
An Efficient Implementation of Braid Groups

Jae Choon Cha1, Ki Hyoung Ko1, Sang Jin Lee1, Jae Woo Han2, and
Jung Hee Cheon3

1 Department of Mathematics
Korea Advanced Institute of Science and Technology, Taejon, 305–701, Korea.

{jccha,knot,sjlee}@knot.kaist.ac.kr
2 National Security Research Institute, Taejon, 305–335, Korea.

jwhan@etri.re.kr
3 International Research center for Information Security

Information and Communications University, Taejon, 305–732, Korea.
jhcheon@icu.ac.kr

Abstract. We implement various computations in the braid groups
via practically efficient and theoretically optimized algorithms whose
pseudo-codes are provided. The performance of an actual implementa-
tion under various choices of parameters is listed.

1 Introduction

A new cryptosystem using the braid groups was proposed in [5] at Crypto 2000.
Since then, there has been no serious attempt to analyze the system besides
one given by inventors [7]. We think that this is because the braid group is
not familiar to most of cryptographers and cryptanalysts. The primary purpose
to announce our implementation is to encourage people to attack the braid
cryptosystem. In [7], a necessary condition for the instances of the mathematical
problem which the braid cryptosystem is based on is found so that it makes the
mathematical problem intractable. This means that a key selection is crucial
to maintain the theoretical security of the braid cryptosystem. Thus the key
generation is one of the areas where much research is required and we think that
the search for strong keys should be eventually aided by computers. This is the
secondary purpose of our implementation.

In this paper we discuss implementation issues of the braid group given by
either the Artin presentation [2] or the band-generator presentation [1]. Due to
the analogy between the two presentations, our implementations on the two pre-
sentations are basically identical, except the low-level layer consisting of data
structures and algorithms for canonical factors, which play the role of the build-
ing blocks for braids. Even though the algorithms of the present implementation
in the braid groups are our initial work, they are theoretically optimized so that
all of single operations can be executed at most in O(n log n) where n is the
braid index n that is the security parameter corresponding to the block sizes in
other cryptosystems. This excellent speed is achieved because the canonical fac-
tors are expressed as permutations that can be efficiently and naturally handled
by computers. The efficiency of the implementation shows that the braid group

C. Boyd (Ed.): ASIACRYPT 2001, LNCS 2248, pp. 144–156, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

An Efficient Implementation of Braid Groups 145

is a good source of cryptographic primitives [5,6]. It is hard to think of any other
non-commutative groups that can be digitized as efficiently as the braid group.
Matrix groups are typical examples of non-commutative groups and in fact any
group can be considered as a matrix group via representations. But the group
multiplication in the braid group of index n is faster than the multiplication of
(n× n) matrices.

This paper is organized as follows. Section 2 is a quick review of the minimal
necessary background on braid groups. In Section 3 and 4, we develop data struc-
tures and algorithms for canonical factors and braids, respectively. In Section 5,
we show how to generate random braids. In Section 6, we discuss the perfor-
mance of our implementation, through the braid cryptosystems in [7]. Section 7
is our conclusion.

2 A Quick Review of the Braid Groups

A braid is obtained by laying down a number of parallel strands and intertwining
them so that they run in the same direction. In our convention, this direction is
horizontally toward the right. The number of strands is called the braid index.
The set Bn of isotopy classes of braids of index n has a group structure, called
the n-braid group, where the product of two braids x and y is nothing more
than laying down the two braids in a row and then matching the end of x to the
beginning of y.

Any braid can be decomposed as a product of simple braids. One type of
simple braids is the Artin generators σi that have a single crossing between i-th
and (i+1)-st strand as in Figure 1 (a), and the other type is the band-generators
ats that have a single half-twist band between t-th and s-th strand running over
all intermediate strands as in Figure 1 (b).

