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Abstract Recently, phase field modeling of fatigue
fracture has gained a lot of attention from many
researches and studies, since the fatigue damage of
structures is a crucial issue in mechanical design. Dif-
fering from traditional phase field fracture models, our
approach considers not only the elastic strain energy
and crack surface energy, additionally, we introduce a
fatigue energy contribution into the regularized energy
density function caused by cyclic load. Comparing to
other type of fracture phenomenon, fatigue damage
occurs only after a large number of load cycles. It
requires a large computing effort in a computer sim-
ulation. Furthermore, the choice of the cycle num-
ber increment is usually determined by a compromise
between simulation time and accuracy. In this work,
we propose an efficient phase field method for cyclic
fatigue propagation that only requires moderate com-
putational cost without sacrificing accuracy. We divide
the entire fatigue fracture simulation into three stages
and apply different cycle number increments in each
damage stage. The basic concept of the algorithm is
to associate the cycle number increment with the dam-
age increment of each simulation iteration. Numerical
examples show that our method can effectively predict
the phenomenon of fatigue crack growth and reproduce
fracture patterns.
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1 Introduction

In the last decade, the phasefieldmethodwasdeveloped
to simulate fracture processes (Francfort and Marigo
1998; Bourdin et al. 2000; Bourdin 2007). The core
idea of the phase field model is to represent a discrete
discontinuous phenomenon by a smooth function. The
biggest advantage of phase field modeling is its uni-
fied framework, in which the entire fracture evolution
(nucleation, propagation, branching, kinking) is cov-
ered. Griffith (1921) initially proposes the idea of using
an energetic criterion to predict the onset of crack prop-
agation. Later, Francfort and Marigo (1998) generalize
the classicalGriffith theory by a variational formulation
of brittle fracture, but it is nevertheless numerically dif-
ficult. A regularized approximation of themodel is pre-
sented byBourdin (Bourdin 2007; Bourdin et al. 2008),
which is more suitable for numerical implementation.
This regularized version gives birth to the so-called
fracture phase field models, building a simple path to
model fracture phenomenon. The phase field method
has been successfully established for quasi-static frac-
ture (Kuhn and Müller 2010; Miehe et al. 2010; Bor-
den et al. 2014), dynamic brittle fracture (Schlüter et al.
2014), ductile fracture (Ambati et al. 2015; Kuhn et al.
2016), hydraulic fracture (Wilson and Landis 2016;
Yoshioka and Bourdin 2016) so far. However, the real
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manufacturing processes usually involve oscillating
loads, which usually do not lead to an immediate fail-
ure, but rather a failure caused by fatigue crack growth
after numerous loading cycles. In this spirit, a phase
field model that can handle complex cyclic fatigue pro-
cess is required.

Some research contributions are given to find phase
field models for the fatigue fracture process. On the
one hand, Boldrini et al. (2016) proposed a phase field
model to describe the fracture behavior coupling ther-
mal and fatigue problems, where fatigue behavior is
related to an additional scalar variable. On the other
hand, fatigue fracture can be modeled by adopting the
Ginzburg-Landau formalism (Gurtin 1996): In Caputo
and Fabrizio (2015) and Amendola et al. (2016), the
fatigue damage evolution is derived by incorporat-
ing a fatigue potential to degrade the material under
cyclic loading. However, those methods fail to repro-
duce the important known feature of fatigue behavior
like the Paris’ law, the Wöhler curve with the tran-
sition between low- and high-cyclic fatigue, and the
Palmgren-Miner law.Recently, (Alessi et al. 2018; Car-
rara et al. 2020; Seiler et al. 2020; Seleš et al. 2021;
Hasan and Baxevanis 2021) advance the fatigue phase
field model by taking both degradation of stiffness
and reduction of fracture energy in the fatigue damage
evolution, where the major feature of fatigue behav-
ior can be recovered into account. Differing from the
above approaches, Schreiber et al. (2020a, b) extend
the model from Kuhn and Müller (2010), where an
additional energy density contribution is proposed as
an additional driving forces caused by the increasing
number of load cycles. In Schreiber et al. (2020a, b),
a realistic fatigue crack growth behavior, including the
mean stress effects and different stress ratios, can be
predicted.

