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ABSTRACT. A matching on a graph is a set of edges, no two of which share a vertex. A maximum 
matching contains the greatest number of edges possible. This paper presents an efficient implemen- 
tation of Edmonds' algorithm for finding a maximum matching The computation time is propor- 
tional to V *, where V is the number of vertices; previous implementatmns of Edmonds' algorithm 
have computation time proportional to V 4. The implementation is based on a system of labels that 
e n c o d e s  the structure of alternating paths. 
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1. Introduction 

The problem of finding a maximum matching on a graph has applications in operations 
research and integer programming. For example, the following is a maximum matching 
problem: 

In  a factory, a manager must divide his workers into teams of two. Certain teams 
are not allowed, because the workers are incompatible. Choose the greatest possible 
number  of teams of compatible workers. 

We present an algorithm for finding a maximum matching on a graph. If V is the 
number of vertices, the run time is proportional to V 3. The space required is 4V words 
in addition to the space needed for the graph. 

The approach is a careful implementation of ideas presented by Edmonds [4]. His 
algorithm has run time proportional to V 4 [4; 6, Erratum]. We improve this by elimi- 
nat ing the process of blossom expansion. Instead, we use a system of labels to store 
the structure of alternating paths. 

This approach is similar to labeling techniques in the matching algorithms of Balinski 
[1] and Witzgall and Zahn [13]. The former algorithm has run time proportional to V 3, 
if a stack is used for vertex selection; the latter algorithm can be implemented in time 
proportional to V ~, using techniques described here. However, both algorithms may 
label a vertex more than once in a search. This increases the run time and makes it 
difficult to generalize to other problems, such as finding a maximum weighted match- 
ing [13]. The present algorithm overcomes these difficulties [8]. 
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FIG. 1 Matched graph G~ 

After summarizing definitions in Section 2, we state the algorithm in Section 3. A 
proof of correctness is given in Section 4. Section 5 discusses time and space bounds, 
and applications of the algorithm. 

'2. Preliminaries 

This section summarizes some well-known definitions and results. 
A graph G consists of a finite set of vertices and a finite set of edges. An edge is an 

(unordered) set of two distinct vertices. The edge containing vertices v and w is denoted 
vw (or wv). Vertices v and w are ad3acent. An adjacency list for v is a list of the vertices 
adjacent to v. A subgraph of G is a graph whose vertices and edges are in G. A graph is 
complete if any two vertices are adjacent. 

A walk W is a list of vertices (v~, v:, • - • , v~), where n > 1 and v,v~+l is an edge, 
for 1 < , < n. A walk is simple if no vertex occurs more than once in the list. A path 
is a simple walk. A cycle is a walk (vl, v2, - . -  , v~, vl) such that  n > 2 and (v~, v2, •. • , 
v, ) is simple. 

Let W = (vl,  v2, • • , v~) and X = (v,+l,  v,+2, . . .  , v~) be walks. The reverse walk 
of W, denoted rev W ,  is (v , ,v~_l ,  • • , vl). The concatenation of W and X, denoted 
W , X ,  is (vl , . • • , v, , v~+l , • • • , vz) .  For W * X  to be a walk, it is necessary that  v,v,+~ 
is an edge. For W . X  to be a path, it is furl~her necessary that  W and X are disjoint 
paths. 

A matching on a graph is a set of edges, no two of which share a vertex. A matched 
graph (G, M )  is a graph G with a matching M. A vertex v is matched if it is in some 
edge of the matching; otherwise v is unmatched. M is a max imum matching if no match- 
ing on G contains more edges than M. Figure I shows a matching on a graph G~ (matched 
edges are shown as wavy lines). Vertices 9 and 10 are unmatched. The matching is not  
maximum, since a matching with no unmatched vertices exists. 

An alternating path in a matched graph is a path (vl, • • • , v~) such that  exactly one of 
every two edges v,_lv,'and v,v,+l is matched, for 1 < i < n. An augmentsng path is an 
alternating path whose ends v~ and v, are distinct unmatched vertices. 

If (vz, . . .  , v~) is an augmenting path in (G, M),  a new matching M'  is obtained 
by replacing the matched edges v2,v2,+l, 1 < ~ < n ,  with the unmatched edges v2,-lv2,, 
1 < i < n. We say the matching M is augmented to M',  since M'  contains one more 
edge than M. In  Figure 1, (10, 1, 2, 3, 4, 8, 7, 6, 5, 9) is an augmenting path. Augment- 
ing gives a maximum matching. 

