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Abstract

The design of NoCs for multi-core chips introduces new
design constraints like power consumption, area, and ul-
tra low latencies. Although 2D meshes are preferred, het-
erogeneous blocks, fabrication faults, reliability issues, and
chip virtualization may lead to the need of irregular topolo-
gies or regions. In this situation, efficient routing becomes
a challenge. Although the use of routing tables at switches
is flexible, it does not scale in terms of latency and area due
to its memory requirements.

LBDR (Logic-Based Distributed Routing) is proposed as
a new routing method that removes the need of using rout-
ing tables at all. LBDR enables the implementation of many
routing algorithms on most of the practical topologies we
might find in the near future in a multi-core system. From
an initial topology and routing algorithm, a set of three bits
per switch/output port is computed. Evaluation results show
that, by using a small logic, LBDR mimics the performance
of routing algorithms when implemented with routing ta-
bles, both in regular and irregular topologies.

1 Introduction

Multi-core architectures are becoming mainstream for
designing high performance processors. As power limits the
performance for single-core solutions, designers are shift-
ing to the multi-core domain where simpler processor cores
are integrated into the same chip. Although the number of
cores in current processing devices is rather small (i.e. two
to eight cores per chip), this trend is expected to change.
As an example, the TeraScale chip has been recently an-
nounced with 80 cores [1].

Such a large number of cores requires a high-
performance on-chip interconnect (NoC) to efficiently com-
municate cores among them and with cache blocks and/or
memory controllers. Current chip implementations use sim-
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ple network structures such as buses or rings [2]. However,
as the number of cores increases such networks become the
bottleneck of the system, thus bus and ring topologies be-
come unpractical. For chips with a larger number of cores
the 2D mesh topology is usually preferred due to its lay-
out on a planar surface in the chip. This is the case of the
TeraScale chip.

For routing purposes, logic-based routing (e.g. Dimmen-
sion Order Routing; DOR) is preferred to reduce latency,
power, and area requirements for the NoC. The high inte-
gration scale, however, pushes a number of communication
reliability issues. Crosstalk, power supply noise, electro-
magnetic and inter-symbol interference are some of these
issues. Moreover, fabrication faults may appear, in the form
of defective core nodes, wires or switches. In these cases,
while some regions of the chip are defective, the remaining
chip area may be fully functional. From the NoC point of
view, in presence of such fabrication defects, the initial reg-
ular topology has become an irregular one. This is the case
for topologies shown in Figure 1.

Additionally, in order to exploit the increasing number
of cores, and due to the fact that applications are not getting
enough parallelism, virtualization of the chip is becoming a
necessity. In a virtualized system resources are distributed
among different tasks or applications. The network must
guarantee traffic isolation within regions, thus, leading to
irregular sub-networks within the original 2D mesh. Figure
1.h shows an example where three regions are used.

Routing can be implemented as source routing or dis-
tributed routing. In source routing, the source end node
computes the path and stores it in the packet header. Since
the header itself must be transmitted through the network,
it consumes network bandwidth. The TeraScale chip uses
source routing. In distributed routing, however, each switch
computes the next link that will be used while the packet
travels across the network. The packet header only contains
the destination ID.

Distributed routing can be implemented in different
ways. The approach followed in regular topologies is the so
called algorithmic routing, which relies on a combinational
logic circuit that computes the output port to be used as a
function of the current and destination nodes and the status
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Figure 1. Examples of topologies (a-f and h) supported and (g) not supported by LBDR.
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Figure 2. Examples of routing algorithms (by their routing restrictions) in 2D mesh and p topology.

of the output ports. The implementation is very efficient in
terms of both area and speed, but the algorithm is specific to
the topology and to the routing strategy used on that topol-
ogy. To deal with non-regular topologies, switches based on
forwarding tables were proposed. In this case, there is a ta-
ble at each switch that stores, for each destination end-node,
the output port that must be used. This scheme can be easily
extended to support adaptive routing by storing several out-
puts in each table entry. The main advantage of table-based
routing is that any topology and any routing algorithm can
be used, including fault-tolerant routing algorithms. How-
ever, memories, do not scale in terms of latency, power con-
sumption, and area, thus being impractical for NoCs.