In phase field simulation of fatigue fracture, huge
computational effort is usually required before crack
nucleation or propagation can be observed on a macro-
scopic level. As an efficient scheme, the computing
timemust be kept below a reasonable limit with respect
to a large number of load cycles. In this work, we
provide an efficient adaptive cycle number adjust-
ment algorithm based on the work of Schreiber et al.
(2020a, b). The platform FEniCS (Alnæs et al. 2015) is
used for the implementation.

2 Phase field modeling for cyclic fatigue cracks

2.1 Phase field modeling

A phase field fracture model introduces an additional
field variable to represent cracks. In the phase field
model from Kuhn and Müller (2010), the crack field s
is 1 if the material remains undamaged and is 0 where
cracks occur. Furthermore, it is to postulate that the
displacement field u and crack field s locally minimize
the total energy of a loaded body Ω . The total energy
E is given as

E =
∫

Ω

1

2

(
(s2 + η)ε : [Cε]

)
dV

+
∫

Ω

Gc
(

(1 − s)2

4ε
+ ε|∇s|2

)
dV

(1)

with the infinitesimal strain tensor ε = 1

2
(∇u+ ∇Tu)

and stiffness tensor C. The dimensionless parameter
η is used to avoid numerical difficulties, and Gc is the
cracking resistance. The parameter ε controls the width
of the transition zone between the broken and undam-
aged material. Figure 1 shows the influence of ε to the
crack width. The internal length parameter ε is taken

Fig. 1 A quadratic geometry is loaded at the top of the surface
and the pre-defined crack a0 is with length of 0.05L . The model
parameter ε controls the width of the transition zone (a: ε =
0.001; b: ε = 0.002; c: ε = 0.003; d: ε = 0.004; e: ε = 0.005
f : ε = 0.006)
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as four times the mesh size in order to solve the phase
field governing equation in the presented examples of
this work.

In a classical phase field fracture mode, e.g. Kuhn
andMüller (2010), only the elastic energy and the frac-
ture surface energy is considered in the total free energy.
The crack will propagate in such a way that the total
energy is minimized. However, this is not suitable in a
fatigue fracture simulation. The cyclic loading involved
in the fatigue simulation is much lower than the other
fracture simulation cases, thus, with this load it is not
effective to minimize the total energy. Additionally, the
continuous loading and unloading process consumes
also much energy as shown in Mughrabi (2015) and
this is not included in the Kuhn and Müller’s model.
Different from thework proposed in (Alessi et al. 2018;
Carrara et al. 2020; Hasan and Baxevanis 2021), where
a fatigue degradation function related to a history vari-
able is applied directly on the fracture energy term and
the fracture toughness of the material is reduced dur-
ing the fatigue process, we keep the surface energy term
untouched and extend the phase fieldmodel fromKuhn
and Müller (2010) by an additional term for cyclic
fatigue. The total energy now reads

E(ε, s,∇s) =
∫

Ω

ψ(ε, s,∇s)dV

=
∫

Ω

1

2

(
(s2 + η)ε : [Cε]

)
dV+

∫
Ω

Gc
(

(1 − s)2

4ε
+ ε|∇s|2

)
dV+

∫
Ω

ψacdV,

(2)

Among them, ψ is the total energy density, and ψac is
the energy density, standing for the sum of additional
driving forces caused by fatigue damage. The energy
density for fatigue crackψac is given as (Schreiber et al.
2020b)

ψac = h(s)q

〈
D − Dc

〉b

= h(s)q

〈
D0 + dN

nD

(
σ̂ (1 − L)

f (L)

)k

− Dc

〉b
,

(3)

which is related to a new introduced parameter D, rep-
resenting the damage related to fatigue.