Note that  an augmenting path is simple. We cannot augment a matching with a non- 
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simple alternating walk. This is illustrated in Figure 1 by the walk (10, 1, 2, 3, 4, 8, 7, 
4, 3, 9). "Augmenting" does not give ~t matching, since edges 47 and 48 become 
"matched." 

Augmenting paths are important for this reason: 
LEMMA (Berge). A matched graph (G, M )  has an augmenting path i f  and only ~f M 

is not maximum. 
PROOF. See [2, 4]. 
As a result, a maximum matching can be found by repeatedly searching for augment- 

ing paths and augmenting the matching. The algorithms in [1, 2, 13] and the one pre- 
sented here are organized in this way. 

3. Statement of the Algorithm 

This section presents an algorithm, called E, for finding a maximum matching on a 
graph. First, the basic strategy and the data structures of E are described. Then Algo- 
rithm E is stated. An example of how E works is given. Finally, E is compared with 
Edmonds'  algorithm. 

The algorithm begins by numbering the vertices and edges of the graph. Below we 
do not distinguish between a vertex v and its number; we denote both by v. We denote 
the number of an edge vw as n(vw). 

Algorithm E constructs a number of matchings, the last of which is maximum. A 
matching is stored in the array M A T E .  This array has an entry for each vertex. If v and 
w are vertices, edge vw is matched if M A T E ( v )  = w and M A T E ( w )  = v. 

Algorithm E begins with all vertices unmatched. I t  searches for an augmenting path. 
If such a path is found, the matching is augmented. The new matching contains one 
more edge than the previous one. Next E searches for an augmenting path for the new 
matching. This process is iterated. Eventually, E constructs a matching that  has no 
augmenting path. This matching is maximum, by Berge's Lemma. 

Algorithm E searches for an augmenting path in the following way. First an unmatched 
vertex u is chosen. E scans edges to find alternating paths to u. A vertex v is called outer 
when E finds an alternating path from v to u that starts with a matched edge. Let such 
a path be P(v)  = (v, vl ,  " .  , u) ,  so vvl is matched. E sets an entry in the L A B E L  
array for every outer vertex v. Path P(v) can be computed from LABEL(v) .  If  an edge 
joining an outer vertex v to an unmatched vertex u'  ~ u is scanned, E finds an aug- 
menting path, ( u ' ) . P ( v )  = (u', v, vl ,  . . .  , u).  If no such edge is ever scanned, vertex u 
is not in an augmenting path. 

Figure 2 illustrates a search for an augmenting path to vertex u = 9. Figure 2(a) 
shows paths P(3)  and P(7) .  Figure 2(b) shows the values stored by E. Now we explain 
these values. 

The L A B E L  entry for an outer vertex is interpreted as either a start label, vertex 
label, or edge label. In Figure 2, eight vertices are outer. Each is labeled in one of these 
ways. The remaining vertex, 1, is nonouter. This means there is no Mternating path from 
1 to 9 that  starts with a matched edge. Nonouter vertices are drawn hollow in all figures 
in this paper. 

Now we describe the three label types. 
Start label. In  the search for an augmenting path to the unmatched vertex u, u has 

a start label. This defines an alternating path, P ( u )  = (u). 
Vertex label. If  outer vertex v has a vertex label, L A B E L ( v )  is the number of another 

outer vertex. Path P(v)  is defined as (v, M A T E ( v ) ) , P ( L A B E L ( v ) ) .  Using this defini- 
tion, we compute P(8)  : 

P(8)  = (8, M A T E ( 8 ) ) . P ( L A B E L ( 8 ) )  = (8, 7) . (4 ,  a, 9) = (8, 7, 4, 3, 9). 

Edge label. If outer vertex v has an edge label, LABEL(v)  contains the number of an 
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v MATE(v) Label type LABEL(v) FIRST(v) 

1 2 n o n o u t e r  - -  - -  

2 1 vertex 3 1 
3 4 edge n (67) 0 
4 3 vertex 9 0 
5 6 edge n(67) 0 
6 5 vertex 9 0 
7 8 edge n(48) 0 
8 7 vertex 4 0 
9 --  start - -  0 

.Fi~ 2. Search values 
(b) 

edge joining two outer vertices, LABEL(v) = n(xy). Path P(v) is defined in terms of 
paths P(x) and P(y). As an example, consider vertex 7, which has label n(48). Vertices 4 
and 8 are outer, so there are alternating paths P(4)  and P(8) .  Vertex 7 is in P(8) .  
Let P(8,  7) denote the portion of P (8)  from 8 to 7, i.e. P(8,  7) = (8, 7). Then P(7)  is 
defined as the path (rev P (8, 7 ) ) *P (4), i.e. 

