0.25 (c) the fractional-order chaotic logistic system
with α = 0.85, r = 0.25 (d) the fractional-order chaotic logistic system
with α = 0.95, r = 0.25.

traditional logistic system, which indicates the fractional-
order logistic system has stronger energy and chaotic ergod-
icity. Therefore, the fractional-order logistic system is more
suitable for constructing S-boxes.

IV. PROPOSED S-BOXES ALGORITHM AND ITS

PERFORMANCE

A. CONSTRUCTION OF S-BOXES

The construction process of S-box is described as follows step
by step:
Step 1: Set parameterµ, α, r and initial value x0 for Eq. (3).
Step 2: Iterate Eq. (3) for n times to obtain the chaotic

sequences x1, x2, . . . , xn.

FIGURE 3. Chaotic trajectories (a) The traditional logistic chaotic system
(b) the fractional-order chaotic logistic system with α = 0.80, r = 0.25
(c) the fractional-order chaotic logistic system with α = 0.85, r = 0.25
(d) the fractional-order chaotic logistic system with α = 0.95, r = 0.25.

Step 3:Calculate the value yn = (floor(xn×106)) mod 256
for the S-box.
Step 4: Add yn into the S-box if it does not exist in the

S-box, otherwise the process returns to step 2 above to gen-
erate a new output value.
Step 5: Until all cell values of the S-box component are

filled, the process continues.
Without loss of generality, we show two sample S-boxes

designed by using the proposed algorithm and the first S-box
is listed in Table 1. To evaluate the efficiency of the proposed
scheme, we randomly choose different parameters to generate
another S-box listed in Table 2.

B. PERFORMANCE ANALYSIS OF PROPOSED S-BOXES

Different standard performance analyses are accomplished to
evaluate the strength of the proposed S-boxes. In this section,
these assessments include strict avalanche criteria (SAC),
bit independent criteria (BIC), nonlinearity, auto-correlation,
correlation immunity, algebraic immunity, algebraic degree,
fixed points, sum of squares, transparency order and NIST
randomness test.

1) SAC

If half of the output bits of a Boolean function changewhen an
input bit changes, the Boolean function is said to satisfy SAC.
The ideal value for SAC is 0.5 [66]. And the SAC analyses of
the proposed S-boxes are listed in Table 3.

2) BIC

In cryptographic systems, the bit independence is a very
important property. As the independence between bits
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TABLE 1. The S-box1 generated by proposed scheme with α = 0.95, µ = 10 x0 = 0.4 and r = 0.25.

TABLE 2. The S-box2 generated by proposed scheme with α = 0.80, µ = 8.3, x0 = 0.4 and r = 0.25.

increases, it becomes more difficult to attack the cryptosys-
tem. Table 3 shows the results of BIC analysis of the proposed
S-boxes.

3) NONLINEARITY

Nonlinearity is defined for Boolean functions. To resist linear
cryptographic attacks, the nonlinearity of Boolean functions
should be large enough. The nonlinearity test results of the
proposed S-boxes are listed in Table 3 together with SAC
and BIC.

As shown in Table 3, the proposed S-boxes have good
performance under BIC, SAC and the nonlinearity in com-
parisons with Refs. [9], [24], [35]–[38]. The average SAC
result of the proposed S-box2 is 0.5002, which is closer
to the ideal value 0.5 than that of the obtained S-boxes in
schemes [24], [35]–[38]. The fractional-order system has
good ergodcity; therefore, the proposed S-box2 holds better
SAC performance. Furthermore, the average values of the
Nonlinearity of the proposed S-box1 and S-box2 are 105 and
104.5 respectively. The comparison in Table 3 shows that the
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TABLE 3. Performance comparison for chaotic S-boxes.

TABLE 4. Fixed points test results.

proposed S-boxes have better performance than the S-boxes
in Refs. [24], [35]–[38]. Additionally, the BIC results of the
proposed S-box1 and S-box2 are 102.9 and 103.4 respec-
tively. The results are also comparable or superior to those
of S-boxes in literature. The proposed scheme by using
the simple fractional-order logistic map has the equivalent
performances as the schemes by two dimensional chaotic
maps [35], three dimensional chaotic map [9].