Fig. 2 A higher number of c increases the crack growth rate

The function f (L) = AD(1 − L)c is a threshold,
where L is the ratio of the mean external load and
the maximum external load; and the parameter c is a
constant. In general, the function f (L) can be cho-
sen arbitrarily as long as it captures the mean stress
effect of a specific material. Fig. 2 shows the influ-
ence of the parameter c on the crack growth rate by
unidirectional cyclic load, where a higher value of c
increases mean stress effect. The increments with load
amplitude below this threshold is not taken into damage
accumulation. The term σ̂ (ε) is the driving force, corre-
sponding to the first principal stress of the stress tensor
σ = Cε in this case, ofwhichwe only consider positive
entries and negative entries are neglected. However, it
is not claimed that this choice of driving force is gener-
ally valid for all materials with complex properties or
effects. Other effective stress quantities, as e.g. the von-
Mises stress, might be more suitable in different cases.
The parameters AD , k and nD can be obtained from the
S-N curve (see Fig. 3). Here, the mathematical model
of the phase field is coupledwith the fatigue parameters
from experiments, which allows for a general and ele-
gant incorporation of influences, like the temperature
effect or ambient environment into the fatigue propa-
gation behavior. Furthermore, D0 is the previous state
of fatigue damage; Dc is a threshold to determine the
critical fatigue damage stage. The idea, to use a damage
parameter D, is inspired by Miner’s rule from Miner
(1945). Miner’s rule describes the mechanism of dam-
age accumulation until macro crack initiation. The con-
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Fig. 3 A simplified explanation of S-N curve

nection between Paris’ law and Miner’s rule is shown
in Ciavarella et al. (2018). Thus, we define the damage
parameters in cooperationwith fatigue parameters from
the S-N curve. The regularization parameters q and b
determine the speed of fatigue damage energy growth,
which should be chosen appropriately to ensure a sta-
ble energy growth speed. Figure 4 shows the influence
of different parameter settings on the crack length and
crack growth rate. It is to notice that the parameters q
and b are merely numerical parameters, which are only
used to construct the fatigue energy term from the dam-
age parameter D. The crack growth rate ismostly deter-
mined by the fatigue parameters from the S-N curve
with the help of experiments, as shown in Fig. 5

The degradation function h(s) = s2 models the loss
of stiffness in broken material caused by cyclic fatigue.
This choice of degradation function is for the sake of
simplicity. For a comprehensive overview of the model
parameters, we provide a summary in Table 1.

With the Macauley brackets, which is defined by

〈x〉n =
{
0 if x ≤ 0

xn if x > 0,
(4)

the fatigue crack will only occur after the damage D
reaches the threshold Dc. After that, the fatigue energy
grows rapidly controlled by parameters q and b; and
it eventually decreases again due to the degradation
function.

The fatigue damage D is updated for every simula-
tion iteration

Dn+1 = Dn + dDn (5)

with

dDn = dN

nD

(
σ̂n(1 − L)

f (L)

)k

. (6)

With the help of variational principle, Eq. (2) yields
the equilibrium of the displacement field u and the evo-
lution of the crack field s.

2.2 Paris’ law

The crack growth behavior is the main focus of the
present investigation. The growth behavior of a macro
crack can be described by Paris’ law (Paris and Erdo-
gan 1963). The Paris’ law describes the fatigue crack
growth rate in relation to the stress intensity factor
range, it reads

da

dN
= C(�K )m, (7)

whereC andm arematerial dependent parameters. The
stress intensity factor K (Irwin 1997) is an intensity
parameter, which describes the stress singularity near
the tip of a crack. It is determined by the specimen
geometry, the size and location of the crack, the mag-
nitude and the distribution of loads applied on themate-
rial. The crack growth rate is discretized as

(
da

dN

)
p

≈ ap − ap−1

Np − Np−1
, (8)

where ap and Np denote the crack length and cycle
number from the p-th data point. According to Paris’
law, the crack growth rate has a linear behavior with
scope m in a diagram with logarithmic scales (see
Fig 6).