P(7)  = (rev (8, 7 ) ) . (4 ,  3, 9) = (7, 8, 4, 3, 9). 

Path P(3)  is defined similarly. The label of vertex 3 is n(67). Since vertex 3 is in P(7) ,  
path P(3)  = (rev P(7,  3 ) ) . P ( 6 ) .  

E also uses an array FIRST. If  v is an outer vertex, FIRST(v) is the first nonouter 
vertex in P(v). In Figure 2, the first nonouter vertex in P(2)  is FIRST(2) = 1. Path 
P(7)  does not contain any nonouter vertices, so FIRST(7) is set to 0, a dummy vertex. 
If  edge 67 is removed, vertices' 2, 3, and 5 become nonouter, and FIRST(7)  becomes 3. 

The array FIRST speeds up the computation. Using FIRST, E finds the first non- 
outer vertex m P(v) with a table look-up. Without FIRST, this operation involves 
computing vertices m P(v) until a nonouter vertex is found. Thus FIRST enables E 
to do in constant time what otherwise requires time proportional to V, the number of 
vertices. This speedup is crucial in achieving the O( V a) time bound. 

Now we state Algorithm E in detail. 
The vertices of the graph are numbered from 1 to V. E also uses a dummy vertex 0 

for boundary conditions. 
The edges of the graph are stored in some standard manner, such as an adjacency 

matrix [9] or adjacency lists. For convenience we choose adjacency lists, using an ap- 
proach described by Tarjan [11]. Let W be the number of edges in the graph. An array 
END has entries numbered from V -F 1 to V + 2W. For each edge, there are two con- 
secutive entries, containing the numbers of the vertices in the 'edge. Thus edge vw is 
stored as the zth edge when END(V + 2i - 1) = v and END(V + 2,) = w. The edge 
number n(vw) is V + 2,. Thus, v and w can be easily computed from n(vw). There 
is an adjacency list for each vertex v. This list contains the numbers n(vw) of all edges 
containing v. 

The array END and the adjacency lists are referenced implicitly in the algorithm. 
See, for example, step E2, below. 

The M A T E  array has an entry for each vertex. M A T E  specifies a matching. If  v, 



A n  E f fw ien t  I m p l e m e n t a t i o n  of  E d m o n d s '  A l g o r i t h m  225 

w ~ 0 a r e  v e r t i c e s ,  M A  T E ( v )  = 0 if v is  u n m a t c h e d ;  e d g e  vw is  m a t c h e d  if  M A  T E ( v )  = w 

a n d  M A T E ( i v )  = v. 

T h e  L A B E L  a r r a y  h a s  a n  e n t r y  for  e a c h  v e r t e x .  I n  a g i v e n  s e a r c h ,  a v e r t e x  v is  o u t e r  

if L A B E L ( v )  > O. I f  v h a s  a v e r t e x  labe l ,  L A B E L ( v )  is a v e r t e x  n u m b e r  b e t w e e n  1 a n d  

V. I f  v h a s  a n  edge  label ,  L A B E L ( v )  is a n  edge  n u m b e r  b e t w e e n  V + 1 a n d  V + 2 W .  

T h e s e  c l a s s i f i ca t i ons  a r e  u s e d  i m p l i c i t l y  in  t h e  a l g o r i t h m ,  in  t e s t s  l ike  " I f  t h e  v e r t e x  is 

o u t e r ,  t h e n  . . . .  " See,  for  e x a m p l e ,  s t e p  E 4 .  

T h e  F I R S T  a r r a y  h a s  a n  e n t r y  fo r  e a c h  v e r t e x .  I n  a g i v e n  s e a r c h ,  if v is  a n  o u t e r  v e r t e x  

t h e n  F I R S T ( v )  is t h e  f i r s t  n o n o u t e r  v e r t e x  in  P ( v ) .  

T h e  a l g o r i t h m  is p r e s e n t e d  b e l o w  in  a h i g h - l e v e l  l a n g u a g e  s i m i l a r  t o  K n u t h ' s  [10]. 