Possibly, the size of the routing table can be reduced in
some environments. This is the case of application-specific
systems where the communication pattern may be known
in advance. However, is not the case for generic purpose
multi-core chips.

It would be interesting to find an implementation, for ir-
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regular topologies (partial 2D meshes), that allows the use
of any distributed routing algorithm without the need of us-
ing routing tables nor source-based routing. In this paper
we take on such a challenge. We propose a very simple
mechanism that removes the routing tables at every switch,
thus enabling the distributed implementation of any routing
algorithm on irregular topologies. The mechanism, referred
to as logic-based distributed routing (LBDR), relies on three
bits per output port at every switch and a small logic of sev-
eral gates.

The rest of the paper is organized as follows. In Section
2 related work is presented. Then, in Section 3 the system
environment of LBDR is shown. In Section 4 the mech-
anism is presented and in Section 5 its deadlock-freedom
and connectivity properties are demonstrated. In Section 6
some evaluation results are presented and the main benefits
of LBDR are exposed in Section 7. The paper is concluded
with Section 8.



2 Related Work

Some work on the reduction of memory requirements
for routing in NoCs already exists. One solution is Inter-
val Routing [3]. With interval routing, sets of destinations
requesting the same output ports are grouped. This method
is specific for regular topologies. The FIR method [4] is
an extension of interval routing for allowing different rout-
ing algorithms in meshes and tori networks. However, FIR
is not applicable to irregular networks. Another solution
is named street-sign routing [12]. In this method, only the
router name of the next turn and the direction of the turn are
included in the packet header.

Recently, two solutions for irregular topologies have
been proposed [5], [6]. In both cases, the destinations are
grouped into regions and regions are coded into switches. A
region is coded by the top left-most switch and the bottom
right-most switch. Although the number of regions grows
logarithmically with the number of failures, the number is
unbounded and each region implies a logic. Another solu-
tion for routing table minimization is presented in [8]. In
this case logic is used for the regular case and a deviation
routing table is used for routing deviations.

Although different solutions exist, none of them allows
the implementation of distributed routing algorithms in ir-
regular topologies with no routing tables and minimum
logic.

3 System Environment

For the sake of simplicity we focus on networks with
no virtual channel requirements, and assume wormhole
switching (although the proposed method also works for
virtual cut-through switching as well). Messages (or pack-
ets in virtual cut-through) are routed with X and Y offsets
assuming the X and Y coordinates of the final destination
are included in the message header (X5 and Yys:), and
each switch knows its X and Y coordinates (through the
Xeurr and Yy, registers at each switch).

LBDR can be applied to a combination of topologies
and routing algorithms with some particular characteristics.
The following paragraphs describe the conditions topolo-
gies and routing algorithms must meet.

The typical topology of choice for NoCs is the 2D mesh
network. However, with the advances of technology, other
topologies may be suitable for NoCs. As the number of
nodes increases some NoC components may fail. There-
fore, topologies derived from an initial 2D mesh, but with
some manufacturing defects or failures may come up. For
instance, Figure 1 shows different topologies. Due to man-
ufacturing defects some parts of the topology have been
disabled for normal operation. This is the case for topol-
ogy in Figure 1.c (p topology). In this case some nodes
and links have been disabled. Equivalent topologies are the
ones shown in Figures 1.d (g topology), 1.e (d topology),
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and 1.f (b topology). Obviously, there are other topologies
with the same shape (p, ¢, d, or b) but with different number
of nodes and links. Additionally, other circumstances may
lead to the need for using irregular topologies. Examples
are application-specific systems and chip/server virtualiza-
tion (an example is shown in Figure 1.h).

It should be noted that all the described topologies share
the same property: all the end-nodes (assuming at least one
end-node attached to each switch) can communicate with
the rest of nodes through any minimal path defined in the
original mesh topology (the topology pictured in Figure
1.a). LBDR can be applied to all the topologies that fulfill
this property. LBDR is, however, not applicable to topolo-
gies where some pairs of end-nodes cannot communicate
through a minimal path defined in the original 2-D mesh
topology. Figure 1.g shows an example.