3 FEniCS implementation of the phase field
fatigue fracture model

3.1 Simulation settings

Let t∗ be the external traction on the part ∂Ω t of the
boundary of the domainΩ . The variational formulation
of our problem reads
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Fig. 4 The influence of the model parameters q, b and Dc on the crack length and crack growth rate

Fig. 5 The influence of the fatigue parameters on the crack
growth rate

Table 1 Model parameters

Symbol Meaning Function

s Crack field Crack state

ε Infinitesimal strain tensor

C Stiffness tensor Material property

Gc Critical energy release rate Fracture resistance

ε Internal length Control crack width

η Residual stiffness parameter Numerical stability

k Lifetime exponent Fatigue property

nD Knee point cycle number Fatigue property

AD Threshold stress Fatigue property

D0 Current fatigue damage History variable

Dc Fatigue damage threshold Critical damage state

q Regularization parameter Fatigue energy growth

b Regularization parameter Fatigue energy growth

c Mean stress parameter Mean stress effect
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Fig. 6 The crack growth rate has a linear behavior in a diagram
with logarithmic scales

∫
Ω

δE dV +
∫

∂Ωt

t∗ · δu dA = 0. (9)

Computing the variation of total energy E with
regard to displacement field u and fracture field s yields

δE =
∫

Ω

(
∂ψ

∂ε
: δε + ∂ψ

∂s
δs + ∂ψ

∂∇s
· δ∇s

)
dV .

(10)

Employing the product rule

∂ψ

∂ε
: δε = −div

(
∂ψ

∂∇u

)
δu + div

((
∂ψ

∂∇u

)T

δu
)

(11)

and

∂ψ

∂∇s
· δ∇s = −div

(
∂ψ

∂∇s

)
δs + div

(
∂ψ

∂∇s
δs

)
, (12)

as well as the divergence theorem on Eq. (10) results
in

δE =
∫

Ω

−div

(
∂ψ

∂∇u

)
δu dV

+
∫

Ω

(
∂ψ

∂s
− div

∂ψ

∂∇s

)
δs dV

+
∫

∂Ω

∂ψ

∂∇s
· n δs dA

+
∫

∂Ω

(
∂ψ

∂∇u

)T

· n δu dA

(13)

Thus, Eq. (9) yields four coupled Euler-Lagrange
equations of the variational principle

div
∂ψ

∂∇u
= 0 (14)

∂ψ

∂s
− div

∂ψ

∂∇s
= 0 (15)

∂ψ

∂∇s
· n = 0 on ∂Ω∇s (16)

(
∂ψ

∂∇u

)T

· n + t∗ = 0 on ∂Ω t. (17)

With the constitutive law ∂ψ
∂∇u = σ , Eq. (14) represents

the equilibrium condition

divσ = 0. (18)

Eq. (15) provides the evolution equation of the crack
field. As shown inGurtin (1996), themost general form
of the evolution of the crack field s, which is in con-
sistent with a mechanical view of the second law of
thermodynamics reads

ds

dN
= −M

δψ

δs
= −M

(
∂ψ

∂s
− div

∂ψ

∂∇s

)
, (19)

where M > 0 is the mobility parameter, which mod-
els the “viscosity”(rate dependency) of the phase field
fracture model. The M → ∞ approximates the quasi

static limit case with
δψ

δs
= 0. Therefore, the evolution

of crack field is modeled by

ds

dN
= − M

{
g(s)′ 1

2
ε : [Cε]

− Gc
(
2ε∇ · ∇s − s − 1

2ε

)

+ h(s)′ψac(D)

}
.

(20)

Eqs. (16) and (17) are the Neumann boundary condi-
tions for the crack field

∇s · n = 0 on ∂Ω∇s (21)

and the stress field

σn = t∗ on ∂Ω t. (22)
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Solving Eqs. (18) and (20) by means of the Newton
method yields the displacement field u and fracture
field s.