E is t h e  m a i n  r o u t i n e .  I t  u s e s  s u b r o u t i n e s  L a n d  R.  

E cons t ruc t s  a m a x i m u m  ma t ch i ng  on a graph  I t  s t a r t s  a search  for an  augmen t ing  pa th  to each 
unma tched  vertex u. I t  scans  edges of the  graph,  deciding to ass ign new labels or to augmen t  the  
ma t ch ing  

E0. [Imtiahze.]  Read  the  graph into adjacency l is ts ,  number ing  the  ver t ices  1 to V and the  edges 
V -4- 1 to V + 2W. Create a d u m m y  ver tex 0 For 0 < i < V, se t  LABEL(u)  ~- --1, M A T E ( i )  ~- 0 
(all vert ices are nonouter  and  unmatched)  Set u ~- 0 

E l .  [Find u n m a t c h e d  ver tex ] Set u ~-~ u + 1. I f  u > V,  hal t ;  M A T E  conta ins  a m a x i m u m  ma tch ing  
Otherwise,  if ver tex u is matched ,  repeat  s tep  E1 Otherwise (u is unmatched ,  so  ass ign a s t a r t  label 
and begin a new search) se t  L A B E L ( u )  ~-- F I R S T ( u )  ~- O. 

E2 [Choose an edge ] Choose an edge xy, where x ]s an outer  vertex.  (An edge vw m a y  be chosen 
twice in a sea rch- -once  with x = v, and once with x = w.) If no such  edge exists ,  go to E7. (Edges 
xy  can be chosen m an arb i t rary  order. A posmble chome me thod  m "b read th - f i r s t " :  an  outer  vertex 
x = xt is chosen,  and edges x~y are chosen m succeeding execut ions of E2,  when all such  edges have 
been chosen, the vertex x~ tha t  was labeled immedia te ly  af ter  x~ is chosen,  and the process  is re- 

. peated for x = x~.  Th i s  breadth-f i rs t  me thod  requires  tha t  Algor i thm E ma in t a in  a l i s t  of outer  
vert ices,  xL, x~ • • • .) 

E3. [Augment  the  matching. l  If y is unmatched  and y ¢ u, se t  M A T E ( y )  ~-- x, call R(x ,  y):  then  go 
to E7 (R completes  the  augmen t  along pa t h  (y)*P(x))  

E4. [Assign edge labels.] If y is outer,  call L,  then  go to E2 (L ass igns  edge label n(xy)  to nonouter  
ver tmes  in P(x)  and P(y))  

E5. [Assign a ver tex label.] Set v ~-~ M A T E ( y ) .  If v m nonouter ,  se t  L A B E L ( v )  ~ x, F IRST(v )  ~- y, 
and go to E2 (See Figure 3 ) 

E6. [Get next  edge.] Go to E2 (y is nonouter  and M A T E ( y )  is outer,  so edge xy  adds  nothing) .  

E7. [Stop the s ea r ch ]  Set LABEL(O) *-- --1. For  all outer  vert ices  % se t  LABEL(q)  e-  
L A B E L  (MATE(z ) )  ~-- --1 T hen  go to E1 (now all ver tmes  are nonouter  for the  nex t  search) .  

L ass igns  the  edge label n(xy)  to nonouter  vert ices Edge xy  joins outer  vert ices  x, y. L se t s  jo in  
to the  first nonouter  ver tex m both  P(z)  and P(y) .  T h e n  it  labels all nonouter  ver t ices  preceding 
jo in  in P(x)  or P(y)  See Figure 4. 

L0. [Initialize.] Set  r ~ F I R S T ( x ) ,  s ~-- F I R S T ( y ) .  If r = s, re tu rn  (no vert ices  can  be labeled). 

Mate(y)q 

FIG. 3 

Label (v)  ' 

F l r l t ( v )  

v 

Assigning a ver tex label 

P(v) 
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FIG. 4. Assigning edge labels 

Otherwise flag r and s. (Steps L1-L2 find 3oin by advancing alternately along paths P(x)  and P(y) .  
Flags are assigned to nonouter vertices r in these paths. This is done by setting L A B E L ( r )  to a 
negative edge number, L A B E L ( r )  +- - n ( x y ) .  This way, each invocation of L uses a distinct flag 
value.) 