The n-braid group Bn is presented by the Artin generators σ1, . . . , σn−1 and
relations σiσj = σjσi for |i− j| > 1 and σiσjσi = σjσiσj for |i− j| = 1. On the
other hand, Bn is also presented by the band-generators ats for n ≥ t > s ≥ 1
and relations atsarq = arqats for (t − r)(t − q)(s − r)(s − q) > 0 and atsasr =
atrats = asratr for n ≥ t > s > r ≥ 1.

These will be called the Artin presentation and the band-generator presen-
tation, respectively. There are theoretically similar solutions to the word and
conjugacy problems in Bn for both presentations [1,2,3]. The band-generator
presentation has a computational advantage over the Artin as far as the word
problem is concerned. Since almost all the machineries are identical in the two
theories, it will be convenient to introduce unified notation so that we may review
both theories at the same time.

1. Let B+
n be the monoid defined by the same generators and relations in a

given presentation. Elements in B+
n are called positive braids or positive

words. The relations in the Artin and band-generator presentations preserve
word-length of positive braids and so the word-length is easy to compute
for positive braids. The natural map B+

n → Bn is injective. [1,4]. There
are no known presentations of Bn except these two that enjoy this injection
property needed for a fast solution to the word problem.

146 J.C. Cha et al.

(a) Artin generator σi (b) band generator ats (c) ∆ in B4 (d) δ in B4

Fig. 1. Generators and fundamental braids

2. There is a fundamental braid D. It is ∆ = (σ1 · · ·σn−1)(σ1 · · ·σn−2) · · ·σ1
in the Artin presentation and δ = an(n−1)a(n−1)(n−2) · · · a21 in the band-
generator presentation as shown in Figure 1 (c), (d). The fundamental braid
D can be written in many distinct ways as a positive word in both presen-
tations. Due to this flexibility, it has two important properties:
(i) For each generator a, D = aA = Ba for some A,B ∈ B+

n .
(ii) For each generator a, aD = Dτ(a) and Da = τ−1(a)D where τ is the

automorphism of Bn defined by τ(σi) = σn−i for the Artin presentation
and τ(ats) = a(t+1)(s+1) for the band-generator presentation.

3. There are partial orders ‘≤’, ‘≤L’ and ‘≤R’ in Bn. For two words V and W
in Bn, we say that V ≥ W (resp. V ≥L W , V ≥R W) if V = PWQ (resp.
V = WP , V = PW) for some P,Q ∈ B+

n . If a word is compared against
either the empty word e or a power of D, all three orders are equivalent
due to the property (ii) above. Note that the partial orders depend on a
presentation of Bn and W is a positive word if and only if W ≥ e.

4. For two elements V and W in a partial order set, the meet V ∧ W (resp.
join V ∨W) denotes the largest (resp. smallest) element among all elements
smaller (resp. larger) than V and W . If both the meet and join always exist
for any pair of elements in a partially order set, the set is said to have
a combinatorial lattice structure. The braid group Bn has a combinatorial
lattice structure for ‘≤L’ and ‘≤′

R in any of both presentations [3,1]. When
we want to distinguish the meet and join for left and right versions, we will
use ‘∧L’, ‘∧R’, ‘∨L’ and ‘∨L’.

5. A braid satisfying e ≤ A ≤ D is called a canonical factor and [0, 1]n denotes
the set of all canonical factors in Bn. The cardinality of [0, 1]n is n! for the

Artin presentation, and the nth Catalan number Cn =
(2n)!

n!(n+ 1)!
for the

band-generator presentation. Note that Cn is much smaller than n! and this
is one of main reasons why it is sometimes computationally easier to work
with the band-generator presentation than the Artin presentation.

6. For a positive braid P , a decomposition P = A0P0 is left-weighted if A0 ∈
[0, 1]n, P0 ≥ e, and A0 has the maximal length (or maximal in ‘≤L’) among
all such decompositions. A left-weighted decomposition P = A0P0 is unique.
A0 is called the maximal head of P . The notion ‘right-weighted’ can be also
defined similarly.