3.2 Adaptive cycle number adjustment algorithm

To reduce the total number of load cycles, we trans-
fer the simulation step to cycles: The simulation step is
defined as the incremental change of “time” in one sim-
ulation iteration, and each simulation step represents a
certain increment of load cycles. Furthermore, the real
cyclic loading is approximated with its envelope load-
ing. In general, this “time-cycle” transfer concept is
also suitable for any arbitrary loading process. Noting
Eq. (6), the cycle number increment can be rewritten
as

dN = nD

(
σ̂n(1 − L)

f (L)

)−k

dD. (23)

The choice of the cycle number increment is a crucial
point in the phase fieldmodel: not only because it deter-
mines the computational time; it also strongly influ-
ences the shape of the crack pattern. The crack trace is
wide and irregular when the cycle number increment
is too large. Besides, the fatigue energy grows dramat-
ically by over-large cycle number increments, and it
might result in a simulation with an unstable energy
state. Several crackpatterns fromunsuitable cycle num-
ber increment are demonstrated in Fig. 7.

Additionally, the displacement field un , the crack
field sn and the cycle number Nn from the previous sim-
ulation step are stored as reference values. These values

Fig. 7 The crack pattern is strongly influenced by the cycle num-
ber increment dN ; a: dN chosen by our algorithm; b: crack
pattern is wide and irregular (dN = 50); c: unstable state
(dN = 500)

Algorithm1: adaptive cycle increment adjustment
algorithm
Input: input parameter: Dc, Dα , Dβ

/* damage threshold: Dc */

/* regulation parameter at stage 2 :
Dα */

/* regulation parameter at stage 3 :
Dβ */

/* regulation parameter at stage 3 :
Dγ */

static is TRUE;
crack is FALSE;
while simulation do

if max[dDn+1] + max[dDn] < Dc and static is TRUE
then

/* stage 1 */
dN = 2dN ;

end
else if max[dDn+1] + max[dDn] > Dc and
crack is FALSE then

/* stage 2 */
static is FALSE;
if max[dDn] > Dα then

dN = 0.1dN ;
restart;

end
else if max[dDn] < Dα then

/* fatigue damage begins now */
crack is TRUE;

end
end
if crack is TRUE then

/* stage 3 */
if max[dDn] < Dβ then

dN = dN
Dγ

Dβ

;

restart;
end
else if max[dDn] > Dγ then

dN = dN
Dβ

Dγ

;

restart;
end

end
end

will be reused if the simulation needs to be restarted. In
Alg. 2, we provide the details of the restart-algorithm.

The simulation of fatigue fracture is divided into
three stages: 1 the damage D is below the threshold
Dc. In this stage, it behaves in a pure static mechanical
state. Thus, the cycle number increment should be cho-
sen as large as possible. 2 the damage D is at the limit
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Algorithm 2: restart-algorithm
while simulation do

if restart is TRUE then
/* overwrite using previous cycle

*/
N = N∗ + dN ;
u = u∗ ;
s = s∗ ;

else
/* store field from previous cycle

*/
N∗ = Nn ;
u∗ = un ;
s∗ = sn ;
/* update field */
Dn+1 = Dn + dDn ;
Nn+1 = Nn + dNn ;
un+1 = un ;
sn+1 = sn ;

threshold Dc. The fatigue crack is about to begin and the
cycle number increment dN should be chosen suitable
to ensure dD small enough to simulate the transient pro-
cess. 3 the damage D is bigger than Dc.We control the
maximum damage increment max[dD] between a con-
trol parameter Dβ and Dγ to obtain a moderate growth
rate of the fatigue energy. Since the damage increment
dD is controlled by this algorithm, the fatigue damage
at the previous step and current step will not change
much. As a result, it is suitable to take the stress from
the previous step as the driving force even if the cycle
number increment dN is large. This adaptive algorithm
will stop once the cycle number increment dN reach
a minimal cycle number increment. Figure 8 reports
the maximum damage increment max[dD] and cycle
number increment dN by applying the adaptive cycle
increment adjustment algorithm. The cyclic loading is
applied within four phases in this example, where both
the influence of the maximum external load and mean
stress are taken into consideration. According to our
algorithm, small cyclic loading increases the increment
of cycle number of one simulation step. It is to noticed
that in this algorithm only two global values (the max-
imum damage increment max[dD] and cycle number
increment dN ) are involved. The algorithm is suitable
for a fatigue fracture scenario with only one crack or
multiple cracks are simultaneously at the same stage.