L1. [Switch paths ] If s ~ 0, interchange r and s, r ~-~ s (r is a flagged nonouter vertex, alternately 
in P(x)  and P(y)) .  

L2. [Next nonouter vertex.] Set r +-- F I R S T ( L A B E L ( M A T E ( r ) ) )  (r ]s set to the next nonouter 
vertex in P(x) or P(y)). If r is not flagged, flag r and go to L1 Otherwise se t3o in  ~-- r and go to L3. 

L3. [Label vertices in P(x), P(y).] (All nonouter vertmes between x and 3o~n, or y and jozn, will be 
assigned edge labels. See Figure 4(a).) Set v +- F I R S T ( x )  and do L4. Then set v +- F I R S T ( y )  and 
do L4. Then go to L5. 

L4 [Label v ] If v ~ 3oin, set L A B E L ( v )  +- n(xy) ,  F I R S T ( v )  ~-)oln ,  v ~-- F I R S T ( L A B E L ( M A T E ( v ) ) )  
and repeat step L4 (See Figure 4(b).) Otherwise continue as specified in L3. 

L5 [Update FIRST.]  For each outer vertex i, if F I R S T ( I )  is outer, set F I R S T ( z )  +- 3o~n. (Join  is 
now the first nonouter vertex in P(i )  ) 

L6. [Done ] Return 

R (v, w) rematches edges m the augmenting path. Vertex v is outer. Part of path (w)*P(v) is in the 
augmenting path. I t  gets rematehed by R(v,  w) (Although R sets M A T E ( v )  +- w, it does not set 
M A T E ( w )  ~- v. This is done in step E3 or another call to R.) R is a recursive routine. 

R]. [Match v to w ] Set t ~-- M A T E ( v ) ,  M A T E ( v )  ~- w. If M A T E ( t )  ~ v, return (the path m com- 
pletely rematehed) 

R2. [Rematch a path.] If v has a vertex label, set M A T E ( t )  ~-- L A B E L ( v ) ,  call R ( L A B E L ( v ) ,  t) 
recursivcly, and then return. 

R3. [Rematch two paths.] (Vertex v has an edge label ) Set x, y to vertices so L A B E L ( v )  = n(xy) ,  
call R(x ,  y) recurslvely, call R(y ,  x) recurslvely, and then return. 

We  i l lustrate  how E cons t ruc ts  a m a x i m u m  match ing  on g raph  Gi of Figure  1. Ini t ial ly,  
all ver t ices  are unmatched .  E searches for an augmen t ing  p a t h  to  ve l t ex  1. The  first  
edge chosen,  12, forms such a pa th .  An  a u g m e n t  is done  by  placing 12 in t he  matching .  

E sets  M A T E ( l )  ~-- 2, M A T E ( 2 )  +-  1. 

In  a similar manner ,  edges 34, 56, and  78 are matched .  This  gives t he  ma tch ing  in 

Figure  1. 
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]n the last search, vertex 9 gets a start label. Edge 93 is scanned, and vertex 4 gets a 
vertex label; similarly, vertices 6 and 8 get vertex labels. When E scans edge 48, vertex 7 
gets an edge label. The result is Figure 5. (Only scanned edges are shown. The LABEL 
values of outer vertices are shown in Figure 2.) 

Now we describe how vertices 3 and 5 are labeled, as shown in Figure 2. E scans edge 
67, and subroutine L is called to assign the label n(67). 

L computes join in steps L0-L2, as follows: 
1. In step L0, the first nonoutcr vertex in P(6)  is computed as FIRST(6)  = 5. The 

first nonouter vertex in P(7)  is computed as FIRST(7)  = 3. Vertmes 5 and 3 are flagged 
by setting LABEL(5)  ~-- LABEL(3)  ~ - n (67 ) .  

2. In step L2, the next nonouter vertex in P(7)  is computed as FIRST(9)  = O. 
Vertex 0 is flagged. 

3. In step L2, the next nonouter vertex in P(6)  is computed as FIRST(9)  = O. 
Since 0 is already flagged, joan is set to 0. 

In steps L3-L4, L assigns the label n(67) to vertices 5 and 3. 
L resets FIRST( i )  for i = 4, 6, 7, 8, in step L5. No nonouter vertices remain in P(~), 

so FIRST( I )  is set to 0. 
Finally, L returns. 
Now E continues scanning edges. Vertex 2 gets a vertex label; the result is Figure 2. 