Note that topologies with several disabled regions are
suitable for LBDR. One example is shown in Figure 1.b.
Notice that in this case all the end-nodes can communi-
cate through minimal paths defined in the original 2-D mesh
topology.

A deterministic (or partially adaptive) routing algorithm
without cyclic dependencies among links or buffers can be
represented by the set of routing restrictions it imposes. As
an example, Figure 2 shows the routing restrictions defined
by XY, SRy, [6], SR, [6], and U D (up*/down*) [7] rout-
ing algorithms on a 2-D mesh topology and a p topology.
Each arrow indicates a routing restriction. Basically, a rout-
ing restriction forbids any packet to use two consecutive
channels. So, the final paths for each pair of communicat-
ing end-nodes will not pass through any routing restriction.
In this paper we define a routing restriction as the pair of
channels that can not be used in sequence by any packet.
For instance, at the first (top left-most) switch in Figure 2.a
there is a SFE restriction !.

As can be seen in the Figure, the XY routing algorithm
is designed only for the 2D mesh topology and it is unsuit-
able for non-regular topologies. Topology-agnostic routing
algorithms like SRy, SR,, and UD can, however, be ap-
plied to any topology.

LBDR is applicable to any routing algorithm that com-
plies with the following condition: defining the following
two sets of channels {N,S} and {E,W}, all the routing re-
strictions are formed by two channels, each one from a
different set. Thus, for instance, restriction KW is not
allowed. In other words, routing restrictions forbid only
some changes in the direction. Notice that this makes sense
since it allows for minimal routing (restrictions like W E,
EW,NS,SN,SS, NN... always force the need for non-
minimal paths). Notice that all the routing algorithms pic-
tured at Figure 2 comply with this requirement, since all the
restrictions are: NE, NW, SE, SW (in the case of XY),
WN, NW, NE, EN (in the case of SRy,), WN, NW,
WS, SW (in the case of SR,), and W N, NW (in the case

IChannels are labeled as N (North), E (East), W (West), and S
(South).
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Other routing algorithms like FX [9] and Turn Model
[10] also adhere to these conditions, thus they can be im-
plemented with LBDR.

4 LBDR Description

Figure 3 shows the details of LBDR. It relies on the use
of only three bits per switch output port. Therefore, 12 bits
in total per switch. The value of these bits depends on the
topology and the routing algorithm being implemented, and
are computed and uploaded to the switches before normal
operation (at system boot).

Bits are grouped in two sets: routing bits and connectiv-
ity bits. Routing bits indicate which routing options can be
taken, whereas connectivity bits indicate whether a switch
is connected with its neighbors.

Regarding the routing bits, the bits for the £ output port
are labeled R., and R.;. They indicate whether packets
routed through the E' output port may take the /N port or S
port at the next switch, respectively. In other words, these
bits indicate whether packets are allowed to change direc-
tion at the next switch. For output port N the bits are ac-
cordingly labeled R,. and R, for output port W R,
and R, s, and for output port S R, and Ry, .

Regarding the connectivity bits, each output port has a
bit, referred to as C', indicating whether a switch is con-
nected through the x port. Thus, connectivity bits are C,
Ce, Cy, and C.

Figure 4 shows two examples of all the bits at every

routing algorithms: SRy, and UD.

Routing logic of LBDR is divided in two parts (see Fig-
ure 3). The first part computes the relative position of the
packet’s destination. For this, two comparators are used and
Xeurr and Yy, are compared with Xy, and Vg At the
output of this logic one or two signals may be active (e.g. if
the packet is in the NW quadrant then N’ and W’ signals
are active). Note also that packets forwarded to the local
port are excluded from the routing logic.

Once the N’, E/, W', and S’ signals are computed, the
second part of the logic comes into play. It consists of four
logic units, one for each output port. Each one can be im-
plemented with only two inverters, four AND gates and one
OR gate. As all of them are similar we describe here only
the logic associated with the N output port.

The NN output port is considered for routing the incoming
packet when either one of the following three conditions is
met. If none of the conditions is met, then the [NV port can
not be considered for routing the packet (additionally, the
connectivity bit C), is inspected in order to filter the IV port):

e The packet’s destination is on the same column (N’ x
E" x W').

e The packet’s destination is on the /N EZ quadrant and the
packet can take the E port at the next switch through
the N port (N x E' X Rype).

e The packet’s destination is on the NW quadrant and
the packet can take the W port at the next switch
through the N port (N x W' x Rpy).
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Figure 4. Example of LBDR for an irregular (p) topology.