4) FIXED POINTS

In cryptosystem, direct or reverse (S(i) = i or S(i) =
255 − i) fixed points of S-boxes are usually undesirable,
because they mean that the output is equivalent to the input.
The test results of fixed points on the proposed S-boxes are
presented on Table 4.
As shown in Table 4, there are very few fixed points for the

proposed S-boxes. Therefore, it is impossible to attack the
cryptosystem by analyzing the fixed points of the proposed
S-boxes.

5) AUTOCORRELATION

Auto-correlation is a measure of the randomness of a chaotic
sequence. In order to illustrate the randomness of the pro-
posed S-boxes, the auto-correlation simulation experiments
on the proposed S-boxes are carried out, and the results are
shown in Fig. 4.
As shown in Fig. 4, the autocorrelation coefficients are

close to 0. Therefore, the proposed S-boxes have the nature
of randomness.

FIGURE 4. Autocorrelations (a) The proposed S-box1 (b) the proposed
S-box2.

TABLE 5. Algebraic analysis of the proposed S-boxes.

6) ALGEBRAIC IMMUNITY

It is important to measure the algebraic immunity of an S-box
in cryptosystem. S-boxes with high algebraic immunity can
effectively resist algebraic attacks for an encryption system.
The algebraic immunity results of the proposed S-boxes are
listed in Table 5.

7) ALGEBRAIC DEGREE

The S-boxes with high algebraic degree can effectively resist
higher order differential attacks. Therefore, the algebraic
degree of an S-box is desired to be as high as possible. The
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TABLE 6. NIST 800-22 test on the proposed S-boxes.

algebraic degree results of the proposed S-boxes are also
listed in Table 5.

8) TRANSPARENCY ORDER

The transparency order (TO) of S-box can be used to illus-
trate the resistance against DPA attack. The lower the value
of the TO is, the higher the resistance against DPA attack
of an S-box would be. The TO value of m?mS-box can be
calculated as follows [36]:

TO = max
β∈Fm2

(

|m− 2wt(β)| −
1

22m − 2m

×
∑

a∈Fm2 −{0}

∣

∣

∣

∣

∣

∣

∑

v∈Fm2 ,wt(v)=1

(−1)v.βWDaS(0, v)

∣

∣

∣

∣

∣

∣





where Fm2 is m dimensional vector space in binary finite
field and wt(β) is the Hamming weight of vector β. The
transparency orders of the proposed S-boxes are also listed
in Table 5.
As shown in Table 5, the algebraic degree values and

the algebraic immunity values of the proposed S-boxes are
7 and 4, respectively, which are highly desirable. Therefore,
the proposed S-boxes can reduce the possibilities of differ-
ential attacks and algebraic attacks. Additionally, the pro-
posed S-boxes have lower TO values among the existing
S-boxes, which further verifies the safety of the proposed
S-boxes.

9) NIST TEST

NIST test is used to analyze the feature of randomness.
We have performed NIST-800-22 test on the proposed
S-boxes and the results are presented in Table 6. It can be
seen that 12 tests have passed successfully. However, due to
the insufficient sequence length, Random Excursions Test,
Random Excursions Variant Test and Universal Statistical
Test are not applicable.

V. PROPOSED IMAGE ENCRYPTION SCHEME

The proposed S-boxes are suitable for designing cryptosys-
tem. This section exemplifies a specific application of the
proposed S-boxes in image encryption.

A. GENERATION OF THE SECRET KEY

Our cryptosystem utilizes a 128-bit secret key K , which is
generated by the hash algorithm MD2. For plaintext images,
even if only one bit is changed, its hash value will change
completely. By dividing the 128-bit secret key into 16-bit
blocks (ki), K can be expressed as follows:

K = k1, k2, . . . , k8.

The new initial values can be obtained by the following
formula:

α′ = α + (bin2dec (k1 ⊕ k2)) × 10−6

µ′ = µ + (bin2dec (k3 ⊕ k4)) × 10−6

x ′
0 = x0 + (bin2dec (k5 ⊕ k6)) × 10−6

r ′ = r + (bin2dec (k7 ⊕ k8)) × 10−6

where α, u, x0 and r are the initial given values.
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FIGURE 5. Flowchart of encryption algorithm.