When edge 32 is scanned, vertex I gets an edge label, n(32). Finally edge 1 10 is scanned, 
and the augmenting path (10) .P(1)  is found. 

The augment is done in step E3 and subroutine R. Step E3 matches vertex 10, and 
calls R(1, 10) to rematch the remainder of (10),P(1).  Figure 6(a) shows the result of 
R(1, 10): Edge 1 10 is matched, and two recursive calls are pending on R, R(3, 2) and 
R(2, 3). (In Figure 6(a), edge 12 is drawn half-wavy, denoting MATE(2)  -- 1 but 
M A T E ( l )  ~ 2.) Path P(1)  is defined as (rev P(2, 1) ) .P(3) .  The call R(3, 2) processes 
path P(3).  Figure 6(b) shows the matching when R(3, 2) is complete. (R(3, 2) makes 
recursive calls R(6, 7) and R(7, 6).) Then the call R(2, 3) processes path rev P(2, 1). 
I t  sets M ATE(2 )  = 3, completing the augment. 

Now M A T E  contains a maximum matching. The algorithm halts in step El.  
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FIG. 6. Augment path (10).P(1) 

For comparison we briefly describe how Edmonds' algorithm [4] finds the" same match- 
ing on G~. We discuss the search for an augmenting path to vertex 9. 

The search begins by growing a tree consisting of the edges in Figure 5, except for 
edge 48. When this edge is scanned, it completes a cycle, (4, 7, 8, 4). Edmonds de- 
fines a blossom as an odd number of vertices joined by a maximally matched cycle. 
Vertices 4, 7, and 8 form a blossom. These vertices and the edges between them are 
shrunk into a single vertex, b. Vertex b is adjacent to any vetrex adjacent to 4, 7, or 8, 
b is matched with vertex 3. The result is a reduced graph Gt'. 

Now the problem is to find all augmenting path in G(. Suppose the path (10, 1, 2, 
3, b, 6, 5, 9), corresponding to (10) ,P(1) ,  is found. The matching in Gi' is augmented. 
So edge b6 becomes matched. Then blossom b is expanded into the original cycle (4, 7, 
8, 4). Vertex 7 is matched to 6. The remaining vertices are matched along edges of the 
cycle. The result is a maximum matching. 

The intermediate steps that find the augmenting path in G~' are similar. Two more 
blossoms are shrunk. (These correspond to edge labels n(67) and n(32).) In the aug- 
ment, these two blossoms are expanded and rematched. 

The implementation of this elegant algorithm requires some care. A time bound of 
O(V 4) results from (possibly) V 2 blossom expansion operations, each requiring time 
0(V2). Algorithm E avoids shrinking and expansion by recording the pertinent struc- 
ture of blossoms in LABEL and FIRST.  This results in a factor of V speedup. 

4. Proof of Correctness 

This section proves that Algorithm E constructs a maximum matching. I t  shows that E 
constructs valid augmenting paths; each matching is augmented correctly; and the last 
matching is maximum. 

I t  is convenient to introduce the dummy vertex, 0, to handle boundary conditions. 
In any search, we assume vertex 0 is nonouter, and is "matched" with the unmatched 
vertex u. We also extend the paths P(v) to vertex 0, as follows: 

Defimtion 1. An outer path is an alternating path (v, vl, . . .  , u, 0) that starts with 
a matched edge vvl and ends with the dummy vertex, 0. 

The definition guarantees an outer path contains at least one nonouter vertex. 
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plr* j-l,rjl ~ r'l" j-I w pl v)----J~ 

FIG. 7. Search graph 

The first task is to prove that  in step E3, ( y ) , P ( x )  is an augmenting path. I t  suffices 
to show tha t  P(x)  is an outer path. We do this below, in Corollary 1. The main issue is 
proving P(x)  is simple. 

We star t  by  defining a search graph, which gives the properties of a search conducted 
by  E. Functions p, f, and l in the definition correspond to P, FIRST,  and LABEL in 
Algorithm E. 

Defin~tw~ 2. A search qraph (G, O, u, p, f, l) consists of: a matched graph G; a set 
of vertices, O, called outer vertices; an unmatched outer vertex u; a function p, mapping 
an outer vertex v to p(v), an outer pa th  start ing at v; a function f, mapping an outer 
vertex v to f(v),  the first nonouter vertex in p(v) ;  and a function l, mapping certain 
outer vertices v to l(v), another outer vertex. In addition, the  following propert ies are 
satisfied for an outer vertex v. Let r = f(v), the first nonouter vertex in p(v); let  r -  be 
t he  vertex matched with r; and let r + = l(r-). 