7. Any braid W given as a word can be decomposed uniquely into

W = DuA1A2 · · ·Ak, e < Ai < D, u ∈ Z, (1)

An Efficient Implementation of Braid Groups 147

where the decomposition AiAi+1 is left-weighted for each 1 ≤ i ≤ k − 1.
This decomposition, called the left canonical form of W, is unique and so it
solves the word problem. The integer u (resp. u + k) is called the infimum
(resp. supremum) ofW and denoted by inf(W) (resp. sup(W)). The infimum
(resp. supremum) of W is the smallest (resp. largest) integer m such that
D−mW ≥ e (resp. ≤ e). The canonical length of W , denoted by len(W), is
given by k = sup(W)− inf(W) and will be used as an important parameter
together with the braid index n. The right canonical form of W can be also
defined similarly.

3 Canonical Factors

3.1 Data Structures

A canonical factor in the Artin presentation of Bn can be identified with the as-
sociated n-permutation, which is obtained by replacing the i-th Artin generator
σi by the transposition of i and i+1. We represent an n-permutation as an array
A of n integers, where A[i] is equal to the image of i under the permutation. A
is called a permutation table.

A canonical factor in the band-generator presentation is also uniquely de-
termined by the associated permutation. Thus a canonical factor can be rep-
resented by a permutation table as before, but a permutation is associated to
a canonical factor in the band-generator presentation only if it is a product of
“disjoint parallel descending cycles” [1]. Two descending cycles (sisi−1 · · · s1)
and (tjtj−1 · · · t1), where si > · · · > s1 and tj > · · · > t1, are called parallel if sa

and sb do not separate tc and td (i.e. (sa−tc)(sa−td)(sb−tc)(sb−td) is positive)
for all 1 ≤ a < b ≤ i and 1 ≤ c < d ≤ j. Thus a canonical factor can also be
represented by an array X of n integers where X[i] is the maximum in the de-
scending cycle containing i. X is called a descending cycle decomposition table.
The permutation table is useful for products and inverses, and the descending
cycle decomposition table is useful for the meet operation discussed later. The
two tables can be converted in O(n) time. Thus any one of them can be chosen
to implement the braid groups without affecting the complexities of algorithms.
We describe concrete algorithms in Algorithm 1 and 2.

Algorithm 1 Convert a permutation table to a descending cycle decomposition
table.

Input: permutation table A of length n.
Output: descending cycle decomposition table X.

for i← 1 to n do X[i]← 0;
for i← n to 1 step − 1 do begin

if (X[i] = 0) then X[i]← i;
if (A[i] < i) then X[A[i]]← X[i];

end

148 J.C. Cha et al.

Algorithm 2 Convert a descending cycle decomposition table to a permutation
table.

Input: Descending cycle decomposition table X.
Output: Permutation table A.
(We need an array Z of size n.)

for i← 1 to n do Z[i] = 0;
for i← 1 to n do begin

if (Z[X[i]] = 0) then A[i]← X[i] else A[i]← Z[X[i]];
Z[X[i]]← i;

end

3.2 Operations

Comparison. Two given canonical factors are identical if and only if their repre-
sentations given by either permutation tables or descending cycle decomposition
tables are identical. Thus the comparison is an O(n) operation.

Product and Inverse. The product and inverse operations in permutation
groups are done in O(n). If the product of two canonical factors is again a
canonical factor, the composition of associated permutations is the permutation
associated to the product in both presentations. Hence in this case the product
of canonical factors is computed in O(n).

The Automorphism τu. The automorphism τ defined by τ(a) = D−1aD
sends canonical factors to canonical factors. An arbitrary power τu(a) for a
canonical factor a can also be computed in O(n), independent of u, since the
permutation table of Du can be obtained immediately from the parity (resp. the
modulo n residue class) of u in the Artin (resp. band-generator) presentation.