B. IMAGE ENCRYPTION ALGORITHM

The proposed image encryption algorithm includes four parts.
Firstly, the key sequence K and the new initial values are
generated by the hash algorithm. Secondly, the rows and
columns of the plain image are permuted by using the pro-
posed S-box1 and the sort function. Thirdly, the pixel values
of the plain image are replaced by the values in the proposed
S-box1. Fourthly, the ciphered image is obtained by XOR
operations and chaotic diffusions. The entire flowchart of the
encryption algorithm is shown in Fig. 5.
Without loss of generality, assuming that the size of the

original image is M × N , the image encryption algorithm
based on the proposed S-boxes consists of the following
steps:
Condition: Suppose the plain-image P is of sizeM×N and

A1 is a matrix corresponding to the plain image P. Set S1 is
the chaotic sequence corresponding to the proposed S-box1
and S2 is the chaotic sequence corresponding to the proposed
S-box2.
Step 1: Generate the key sequence K and the initial values

α′, u′, x ′
0 and r

′ of the fractional-order logistic system accord-
ing to Sect. 5.1.
Step 2: Set [S1,NUM ] = sort(S1),A2 = A1, i = 1,Row =

M/256 and Col = N/256.
Step 3: Permute the rows and columns of the plain image

according to the following formula:

A2(256 × j+ i, :) = A1(NUM (i) + 256 × j, :)
A2(:, 256 × j+ i) = A1(:,NUM (i) + 256 × j)

where i = 1, 2, . . . , 256 and j = 0, 1, 2, . . . ,Row − 1,
Col − 1.
Step 4: Let A2 = reshape(A2,M × N , 1) and convert the

elements of the matrix A2 into 8-bits binary numbers and
set i = 1. Choose four even digits and four odd digits of
the ith 8-bit binary digits to form two four-bit binary digits,
respectively. Then, these two decimal digits m and n are
obtained by converting the two four-digit binary digits into
decimal digits.

FIGURE 6. Flowchart of decryption algorithm.

Step 5: Set m = m + 1, n = n + 1, and then, substitute
the (m, n) element of the proposed S-box1 for A2(i) in A2. Set
i = i+ 1, and return to step 4 until i reachesM × N .
Step 6: Set A3 = A2. Encrypt the (256 × j + i)th element

in A2 according to the following equation:

A3(256 × j+ i) = A2(256 × j+ i) ⊕ S2(i),

where i = 1, 2, . . . , 256 and j = 0, 1, 2, . . . , (M × N/

256) − 1.
Step 7: Generate the chaotic sequence S3 whose length is

15000 by using the Fractional-order Logistic system with the
initial values α′, u′, x ′

0 and r
′
.

Step 8: Set N1 = floor(M × N/15000) and A4 = A3.
Encrypt the first 15000×N1 elements in A3 according to the
following equation:

A4(15000 × j+ i) = A3(15000 × j+ i) ⊕ S3(i),

where i = 1, 2, . . . , 15000 and j = 0, 1, 2, . . . ,N1 − 1.
Step 9: Set N2 = mod (M × N , 15000). Encrypt the last

N2 elements in A3 according to the following equation:

A4(15000 × N1 + i) = A3(15000 × N1 + i) ⊕ S3(i),

where i = 1, 2, . . . ,N2.

Finally, the ciphered image is obtained.
In addition, this encryption scheme is also applicable to

color images and binary images. A color image can be divided
into three channels (red, green and blue) and encrypted sep-
arately by applying the proposed encryption scheme corre-
spondingly. Then the final cipher image can be obtained by
combining the red, green and blue cipher images.

C. DECRYPTION PROCEDURE

The decryption process is the reverse procedure to the encryp-
tion process. By using the secret keys, the receivers decrypt
the cipher image according to the reverse operations of the
encryption algorithm. The entire decryption algorithm is pre-
sented in Fig. 6.
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TABLE 7. χ
2-test results for ciphered images.

D. SIMULATION EXPERIMENTS AND PERFORMANCE

ANALYSIS

The performance analysis of the proposed encryption algo-
rithm includes key space analysis, histograms, correlation
coefficients and differential analysis. In the experiments,
the test images are the 512 × 512 images with an 8-bit gray
scale.