For a better comprehension of our algorithm, we
summarize this in Alg. 1.

4 Numerical examples

For validation of the introduced implementation of
the proposed model, several simulations are used. The
compact tension (CT) specimen is widely used as test-
ing sample in the field of fracture mechanics. The def-
inition of the geometry is given in the ASTM E 399
standard (ASTM 2009).

For the CT specimen, the stress intensity factor can
be approximated by

�K = �F

B
√
L

2 + a

L(
1 − a

L

)3/2 ·

[
0.886 + 4.64

(
a

L

2
)

− 13.32

(
a

L

)3

+ 14.72

(
a

L

)4

− 5.69

(
a

L

)5]
.

(24)

This equation was proposed in Srawley (1976). Here F
is the applied force, and B is the thickness of the speci-
men. The simulation result is depicted in Fig. 9, where
the upper semi-circle of the bolt hole is loaded with a
distributed vertical pulsating load. The evolution of the
crack field is demonstrated in Fig. 9b and c. Figure 9d
shows the evolution of the field values (driving force σ̂ ,
damage D and crack field s) along the crack ligament at
cycle N1, N2 and N3. It is recognized, the driving force
σ̂ increases at the crack tip as the crack propagates; as
a consequence, the specimen is easier to break than the
early stage. In other words, the fatigue crack will prop-
agate faster, and the crack growth rate will be higher.
The fatigue damage parameter D is accumulated con-
tinuously during the crack propagation, whereas the
crack field s decreases from 1 to 0. Figure 10 shows the
comparison using cycle adjustment against the “clas-
sical” simulation scheme. As depicted in Fig. 10a, our
algorithm can accelerate the simulation process signif-
icantly. The computing time has dropped to nearly 3%
using our method, compared to constant cycle number
increment dN = 5. Figure 10b and c show, although the
cycle number is adjusted, the proposed method yields
almost the same crack growth rate and crack pattern.
Using the applied forces as a variable, Fig. 11 shows the
crackgrowth rate related to the stress intensity factor for
different simulations. In Fig. 11a, we present the crack
growth rate for different levels of maximum external
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Fig. 8 Illustration of the proposed adaptive cycle adjustment. The upper figure is a schematic illustration of the approximation for
cyclic loading in four phases; a: damage within the simulation; b: cycle number within the simulation

load. The result matches Paris’ law with parameters

C = 3.724 × 105
mm/cycle

(MPa
√
m)m

and m = 5.548 very

well. It is to observe that even though different force
amplitudes for the simulation are applied, the rate of
crack growth can be described with the same Paris’
law. Figure 11b displays the effect of mean stress on
the crack growth rate, where the stress ratio R is defined
as the ratio between the minimum stress and the maxi-
mum stress. The depicted diagram reflects the fact that
higher mean stress increases the rate of crack growth.

In the next example, we consider a block geometry
with initial boundary values as proposed in Müller and
Kuhn (2020). This example is straightforward and dis-
regards special problems of distinction between tension

and compression, since the cracks should only occur in
tension region (Kuhn 2013). A half of its top surface is
loadedwith a displacement load, whereas the bottom of
the block is fixed. Furthermore, we assume this upper
half of the block will never break, given as a Dirich-
let boundary condition s = 1 in the indicated area (in
red) of width 0.5L (see Fig. 12). As seen in Fig. 12, the
crack begins at the top of the surface, which is different
from the pure elastic case shown in Müller and Kuhn
(2020). The reason is that the fatigue crack is triggered
at areas where the maximum first principal stress is
found, which is the driving force for the fatigue crack
propagation in our model.