Notice that, for example, N and E signals could be ac-
tive at the same time. In this case, the switch has to choose
among them in the arbiter unit, according whether adaptive-
ness is allowed or the routing algorithm is deterministic.

LBDR will mimic performance in most of the routing
algorithms. This is the case for the XY and UD routing
algorithms. In these algorithms, the routing restrictions are
located in the same relative position through all the rows
and columns. As an example, Figure 4.b shows all the bits
for the U D routing algorithm in a p topology. Imagine the
path from source 1 to destination 8 as it is shown in Fig-
ure 4.b. Notice that output port S is not taken at switch 1
because there is a NW routing restriction at switch 5 (bit
R, is zero at switch 1). This decision does not impact per-
formance, as the S output port cannot be taken to forward
properly the packet (packet would never be able to turn to
W in the column). This is a very interesting observation
as it allows LBDR to achieve the maximum performance of
the routing algorithm with very low logic/area requirements
(the same applies for XY routing in a 2D mesh topology).

However, there are situations (e.g. more advanced rout-
ing algorithms like S R) where LBDR induces some ineffi-
ciencies. An example can be seen in Figure 4.a. In this case,
like before, switch 1 decides to discard output port S be-
cause its Ry, bit is not active (there is a NW restriction at
the next switch through the S port). However, in this case,
a valid path would be 1-5-9-8. Therefore, LBDR reduces
adaptiveness. Although LBDR is still working (it always
provides a valid set of paths) the performance degradation
could be unacceptable (see Section 6). In order to fix this,
we extend in the next section the mechanism to overcome
this problem. However, bear in mind that if we change the
routing algorithm to UD, the problem disappears.

It is important to note that only the bits referring to a
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routing restriction are set to zero and the remaining ones
are set to one, even those that refer to switches not existing
in the topology (for instance bit R,,,, at switch 0). How-
ever, they must be set to one in order the mechanism to
work properly. This can be better seen through an exam-
ple. Imagine the path at Figure 4.a from switch 13 to switch
7. At switch 13 the signals N’ and W’ are active. Also, sig-
nals N” and W" are active. In particular, N is activated
as R, at switch 13 is set to one, although it does not make
sense for routing purposes. However, this allows the packet
to being forwarded north, until it reaches switch 5, where it
can take the east direction. Notice that output port £ will
never be taken at switches 13 and 9 due to the connectivity
bit C..

Deadlock freedom is guaranteed by the underlying rout-
ing algorithm. If packets do not cross any routing restric-
tion then no cycle can be formed. Notice that a packet is
forwarded by LBDR by using the R, routing bits, thus,
ensuring no routing restriction is crossed. Connectivity is
also guaranteed since LBDR uses all the possible minimal
paths provided by the underlying routing algorithm. Formal
demonstrations can be found on Section 5.

4.1 LBDRe

Figure 5 describes the extended LBDR method. We refer
to is as LBDRe. As can be seen, the routing and connectiv-
ity bits (3 bits per output port) are still maintained, and they
are computed in the same way. Four new bits per switch
output port are, however, added.

The bits labeled R2,, indicate whether the y direction
can be taken two hops away from the current switch through
the = direction. For example, R2,. indicates whether a
packet is allowed to change direction to F at the switch
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Figure 5. The LBDRe method.

located two hops in the N direction. Notice that this set
of bits have similar meaning with the ones used in LBDR.
In some sense, these bits provide visibility to the switch of
the routing possibilities two hops away. However, it must
be stated that these bits must be not active if they refer to a
non-existing switch. For instance, in Figure 6 the R2,,,, bit
at switch 4 is not active.

The bits labeled RR,, indicate whether there is a routing
restriction between x and y channels at the current switch.
These bits are needed in order to avoid the formation of
cycles, which is described in the example below.

To sum up, LBDRe requires 24 routing bits grouped by 6
bits per output port. Figure 6 shows an example of the LB-
DRe bits for a p topology. Additionally, the switch needs
five internal signals ipN, ipF, ipW, ipS and ipL to indi-
cate the incoming port of the packet being routed.