2.1. Pa th  p(v) = p(v, r).p(r+). 
2.2. An outer vertex x in p(v, r) h a s f ( x )  = r. 
Figure 7 shows an outer path  p(v) in a search graph. All outer vertices x with the same 

vertex f (x)  are grouped in a circle. Vertex r = f(v) is the first nonouter vertex in path  
p(v). Consider a vertex x in v's circle. Properties 2.1 and 2.2 imply tha t  p(x) consists of 
a path  inside the circle to r - ;  followed by edges r-r, rr+; followed by p(r+). (Note  tha t  
the circles in Figure 7 correspond to blossoms in Edmonds '  algorithm.) 

Figure 2 shows a search graph constructed by E. The outer vertex 3 illustrates prop- 
erty 2.2, since all vertices x in P(3 ,  9) have FIRST(x )  = O. 

The decomposition property 2.1 at  first seems too weak. I t  seems natural  tha t  p(v) = 
(v, vl,  . . .  , v2,-1, v2,, . . .  ) decomposes as p(v, v2,-1)*p(v~,), for any i. However this is 
false. In  Figure 2, p(3)  ~ (3, 4 ) , p ( 8 ) .  
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Now we derive the structure of pa th  p(v) shown in Figure 7. Let  the nonouter vertices 
in p(v) be r , ,  for 0 < j < J .  Thus r0 ~- r = f(v) and r j  = 0. Proper ty  2.1 shows tha t  
for a n y i i n 0 < i _ <  J ,  

p(v) = p(v, r0).p(r0 +, r l ) * - . "  *p(r~+-l, r,)* . . . .p (r ,+) .  (1) 

A vertex x ~ re in p(r~-l, re) is outer, a n d f ( x )  = re. 
Next  we derive the relationship between two outer paths p(v)  and p(w), as shown in 

Figure 7. Let  the nonouter vertices in p(w) be sk, for 0 _< k < K. Let  z be the first outer 
vertex in p(v) tha t  is also in p(w). Decomposition (1) shows f(z) is a nonouter vertex in 
both  paths,  f (z)  = rs = sa for some indices f,  g. So it is easy to see tha t  p(v) and p(w) are 
identical after rf = so, and tha t  p(v, rs_l ) and p(w, so-l) are disjoint. Thus, as shown in 
Figure 7, p(v) and p(w) both par t i t ion into three subpaths. The first subpaths,  p(v, rf_~) 
and p(w, Sa-l), are disjoint;  the last subpaths,  p(rs +) and p(so+), are identical;  the middle 
subpaths, p( r~-x , r s ) and p( so+-l , so), intersect arbitrari ly.  

Now we show tha t  E maintains a search graph. Fi rs t  we formally define the function P :  
Definitwn 3. The outer path functwn P for Algorithm E is defined (recursively) as 

follows: 
1. The unmatched vertex u has outer pa th  P(u) = (u, 0). 
2. If  v has a vertex label, LABEL(v) is the number of an outer vertex, and P(v) = 

(v, MATE(v)  ) , (LABEL(v)  ). 
3. I f  v has an edge label, LABEL(v) is the number  of an edge xy, where x and y are 

outer vertices. Ei ther  v E P(x) or v E P(y).  In the former case, 

P(v) = (rev P(x, v) ) .P(y) ;  otherwise, P(v) = (rev P(y, v) ) .P(x) .  

LEMMA 1. Each time step E2 is executed m Algorithm E, a search graph is formed by 
(G, O, u, P, FIRST, LABEL).  

PROOF. The argument is by  induction. Assume a search graph is formed, with outer 
vertices O. Below we show tha t  if E assigns an edge label n(xy) to new vertices 0 I, then a 
search graph is formed, with outer vertices O U 0 ' .  The case where E assigns a vertex 
label is left as an easy exercise. 

Edge labels are assigned in step E4 and subroutine L. From Figure 7, we see steps 
LO--L4 work as follows: 

In  steps LO-L2, consecutive nonouter vertices in P(x) and P(y) are flagged. ( In  a 
search graph, the nonouter vertex after r is f ( l(r-)) .  ) 

In step L2, join is set to the first nonouter vertex common to P(x) and P(y). ( In  
Figure 7, 3oin = ry = so.) 