Meet. In the Artin presentation, an algorithm computing the meet of two
canonical factors with O(n log n) running time and O(n) space is known [3,
Chapter 9]. We explain the idea of the algorithm briefly. Suppose that A and B
are canonical factors and C = A∧L B be the left meet. We view A, B and C as
permutation tables. The algorithm sorts the integers 1, . . . , n according to the
order “≺” defined by x ≺ y if and only C[x] < C[y]. The final result is the per-
mutation table of the inverse of C, and by inverting it the permutation table of C
is obtained. Using the standard divide-conquer trick, we divide the sequence to
be sorted into two parts, to say X and Y , sort each of X and Y recursively, and
merge them according to ≺. In the merging step, we need to compare integers
x ∈ X and y ∈ Y according to ≺. The essential point is that y ≺ x if and only
if the infimum of A[i] over all i ∈ X lying in the right-hand side of x is greater
than the supremum of A[j] over all j ∈ Y lying in the left-hand side of y, and
the analogous condition holds for B. This can be checked in constant time using
tables of infimums and supremums, which can be constructed before the merge

An Efficient Implementation of Braid Groups 149

step in linear time proportional to the sum of the sizes of X and Y . Hence the
total timing is equal to that of standard divide-conquer sorting, O(n log n). We
describe the left meet algorithm explicitly in Algorithm 3.

Algorithm 3 Compute the meet of two canonical factors in the Artin presen-
tation.

Input: Permutation tables A, B
Output: The permutation table C of the meet A ∧L B.
(We need arrays U , V , W of size n.)

Initialize C as the identity permutation;
Sort C[1] · · ·C[n] according to A and B (see the subalgorithm below);
C ← inverse permutation of C;

Subalgorithm: Sort C[s] · · ·C[t] according to A and B.

if t ≤ s then return;
m← �(s+ t)/2�;
Sort C[s] · · ·C[m] according to A and B;
Sort C[m+ 1] · · ·C[t] according to A and B;
U [m]← A[C[m]];
V [m]← B[C[m]];
if s < m then

for i← m− 1 to s step − 1 do begin
U [i]← min(A[C[i]], U [i+ 1]);
V [i]← min(B[C[i]], V [i+ 1]);

end
U [m+ 1]← A[C[m+ 1]];
V [m+ 1]← B[C[m+ 1]];
if t > m+ 1 then

for i← m+ 2 to t do begin
U [i]← max(A[C[i]], U [i− 1]);
V [i]← max(B[C[i]], V [i− 1]);

end
l← s;
r ← m+ 1;
for i← s to t do begin

if (l > m) ∨ ((r ≤ t) ∧ (U [l] > U [r]) ∧ (V [l] > V [r]))
then W [i]← C[r]; r ← r + 1;
else W [i]← C[l]; l← l + 1;

end
for i← s to t do C[i]←W [i];

The right meet is computed in a similar way, or alternatively by the identity
A ∧R B = (A−1 ∧L B−1)−1, where the inverse notations denote the inverses in
the permutation group.

In the band-generator presentation, it is known that the meet of two canonical
factors can be computed in O(n) time [1]. Basically, the meet is obtained by

150 J.C. Cha et al.

computing the refinement of the two partitions of {1, . . . , n} that corresponds to
the parallel descending cycle decompositions. We describe below an algorithm
to compute the meet, which is an improved version of one in [1]. We remark that
the left meet and the right meet are the same in the band-generator presentation.

Algorithm 4 Compute the meet of two canonical factors in band-generator pre-
sentation.

Input: Descending cycle decomposition tables A and B.
Output: The descending cycle decomposition table C of the meet
A ∧B.
for i← 1 to n do U [i]← n− i+ 1;
Sort U [1] · · ·U [n] such that

(A[U [i]], B[U [i]], U [i]) is descending in the dictionary order;
j ← U [n]; C[j]← j;
for i← n− 1 to 1 step − 1 do begin

if (A[j] �= A[U [i]]) ∨ (B[j] �= B[U [i]]) then j ← U [i];
C[U [i]]← j;

end

The complexity is determined by the sorting step since all the other parts
are done in linear time. In braid cryptosystems, it is expected that n is not so
large (perhaps less than 500) and hence it is practically reasonable to apply the
bucket sort algorithm. The bucket sort algorithm can be applied twice to sort
pairs (A[U [i]], B[U [i]], U [i]) lexicographically. (Recall that the original order is
preserved as much as possible by the bucket sort.) Since we have at most n
possibilities for the values of A[U [i]] and B[U [i]], both space and execution time
are linear in n. In some situations, the following trade-off of space and execution
time is useful. We may sort the pairs (A[U [i]], B[U [i]]) using the bucket sort
algorithm once, where O(n2)-space is required but the practical execution speed
is improved. To save space (e.g. on small platforms), usual sorting algorithms
by comparisons (e.g. divide-conquer sort) can be applied to get an O(n log n)
algorithm that requires no additional space.