The first part of the routing logic is slightly augmented
compared to LBDR. In particular, based on the X and Y co-
ordinates of the current switch and the packet’s destination,
the logic computes the relative directions N', E’, W', and
S’. Additionally, four extra signals N2, E2, W2 and S2 are
computed. These signals are active if the packet’s destina-
tion is at least two hops away in the corresponding direction
(if N2 is active, then at least two hops must be done in the
N direction to get closer to packet’s destination). Notice
that these signals can be easily computed with additional
comparators with the X, and Y., coordinates shifted
in one position.

The first part of the logic is also in charge of inhibiting
the possible output ports that would lead crossing a routing
restriction. For this, the RR (routing restriction) filter logic
is used. This logic requires two inverters, three AND gates
and one OR gate per output port. The resulting signals are
labeled as N, B, W", S”. They feed the final part of the
logic.

The second part evaluates the routing options at the one-
hop and two-hops neighbors. For this, the previous logic
functions for LBDR have been extended. For instance, for
the output port IV, the port will be selected if any one of the
following conditions are met:

e The packet’s destination is on the same column (N’ x
E x W').

e The packet’s destination is on the N E quadrant and the
packet can take the F port at the next switch through
the N port (N X E' X Rpe).

e The packet’s destination is on the NW quadrant and
the packet can take the W/ port at the next switch
through the N port (N x W’ X Ry.).

e The packet’s destination is on the N E quadrant, the
packet’s destination is at least two hops away through
the N port, and the packet can take the E port at the
two-hops neighbor switch through the N port (N2 x
E’ x R2,.).
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Figure 6. Example of LBDRe for an irregular (p) topology and SR;, routing algorithm.

e The packet’s destination is on the NW quadrant, the
packet’s destination is at least two hops away through
the N port, and the packet can take the W port at the
two-hops neighbor switch through the N port (N2 x
W' x R2uu).

Finally, the connectivity bit C),, and the routing-
restriction filter (') are used to filter the output port. For
the remaining ports, similar deductions are considered.

Notice that the LBDRe mechanism solves the problem
found with LBDR. Figure 6 shows two possible paths from
source 1 to destination 8. At switch 1, the S output port can
now be taken because the R2,,, bit is active and the internal
52 signal will be activated. Note also that switch 5 has its
RR,,, bit active, thus avoiding taking the W output port at
the current switch, which would lead to an invalid path.

With LBDRe, the SRy, routing algorithm can be applied
with no performance degradation. We will demonstrate this
affirmation in Section 6.

5 Deadlock-freedom and Connectivity

In this Section we demonstrate that LBDR is deadlock-
free and provides connectivity among all the end-nodes. It
must be noted that this can also be applied to LBDRe. As it
has been shown before, LBDRe embeds LBDR and there-
fore it inherits all of its properties.

5.1 Deadlock-freedom

LBDR is not restricted to any particular routing algo-
rithm. Instead, it can support any routing algorithm that
provides minimal paths for every pair of end-nodes (as we
see in Figure 2.e XY is a bad choice as it does not provide
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connectivity in an irregular topology). However, the ap-
plied routing algorithm must ensure deadlock-freedom and
LBDR has to maintain such property. LBDR computes the
routing bits from the routing restrictions defined by the rout-
ing algorithm. The algorithm is deadlock free if no packet
crosses a forbidden routing restriction. Therefore, LBDR
must ensure that no packet crosses any routing restriction
defined by the routing algorithm.

Imagine there is a deadlock in the network induced by a
set of packets that are requesting buffers in a cyclic manner.
In that situation a packet in a switch sw along the cycle
is mapped at a buffer in an input port ¢ and is requesting
an output port o for which a routing restriction is defined
between ¢ and o. Without lose of generality, consider the
input port is S and the output port being requested is .
Hence, a SW routing restriction is defined at switch sw.