1) SECRET KEY SPACE

The total number of different keys used in the encryption pro-
cess represents the size of the key space. For any encryption
system, the key space must be large enough to resist violent
attacks. During the construction of S-boxes, the secret keys
include three decimal parameters µ, α, r and the initial value
x0 for Eq. (3). If the accuracy of the computer is 1016, for the
construction of an S-box, the total key spaceH1 ≥

(

1016
)4 =

1064. In the proposed encryption algorithm, due to using two
different S-boxes and the 128-bit secret key, the total key
space H2 > 0.5 × H1 × H1 = 0.5 × 10128 > 2383. To resist
violent attacks, the size of the secret key space should not
be less than 2100 [47]. Obviously, the proposed encryption
algorithm has enough key space to resist all kinds of violent
attacks.

2) HISTOGRAM ANALYSIS

The histogram represents the distribution characteristics of
the pixel intensity of an image. To resist any statistical attacks,
a secure encryption system must ensure that the encrypted
image has a uniform histogram. The histograms of the plain
image Lena, BARB and their cipher images are presented
in Fig. 7. Obviously, the gray scale values of the cipher images
are uniformly distributed in Fig. 7 (d, h). Therefore, there
is a significant difference from the distribution of the plain
image Lena and BARB in Fig. 7 (a, e). Additionally, as shown
in Fig. 7 (i − k), the proposed encryption scheme is also
effective for binary images.
In order to further verify the uniform distribution of

ciphered image pixels, we have performed the χ2-test on the
ciphered images Lena and BARB. The value of the χ2-test
for a ciphered image is calculated according to the following
formula:

χ2 =
255
∑

0

(vi − v0)

v0
(4)

where v0 = M × N
/

256, M × N is the size of ciphered
image and vi is the observed frequency of a pixel value
i(i = 0, 1, 2, . . . , 255.). The results of the test are listed
in Table 7.

FIGURE 7. Histograms for the plain-image and ciphered image
(a) Plain-image Lena (b) the ciphered image of Lena (c) the histogram of
Lena (d) the histogram of ciphered image of Lena (e) plain-image BARB
(f) the ciphered image of BARB (g) the histogram of BARB (h) the
histogram of ciphered image of BARB (i) the binary image Lena (j) the
ciphered image of binary image Lena (k) the histogram of ciphered image
of binary image Lena.
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TABLE 8. Correlation comparison of different encryption algorithms.

TABLE 9. Comparison for Information entropy of different encryption algorithms.

As shown in Table 7, the χ2-test values are lower than
the critical value 293.25 [57], which indicates the pro-
posed encryption scheme has passed the χ2-test. There-
fore, the pixel value distribution is uniform in the encrypted
images.

3) CORRELATION ANALYSIS OF TWO ADJACENT PIXELS

In horizontal, vertical and diagonal directions of a plain
image, there is a high correlation between adjacent pixels.
To resist statistical attacks, the correlation between adjacent
pixels of a ciphered image should be as low as possible.
We perform the following steps to calculate the correlation
between plain and ciphered images. First, randomly choose
3000 pairs of two adjacent pixels of an image. Then, cal-
culate the correlation coefficient according to the following
formula [64], [70]–[72], [76]- [77]:

rxy = cov(x, y)/
√

D(x)D(y), (5)

where x and y are two adjacent pixels of an image with

E(x) =
1

3000

3000
∑

i=1

xi, (6)

D(x) =
1

3000

3000
∑

i=1

(xi − E(x))2, (7)

cov(x, y) =
1

3000

3000
∑

i=1

(xi − E(x))(yi − E(y)). (8)

By using the formulas (5)-(8) and the proposed encryption
algorithm, the correlation coefficients of plain images Lena,
BARB and their ciphered images are calculated and the
results are presented in Table 8. Clearly, the correlation coef-
ficients of the plain image approximate to 1, while those of the

ciphered image approximate to 0 along all three directions.
Therefore, the correlation between adjacent pixels of the
ciphered images is extremely low, which means that the pro-
posed encryption scheme has good confusion and diffusion
properties.