4 Braids

4.1 Data Structures

Writing a given braid as β = DqA1A2 · · ·A�, where q is an integer and each Ai

is a canonical factor, we represent the braid as a pair β = (q, (Ai)) of an integer
q and a list of (canonical factors (Ai) in both presentations. We note that this
representation is not necessarily the left canonical form of β, and hence (may
be greater than the canonical length of β.

A braid given as a word in generators is easily converted into the above form,
in both presentations, by rewriting each negative power σ−1 of generators as a
product of D−1 and a canonical factor Dσ−1 and collecting every power of D
at the left end using the fact (

∏
Ai)D±1 = D±1(

∏
τ±1(Ai)) for any sequence

of canonical factors Ai. This is done in O(n(), where n is the braid index and (
is the length of the given word.

An Efficient Implementation of Braid Groups 151

4.2 Operations

Group Operations. Basic group operations are easily implemented. From the
identity

(DpA1 · · ·A�)(DqB1 · · ·B�′) = Dp+qτ q(A1) · · · τ q(A�)B1 · · ·B�′ (2)

the multiplication of two braids is just the juxtaposition of two lists of permuta-
tion and applying τ . The inverse of a braid can be computed using the formula

(DqA1 · · ·A�)−1 = D−q−�τ−q−�(B�) · · · τ−q−1(B1) (3)

where Bi = A−1
i D, viewing Ai and D as permutations. Since a power of τ is

computed in linear time in n, braid multiplication and inversion have complexity
O((n). A conjugation consists of two multiplications and one inversion, and hence
also has the complexity O((n).

Left Canonical Form. A representation of a braid can be converted into the
left canonical form by the algorithms in [3, Chapter 9] and [1]. Given a positive
braid P = A1 · · ·A�, where Ai is a canonical factor, the algorithm computes the
maximal heads of A�−1A�, A�−2A�−1A�, . . . , A1 · · ·A� = P sequentially using
the following facts [3, Chaper 9] [2] [1].

1. For any positive braid A and P , the maximal head of AP is the maximal
head of the product of A and the maximal head of P .

2. For two canonical factors A and B, the maximal head of AB is A((DA−1)∧L

B), where the inverse is taken in the permutation group.

From these facts, the i-th maximal head is the maximal head of the product
of A�−i and the (i − 1)-st maximal head, and it can be computed using meet
operation once. At the last step, we obtain the left weighted decomposition
P = B1P1. Doing it again for P1, we obtain the left weighted decomposition
P1 = B2P2, and repeating this, finally we obtain the left canonical form of P .
Note that this process is very similar to the bubble sort, where the maximum
(or minimum) of given elements is found at the first stage, and repeat it for the
remaining elements. The complexity of left canonical form algorithm is the same
as that of the bubble sort: complexities are O((2n log n) and O((2n) in the Artin
presentation and the band-generator presentations, respectively. The difference
comes from the complexity of the meet operation. We describe the left canonical
form algorithm in a concrete form.

Algorithm 5 Convert a braid into the left canonical form.

Input: A braid representation β = (p, (Ai)).
Output: The left canonical form of β.

(← ((β);
i← 1;

152 J.C. Cha et al.

while (i < () do begin
t← (;
for j ← (− 1 to i step − 1 do begin

B ← (DA−1
j) ∧L Aj+1;

if (B is nontrivial) then begin
t← j; Aj ← AjB; Aj+1 ← B−1Aj+1;

end
end
i← t+ 1;

end
while ((> 0) ∧ (A1 = D) do begin

Remove A1 from β; (← (− 1; p← p+ 1;
end
while ((> 0) ∧ (A� is trivial) do begin

Remove A� from β; (← (− 1;
end

The multiplications and inversions in lines 6 and 8 are performed viewing D,
B and Ak as permutations.