As routing restrictions are assigned only to links be-
tween switches (links connecting end-nodes are excluded),
the given packet has previously been forwarded from a pre-
vious switch (sw)). The output port used to forward the
packet at swy, is N. At this switch the routing bit R,,,, is
set to zero (since there is a SW routing restriction at switch
sw). Additionally when routing the packet at switch sw,,
the signals N” and W’ were active as the packet is now re-
questing output port W at switch sw. Looking at the LBDR
logic for output port IV, at switch sw,, the N port can not
be selected since none of the outputs of the AND gates will
be active (z1=x2=x3=0, see Figure 3). Indeed, the packet is
in the NW direction and the Rnw bit is not active. There-
fore, this situation can not be induced and thus LBDR is
deadlock-free.

Similar conclusions can be obtained when assuming dif-
ferent sets of forbidden routing restrictions (N FE, SE and
SW).



Figure 7. Path taken on boundaries at (p)
topology .

5.2 Connectivity

To demonstrate that the mechanism provides connectiv-
ity we must first highlight that the routing algorithm imple-
mented by LBDR provides minimal paths and connectivity
among all the pairs of end-nodes.

Notice that on each hop a packet performs in the network
it gets closer to its destination. From the LBDR logic we
can also deduce that non-minimal paths are avoided. Each
output port is candidate for being selected only if the des-
tination’s distance is reduced along that port. For instance,
the N port is eligible only if the packet is in the north di-
rection or in the NW or N E quadrants (the signal N’ is
active).

Consider the case that a pair of end-nodes can not com-
municate when using LBDR. In this case, although the rout-
ing algorithm provides at least one minimal path to reach
the destination end-node the LBDR mechanism fails to pro-
vide such path. In that situation, there is a point in the
network where either LBDR logic provides a non-minimal
path or any of the minimal paths are not eligible.

As an example, consider Figure 7 and the routing unit
at switch 8. The packet’s destination is switch 3, thus is
in the N E quadrant. In that situation the W and S ports
are not considered by LBDR since the W’ and S’ signals
are not active. In other words, the packet’s destination is
neither in the W’ nor S’ directions. Thus, LBDR avoids
non-minimal paths. Therefore, only the N and E directions
may be considered. In this case N’ and E’ signals are ac-
tivated. In that situation, notice that the N port is eligible
only if the R, bit is active and the E port is eligible only
if the R,,, bit is active. Notice that both bits can not be zero
at the same time. In that case there would be no connec-
tivity between switches 8 and 5 and thus, the routing algo-
rithm implemented would not guarantee connectivity. As
this situation is not assumed by the routing algorithm, it can
not happen, and therefore LBDR guarantees connectivity.
Therefore, at least one output port (/N or E) will be eligible
for routing the packet, getting closer to its destination.

However, a subtle case arises in the boundaries of the
topology. Figure 7 shows a p topology and the packet at
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switch 13 has its destination at the N E quadrant. Switch
13, however, is at the boundaries of the topology. In this
case, switch 13 has its R.,, and R, bits active. However,
its connectivity bit C, is not active. In this situation the N
port is eligible. Notice that the packet will go north until it
reaches switch 5 where it will take either IV or E.

6 Performance Evaluation

In this Section we evaluate LBDR and LBDRe. Our
goal is to evaluate the performance when applied to dif-
ferent topologies/routing algorithms compared with the per-
formance achieved by those routing algorithms when imple-
mented with routing tables. We check if LBDR and LBDRe
mimic the performance of routing tables and by how much
(and in which circumstances) they lose performance.

We have used noxim [11] to evaluate LBDR and LB-
DRe. In all simulations wormhole switching is assumed, in-
put port buffers are 4-flit deep, and packets are 32-flit long.
Flit size is set to one byte. For the transient state, 40K mes-
sages are assumed and results are collected after 40K mes-
sages are received. XY, UD, and SR}, routing algorithms
have been evaluated in an 8 x 8 mesh and different irregular
topologies: p, g, d, and b topologies (an 8 x 8 mesh without
an 4 x 4 sub-mesh). Uniform and transpose traffic has been
used.

Figure 8 shows the performance (delivered throughput)
for some of the analyzed cases. In all the situations the same
basic conclusions can be extracted. First, it can be seen that
for XY (in 2D mesh) and UD (in 2D mesh and p topol-
ogy) LBDR mimics the performance achieved with tradi-
tional implementation (routing tables). This is achieved be-
cause in both cases all the routing restrictions are aligned
through the same columns and rows and this permits LBDR
to achieve maximum performance.