Different loads, deformations and crack interac-
tions can lead to complex crack propagation behav-

123
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Fig. 9 a: The geometry definition of CT specimen; b: the crack
length in relation to cycle number obtained from a simulation
with vertical loads on the upper bolt hole; c: the evolution of

crack field at cycle N1, N2 and N3; d: the field value (σ̂ , D and
s) at cycle N1, N2 and N3

ior, depending on the applied load conditions on the
geometry. A specimen of a rectangular geometry is
set up to validate our model under mixed mode load-
ing in traction conditions. The rectangular geometry is
loaded with a purely alternating (R = −1) displace-
ment load in the vertical direction on the upper edge,
and the lower edge is fixed. Sharp notches on both verti-
cal edges are defined for different situations. Figure 13
shows that the presented method is robust under mixed
load situation. The first row at cycle number N1 is the
initial state of the crack pattern, where the predefined

cracks are located at different positions. The simula-
tion results at cycle number N2 can be verified with
the crack patterns illustrated in Yates et al. (2008). In
the last row at cycle number N3, we demonstrate the
results at the last feasible simulation stages. At the early
stage, the crack extends purely horizontal in all sim-
ulation settings. After this stage, the cracks begin to
deviate from each other (see Fig. 13b and c), caused by
the fatigue driving force. After this period, the cracks
intend to change their directions to the horizontal level
and grow towards each other again. The deviation of
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Fig. 10 Our method compared to the classical simulation scheme in a: the computational time; b: the crack growth rate; c: the crack
pattern

Fig. 11 The crack growth rate related to the stress intensity factor from simulations with the CT specimen. a: constant stress ratio with
different force amplitudes; b: different stress ratio with the same force amplitude

the crack paths is influenced by the crack interaction,
as shown in Fig. 13d. The crack propagation remains
almost straight during the whole crack evolution due
to the higher distance of the cracks. These crack paths
simulated by the finite elementmethod using ourmodel
is very similar comparing to experiments.

5 Conclusion

We present a phase field fracture model to predict
the fracture behavior caused by fatigue damage. In
the phase field modeling framework, the entire fatigue
fracture behavior is simply derived by a single regu-
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58 S. Yan et al.

Fig. 12 The left figure is the definition of the block geometry; in the right figure, a: the evolution of crack field; b: the magnitude of
the first principal stress σ̂ (driving force) with color-map

larized energy density function. Differing from alter-
native fatigue phase field models (Alessi et al. 2018;
Carrara et al. 2020; Seiler et al. 2020; Seleš et al.
2021), we introduce an additional energy term related
to the fatigue damage into the total energy density func-
tion. The newmethod incorporates the experiment data
directly into the phase field energy term, which is best
to the author’s knowledge, the first work to combine
the experimental findings with the phase field fatigue
model. Thus the proposed simulation setup has the
potential to compactly simulate the fatigue propaga-
tion under complex circumstances. This fatigue energy
part represents the accumulated driving force caused
by fatigue damage. Furthermore, the fatigue energy is
related to a damage parameter, which represents the
damage caused by cyclic fatigue. The results show that
our model is able to reproduce the significant prop-

erties of fatigue crack growth, as e.g. the mean stress
effect. The main contribution of our study is to develop
an adaptive cycle increment adjustment algorithm. The
entire simulation is split into three stages: elastic stage;
transient stage and fatigue stage.During the simulation,
the damage increment is controlled to obtain a mod-
erate fatigue energy growth, where the cycle number
increment is chosen adaptively according to the dam-
age increment. This algorithm can reduce the computa-
tional cost of simulation without sacrificing accuracy.
The implementation of the phase fieldmodel is done on
the open-source platform FEniCS. Thanks to its flexi-
bility and simplicity, it enables elaborate and efficient
simulations of complex problems. As a future work,
the phase field fatigue damage model will be extended
to three dimensions.
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Fig. 13 The left figure is
the definition of the
rectangular specimen; the
right figure (a-e) shows the
evolution of the crack field
loaded with different
conditions (a: f=0; b:
f=0.05L; c: f=0.1L; d:
f=0.15L; e: f=0.2L)
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