4) INFORMATION ENTROPY ANALYSIS

Information entropy is the most important index to measure
randomness. Calculate the information entropy according to
the following formula [59], [60], [76], [78], [38]:

H (m) = −
2n−1
∑

i=0

p(mi) log2(p(mi)), (9)

where m is the source of information, n is the bit number
required for the symbol mi, and p(mi) denotes the probabil-
ity of symbol mi. If all the pixels are uniformly distributed
for an 8-bit gray image, the maximum entropy is 8, which
means that the information is random. For a ciphered image,
the information entropy should be close to 8. The closer to 8,
the less possible the attacker will decrypt the cipher image.

By using Eq. (9), the information entropies of the plain
images and the cipher images are calculated. The results are
presented in Table 9. Obviously, the entropies of the ciphered
images approximate to the ideal value 8, which means that
the proposed scheme has the desired information entropy
properties.

5) DIFFERENTIAL ATTACKS ANALYSES

To defend against a differential attack, a good encryption
scheme needs to ensure that any minor modification of
the plain image will lead to a significant difference in the
ciphered images. The proposed encryption scheme can make
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TABLE 10. NPCR and UACI of Lena and BARB with only one pixel change.

TABLE 11. NIST 800-22 test on the ciphered images.

two ciphered images be different completely, even if their
plain images have only one different pixel. Let c1 and c2 be
the two ciphered images and calculate the measure value of
the sensitivity to a minor change of the plain image according
to Eq. (10) and Eq. (11) [63], [69], [76] and [38]:

NPCR =

∑

ij

D(i, j)

M × N
× 100%, (10)

UACI =
1

M×N × 255

∑

ij

[c1(i, j)−c2(i, j)] × 100% (11)

where D(i, j) =

{

1, c1(i, j) 6= c2(i, j)

0, otherwise
.

Without loss of generality, choose the Lena image and
BARB image as the test images and calculate the values of
NPCR and UACI. The results of NPCR and UACI are listed
in Table 10. As observed, the proposed algorithm obtains
the mean NPCR at over 99.5% and the mean UACI at over
33.4%. Therefore, the proposed encryption algorithm has

good NPCR and UACI scores, which means that there is
strong robustness against differential attack.

6) CIPHERTEXT-ONLY ATTACK ANALYSES

Ciphertext-only attack refers to the exhaustive attack when
only the encrypted text is known. Attacker tries a list of
ciphertext to deduce the original secret key. As mentioned in
the above sections, the proposed encryption scheme not only
has fast encryption speed, but also has many keys and large
key space. Additionally, the proposed cryptosystem applies a
128-bit secret key K generated by the hash algorithm MD2,
which indicates the secret key is one-time pad. By Shannon’s
theory, ciphertext only attack cannot be carried out. So the
proposed encryption scheme is secure.

7) NIST TEST

In order to test the pixels’ randomness of the ciphered images,
we have performed NIST-800-22 test on the ciphered images.
The test results are presented in Table 11. It can be seen that
all the tests have passed successfully.
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TABLE 12. The results of MAE, MSE PSNR and SSIM for ciphered images.

8) MAE, MSE, PSNR, SSIM AND NCC ANALYSES

Mean absolute error (MAE) and mean square error (MSE)
can be used to evaluate the error of pixel values between two
images. For a secure encryption system, the values of MSE
and MAE between plaintext and ciphered images should be
sufficiently large. Peak signal-to-noise ratio (PSNR) is a mea-
sure for the peak error between plain and ciphered images.
Considering the huge difference between plain and ciphered
images, the PSNR of plain and ciphered images should be
low. Calculate the values of MAE,MSE and PSNR according
to Eq. (12), Eq. (13) and Eq. (14) [69], [71]– [73], [77],
and [38]:

MAE =

M
∑

i=1

N
∑

j=1

∣

∣pij − cij
∣

∣

M × N
, (12)

MSE =

M
∑

i=1

N
∑

j=1
(pij − cij)2

M × N
, (13)

PSNR = 20 log10

[

Imax√
MSE

]