Second, it can be seen that for SR;,, LBDR achieves dif-
ferent performance numbers. The loss in performance is
15% in transpose traffic and negligible in random traffic.

Finally, Figures 9 and 10 show some interesting perfor-
mance numbers for SRy, and UD in two different irregu-
lar topologies. We can see, that when we apply LBDRe
method, as we explained before, for a more complex rout-
ing algorithm like S Ry, it performs better than its counter-
part on LBDR, even better than U D routing algorithm at
low loads, as shown in Figure 9. Both topologies (d and
b) have the same shape once they are rotated accordingly,
however, we can see that the impact of the routing algo-
rithm can be significant. Indeed, for b topology the achieved
performance is higher than in d topology. This yields for
interesting future research on finding the best practices in
partitioning a NoC.
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Figure 9. Performance achieved for different
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7 Benefits of LBDR

The benefits of LBDR are important (with no perfor-
mance degradation at all). With alternative implementations
the routing information needs to be stored either at source
nodes (with source routing) or at switches (with distributed
routing). In both cases routing tables are used. Each ta-
ble needs as many entries as potential destinations can be
addressed from the source or the switch. As the communi-
cation pattern in a multi-core is not known in advance the
worst case must be assumed. Thus, for a N x N system up
to N? entries are needed. Thus, the memory (and area) re-
quirements for alternative implementations grow with sys-
tem size. With LBDR, however, the requirements are the
same regardless of system size. Only three bits for LBDR
(7 bits for LBDRe) and a few gates are required per output
port. In the same sense power saving can be significant as
all the power required by each routing memory is saved.
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Figure 10. Performance achieved for different
routing algorithms and a b topology for both
methods. Random traffic.

Moreover, the latency of LBDR could be smaller than the
one expected by a table-based implementation. The routing
delay of LBDR is given by the time required to compute
the relative position of the destination (two comparators in
parallel) and the logic associated to each output port (four
levels of logic gates). This hardware has an approximate
delay of 10 logic gates and very similar to the delay of an
XY implementation. As a rough comparison, based on the
model proposed in [13, 14] for caches, an access to a rout-
ing table should have a delay similar to accessing the data
array of a cache. According to [13], for a 0.13 © m CMOS
technology, this value ranges from 0.8 ns for a 4 K cache to
more than 2.9 ns for 1 M cache. In the same model a single
logic gate has a delay of about 67 ps. Hence, LBDR has a
delay of about 0.67 ns. For 90nm technology, gate delays
of 9.5ps are available [15], thus the LBDR delay will be 95
ps (not considering wiring delays).



8 Conclusions

In this paper we have presented the LBDR mechanism
and its extension, LBDRe. They allow for efficient imple-
mentation of most of the existing distributed routing algo-
rithms in suitable topologies for NoCs. For LBDR only two
routing bits and one connectivity bit are required along with
a small logic per output port. For LBDRe four more bits
are required along with the bits existing in LBDR. A bit
complex logic than in LBDR method is required but it en-
sures better performance. LBDR mimics the performance
achieved by XY and U D routing algorithms when imple-
mented using routing tables. For more sophisticated routing
algorithms, like S R}, the LBDRe method may be used.

Although not evaluated we have analyzed the extension
of LBDR with additional visibility routing bits and obtained
no performance gains with any routing algorithm. There-
fore, LBDRe, provides enough visibility to extract the full
potential of any routing algorithm on an irregular topol-
ogy. Also, we would like to point that although LBDR loses
some performance with some routing algorithms it is much
more attractive than LBDRe, due to its simplicity. Also,
with a proper routing algorithm (XY and/or UD) the perfor-
mance penalty is eliminated.

As future work, the applicability of LBDR and LBDRe
for chip/system virtualization is meant to be deeply ana-
lyzed. Some example of this analysis could be NoC par-
titioning (we want to assure coherency and isolation for ev-
ery part, e.g. different running applications) or dealing with
failures.

Further studies of area, power and delay reductions (with
much more detail) are also on their way. We are currently
working on designing and synthetizing the LBDR solution
to compare it with a table-based solution.
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