We remark that Algorithm 5 can be modified for parallel processing. For
convenience, we denote the job of lines 6–9 for (i, j) by S(i, j). Then S(i, j)
can be processed after S(i− 1, j − 1) is finished. Thus the jobs S(1, k), S(2, k +
2), . . . , S((− 1, k + 2((− 2)) can be processed simultaneously for k = (− 1, (−
2, . . . , 1, 0,−1, . . . ,−(+3. (S(i, j) for invalid (i, j) is ignored here.) This method
offers algorithms with O((n log n) and O((n) execution time in the Artin and
the band-generator presentation, using O(() processors.

Comparison. In order to compare two braids β1 and β2 with (1 and (2 canon-
ical factors, we need to convert them into their canonical forms since the same
braid can be represented in different forms. Assuming β1 and β2 are in left
canonical form, the comparison is done by comparing the exponents of D and
the lists of canonical factors, and so has complexity O(min{(1, (2} · n). Without
the assumption, the total complexity of comparison is equal to that of the con-
version into left canonical form, O(min{(1, (2} · n log n) and O(min{(1, (2} · n)
for the Artin presentation and band-generator presentation, respectively. (Note
that for comparison, Algorithm 5 can be executed simultaneously for β1 and β2
to extract the canonical factors in the left canonical forms, and stopped if either
different canonical factors are found or nothing is left for any one of β1 and β2.)

5 Random Braids

Random braids play an important role in braid cryptosystems [5,7]. Since the
braid group Bn is discrete and infinite, a probability distribution on Bn makes no
sense. But there are finitely many positive n-braids with (canonical factors, we
may consider randomness for these braids. Since such a braid can be generated
by concatenating (random canonical factors, the problem is reduced to how to
choose a random canonical factors in both presentations.

An Efficient Implementation of Braid Groups 153

5.1 Artin Presentation

In the Artin presentation of Bn, a canonical factor can be chosen randomly by
generating a random n-permutation. It is well known that this is done by using
a random number oracle (n − 1) times; we start with the identity permutation
table A, and for i = 1, 2, . . . , n − 1, pick a random number j between i and n
and swap A[i] and A[j].

5.2 Band-Generator Presentation

In the band-generator presentation, we need more complicated arguments. Par-
allel descending cycle decompositions can be identified with non-crossing parti-
tions of the set {1, . . . , n}. It is known that they are again naturally bijective
to the set BSn of ballot sequences s1s2 · · · s2n of length 2n, which are defined
to be sequences satisfying s1 + · · · + sk ≥ 0 for all k and s1 + · · · + s2n = 0
(e.g. see [8]). Of course, |BSn| is equal to the n-th Catalan number Cn. The
recurrence relation

Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−1C0 (4)

can be naturally interpreted by means of ballot sequences as follows. For a given
ballot sequence s1 · · · s2n, choose the minimal i such that s1+ · · ·+ si = 0. Then
s1 = 1, si = −1 and the subsequences s2 · · · si−1 and si+1 · · · s2n are again ballot
sequences of length 2(i−1) and 2(n−i), respectively. This establishes a bijection
between BSn and the disjoint union

⋃n−1
i=1 BSi−1×BSn−i. We inductively define

a linear order on BSn via the bijection, by the following rules: elements in
BSi−1×BSn−i are smaller than elements in BSj−1×BSn−j if and only if i < j,
and elements in BSi−1 × BSn−i are lexicographically ordered. Then a random
ballot sequence can be generated as follows. Choose a random number k between
1 and Cn, and take the k-th ballot sequence. Algorithm 6 does the second step,
by tracing the above bijection recursively. By an induction, it can be shown that
the running time of Algorithms 6 is O(n log n).