, (14)

where pij and cij are the pixels of plain and ciphered images
at the position (i, j), respectively, and Imax is the maximum
pixel’s estimation of image.
Both structural similarity index metric (SSIM) and nor-

malized cross-correlation (NCC) can be used to measure the
similarity two images. The difference is that SSIM focuses
on the similarity of structure, contrast and luminance between
images, while NCC focuses on the similarity of pixel values
between images. Calculate the values of SSIM and NCC
according to Eq. (15), and Eq. (16) [69], [71], [72]:

NCC =

M
∑

i=1

N
∑

j=1
pij × cij

M
∑

i=1

N
∑

j=1
p2ij

(15)

SSIM =

(

2µpµc + c1

µ2
p + µ2

c + c1

)(

2σpc + c2

σ 2
p + σ 2

c + c2

)

(16)

where pij and cij are two images,µp, µc are their mean values,
respectively, and σpc is the standard deviation.

Table 12 presents the results of MAE, MSE, PSNR
and SSIM between the plain and ciphered images.
Table 13 presents the results of SSIM and NCC between the
ciphered and decrypted images. These show that the proposed
encryption scheme achieves the desired effect.

TABLE 13. The results of SSIM and NCC for decrypted images.

9) CORRELATION BETWEEN PLAIN AND CIPHERED IMAGES

AND CONTRAST, ENERGY ANALYSES

The correlation between plain and ciphered images is ana-
lyzed in this subsection. Calculate the correlation coefficient
according to Eq. (17) [62]– [64], [72]:

Corr =

M
∑

i=1

N
∑

j=1
(pij − p̄)(cij − c̄)

√

(
M
∑

i=1

N
∑

j=1
(pij − p̄)2)(

M
∑

i=1

N
∑

j=1
(cij − c̄)2

, (17)

where p̄, c̄ are the average of plain and ciphered images,
respectively. The results of the correlation are listed
in Table 14. Clearly, the correlation coefficients between the
plain and ciphered images are close to 0, which means that
the proposed encryption scheme has the desired correlation
property.

The contrast analysis calculates the intensity difference
between pixels and their neighboring pixels in the whole
image [58]. The high contrast value reflects the superior-
ity of Y. Q. Zhang et al.: An Efficient Image Encryption
Scheme Based on S-Boxes and Fractional-Order Differential
Logistic Map the image encryption scheme. The contrast
value can be calculated by Eq. (18) [62], [63], [69] and [72]:

Contrast =
M
∑

i=1

N
∑

j=1

|i− j|2pij, (18)

where pij is given as the number of gray-level co-occurrence
matrices (GLCM), M and N represent the number of rows
and columns of GLCM, respectively. The contrast values of
the proposed encryption scheme are listed in Table 14.
The energy analysis quantifies the information of ciphered

image and reflects the disorder degree of ciphered image.
The lower energy value of ciphered image indicates the
higher encryption quality. The energy value is calculated
by Eq. (19) [69], [72]:

Energy =
∑

i,j

p2ij, (19)

where pij is given as the number of GLCM. The energy values
of the ciphered images given by the proposed encryption
scheme are also listed in Table 14.

As shown in Table 14, the energy values are closer to 0
and the contrast values are much larger in the proposed
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TABLE 14. The results of contrast, energy and correlation for ciphered
images.

scheme than in schemes [82], [83]. Therefore, the proposed
encryption scheme has high security.

VI. CONCLUSION

In this paper, we not only propose an efficient construction
scheme of S-boxes based on the fractional-order logistic sys-
tem, but also present an image encryption scheme using the
fractional-order Logistic system, S-boxes and Secure Hash
Algorithm MD2. The simulation and experimental results of
S-boxes indicate that the proposed S-boxes have better BIC
property, SAC property and Nonlinearity property. Further-
more, the proposed construction scheme of S-boxes could
find other S-boxes satisfying perfect cryptographic properties
by changing the order of the fractional-order differential
equation. Moreover, from the above discussion, not only the
proposed S-boxes construction scheme but also the proposed
image encryption algorithm is more efficient. Although the
high dimensions chaotic systems may have large parame-
ter space, the expense of more computational complexity.
Therefore, the proposed algorithms based on the fractional-
order logistic map have advantages in both better ability to
withstand common cryptanalyst attacks and less execution
time. In future practical researchwork, wewill intend to apply
the fractional-order chaotic logistic system to circuit board
design.
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