Algorithm 6 Construct the k-th ballot sequence of length 2n.

Input: An integer k between 1 and Cn.
Output: The k-th ballot sequence s1 · · · s2n.

if k ≤ C0Cn−1 then i← 1;
elseif k > Cn − Cn−1C0 then begin i← n; k ← k − Cn + Cn−1C0; end
else for i← 1 to n do

if (k ≤ Ci−1Cn−i) then break;
else k ← k − Ci−1Cn−i;

x← �k/Cn−i�; y ← k − xCn−i;
s1 ← 1; s2i−1 ← −1;
if i > 1 then s2 · · · s2i−2 ← the (x+ 1)-st ballot sequence of length 2(i− 1);
if i < n then s2i · · · s2n ← the (y + 1)-st ballot sequence of length 2(n− i);

154 J.C. Cha et al.

A ballot sequence can be transformed to a permutation table associated to a
canonical factor in the band generator presentation, via the correspondence be-
tween ballot sequences and non-crossing partitions of {1, . . . , n} [8]. We describe
an O(n) algorithm.

Algorithm 7 Convert a ballot sequence to a disjoint cycle decomposition table.

Input: A ballot sequence s1 · · · s2n.
Output: A permutation table A.
(We need a stack S of maximal size n.)

for i← 1 to 2n do begin
if si = 1 then push i into S;

else begin
Pop j from S;
if i is odd then A[(i+ 1)/2] = j/2

else A[j/2] = (i+ 1)/2;
end

end

In the above discussion, we assume that the Catalan numbers Cn is known.
It is not a severe problem, since a table of Cn can be computed very quickly
using the recurrence relation Cn+1 = (4n + 2)Cn/(n + 2). If you want to avoid
division of big integers, the recurence relation (4) is useful.

We finish this section with a remark on the distribution generated by out
algorithm. Since the same braid can be represented in different ways in our
implementation, the distribution is not uniform on the set of positive n-braids of
canonical length (. However, the distribution has a property that more complex
braids, which can be represented in more different ways, are generated with
higher probability. It seems to be a nice property for braid cryptosystems.

6 Performance

In this section we consider the braid cryptosystem proposed in [7], which is a
revised version of one in [5]. Let LBn and UBn be the subgroups of Bn generated
by the Artin generators σ1, . . . , σ�n/2�−1 and σ�n/2�, . . . , σn, respectively. A secret
key is given as a pair (a1, a2), where a1 and a2 are in LBn, and the associated
public key is a pair (x, y) such that y = a1xa2. The encryption and decryption
scheme is as follows.

Encryption Given a message m ∈ {0, 1}M ,
1. Choose b1, b2 ∈ UBn.
2. Ciphertext is (c1, c2) = (b1xb2, H(b1yb2)⊕m).

Decryption Given a ciphertext (c1, c2), m = H(a1c1a2)⊕ c2.

In the above scheme, H:Bn → {0, 1}M is a collision-free hash function. H
can be obtained by composing a collision free hash function of bitstrings into
{0, 1}M with a conversion function of braids into bitstrings. A braid given as its

An Efficient Implementation of Braid Groups 155

left canonical form DuA1 · · ·A� can be converted into a bitstring by dumping
the integer u and the permutation tables of Ai as binary digits for i = 1, . . . , (
sequentially. Since different braids are converted into different bitstrings, this
conversion can be used as a part of the hash H.

We remark that if the secret key is of the form (a, a−1) and b−1
1 is taken as

b2 in the above encryption procedure, the cryptosystem in [5] is obtained. Hence
in performance issues, there is no difference between the cryptosystems in [7]
and [5].

The above scheme is easily implemented based on our works. In the encryp-
tion, two random braid generations, four multiplications and two left canonical
form operations are involved. In the decryption, two multiplications and one
left canonical form operation are involved. Thus both operations have running
time O((2n log n) and O((2n) in the Artin and the band-generator presentation,
respectively. In Table 1, we show the performance of an implementation of the
cryptosystem using the Artin presentation, at various security parameters sug-
gested in [5]. The security levels are estimated using the results of [7]. In order
to focus on the performance of braid operations, the execution time of the hash
function is ignored. This experiment is performed on a computer with a Pentium
III 866MHz processor.

Table 1. Performance of the braid cryptosystem at various parameters

Block Size Encryption Speed Decryption Speed Security
n � (Kbyte) (Block/sec) (Kbyte/sec) (Block/sec) (Kbyte/sec) Level
100 15 1.97 74.46 146.53 95.60 188.13 285

150 20 4.36 37.44 163.40 47.42 206.94 2125

200 30 9.34 17.21 160.71 22.30 208.26 2199

250 40 16.36 10.61 173.66 13.62 222.78 2280

7 Conclusion

Table 2 summaries braid algorithms discussed and their complexities. In Input
and Output columns, PT, DT, AB and BB mean a permutation table, a de-
scending cycle decomposition table, a braid given by the Artin presentation and
a braid given by the band-generator presentations, respectively. As usual n is the
braid index and (the maximum of canonical lengths (or numbers of canonical
factors) of input braids, except for the comparison algorithm, where (denotes
the minimum of canonical lengths of two given braids. The complexities of the al-
gorithms are measured by the number of steps required. The space complexities
of the algorithms are easily seen to be either constant or linear.

156 J.C. Cha et al.

Table 2. Complexities of braid algorithms

Operation Input Output Complexity Reference
PT → DT PT DT O(n) Alg. 1
DT → PT DT PT O(n) Alg. 2
Product PT PT O(n) 3.2
Inverse PT PT O(n) 3.2
τk PT PT O(n) 3.2
Meet (Artin) PT PT O(n logn) Alg. 3
Meet (Band) DT DT O(n) Alg. 4
Comparison PT (or DT) True/False O(n) 3.2
Random (Artin) PT O(n) 5.1
Random (Band) PT O(n logn) 5.2, Alg. 6, 7
Product AB (or BB) AB (or BB) O(�n) 4.2
Inverse AB (or BB) AB (or BB) O(�n) 4.2
Left Canonical AB AB O(�2n logn) Alg. 5
Form BB BB O(�2n) Alg. 5

Comparison AB True/False O(�2n logn) 4.2
BB True/False O(�2n) 4.2

Random AB O(�n) 5
BB O(�n logn) 5

Acknowledgements. The first three authors were supported in part by the
Ministry of Science and Technology under the National Research Laboratory
Grant 2000–2001 program.

References

1. J. S. Birman, K. H. Ko and S. J. Lee, A new approach to the word and conjugacy
problem in the braid groups, Advances in Mathematics 139 (1998), 322-353.

2. E. A. Elrifai and H. R. Morton, Algorithms for positive braids, Quart. J. Math.
Oxford 45 (1994), 479–497.

3. D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson and W. Thurston, Word
processing in groups, Jones & Bartlett, 1992.

4. F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20 (1969),
no. 78, 235–254.

5. K. H. Ko, S. J. Lee, J. H. Cheon, J. H. Han, J. S. Kang and C. Park, New public key
cryptosystem using braid groups, Advances in Cryptology, Proceedings of Crypto
2000, Lecture Notes in Computer Science 1880, ed. M. Bellare, Springer-Verlag
(2000), 166–183.

6. E. Lee, S. J. Lee and S. G. Hahn, Pseudorandomness from braid groups, Advances
in Cryptology, Proceedings of Crypto 2001, Lecture notes in Computer Science
2139, ed. J. Kilian, Springer-Verlag (2001), 486–502.

7. K. H. Ko, et al., Mathematical security analysis of braid cryptosystems, preprint.
8. R. P. Stanley, Enumerative combinatorics, Wadsworth and Brooks/Cole, 1986.

	Introduction
	A Quick Review of the Braid Groups
	Canonical Factors
	Data Structures
	Operations

	Braids
	Data Structures
	Operations

	Random Braids
	Artin Presentation
	Band-Generator Presentation

	Performance
	Conclusion