In step L4, a label is assigned to each nonouter vertex v preceding josh in P(x) or P(y). 
Now we check the search graph properties for an outer  vertex v. We assume first 

v E O, and then v E O'. 
If v E O, let r be the  vertex FIRST(v) before L is executed. We assume r is labeled in 

step L4, since otherwise there is nothing new to check. Either  r E P(x) or r E P(y) ; as- 
sume the former. Figure 7, applied to paths  P(v) and P ( x ) ,  shows tha t  these paths  are 
identical after r. So after L is executed, the first nonouter vertex in P(v) is join. The value 
FIRST(v) is set to join in step L5. Thus array FIRST is maintained correctly. 

Properties 2.1 and 2.2 follow easily from (1). Thus vertices in O satisfy all search graph 
properties. 

Now we check these properties for ~ vertex v E 0 ' .  Before step L4, v is a nonouter vertex 
in P(x) or P(y). Assume the former, so P(v) = (rev P(x, v) ) ,P(y) .  Thisdefines an outer 
pa th  (see Figure 7). In  particular,  P(v) is simple, since P(x, v) and P(y) are disjoint. 
Thus P(v) is defined correctly. 

The remaining search graph properties for v follow from those for vertices x, y E O. 
The lemma now follows by  induction. [] 
COROLLARY 1. E labels vertices v so P ( v ) is an outer path starting at v. 
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Thus we see tha t  E constructs valid augmenting paths. Next  we show tha t  E augments 
a matching correctly. We begin with two useful definitions. 

In  an augment, step E3 and subroutine R change values of M A T E .  A nonzero vertex v 
is originally matched if M A T E ( v )  is unchanged from its value before step E3 begins. For  
example, in Figure 6(a) ,  all vertices except 1, 10, and 0 are originally matched. 

Define a part ia l  order on vertices, @, as follows: v © w means tha t  v is an outer vertex, 
and v is labeled before w is labeled. In Figure 2, 9 © 7 © 1. We consider vertices labeled 
in the same call to L as being labeled simultaneously. So neither 3 © 5 nor 5 @ 3. 

LEMMA 2. Let R(v, w) be called, with v an outer vertex and w ~ P(v) .  Suppose the first 
vertex of P(v )  = (v, vl , v~ , • • • ) that is not originally matched is v2m+l , and v ~ v~m+l. 

Then R changes M A T E ( v , ) ,  0 < i < 2m, to give a maximum matching of the path 
( w ) . P ( v ,  v2m)(i.e. M A T E ( v )  = w, and for 1 < ~ _< m, MATE(v2,-1)  = v2,, 
MATE(v~, )  = v2,-1). 

PROOF. The proof is by  induction on m. The argument falls into three cases: m =0 ;  
m > 0 a n d v h a s a v e r t e x l a b e l ; m  > 0 a n d v h a s a n  edgelabel.  For  details, see [8]. [] 

COROLLARY 2. E augments a matching correctly. 
PROOF. We show tha t  after step E3 and R are executed, M A T E  is changed according 

to an augment along the pa th  ( y ) . P ( x ) .  
The value M A T E ( y )  is set correctly in step R3. When R(x ,  y) is called, all vertices in 

P ( x )  are originally matched, except vertex 0. The hypotheses of the lemma are satisfied 
with v~m+l = 0. So when R(x ,  y) returns, M A T E  is changed to give a maximum matching 
of ( y ) . P ( x ) .  [] 

The final task is to show the last matching is maximum. Suppose vertex u is unmatched 
in the last matching. In  some execution of step E l ,  a search is s tar ted from vertex u. This 
search terminates without augmenting. Let  S~ denote the search; let M~ denote the 
matching when search S~ is made. We investigate how subsequent searches interact  with 
S,,.  The following concept is central [4]. 

Definition 4. The Hungarian subgraph H for vertex u is a subgraph of G. I t  consists of 
all edges containing an outer vertex of S~, and all vertices in these edges. 

In  G1, if edge 23 is deleted, Figure 2 shows the Hungarian subgraph for vertex 9. Note 
these obvious properties of a Hungarian subgraph H:  In search S~,  each edge of H is 
chosen at  least once in step E2. If  vertex v E H -  u, the matched edge containing v is in H. 

The basic result is tha t  no augmenting path  constructed after S ,  intersects H. 
LEMMA 3. Suppose a matching M agrees with M~ on H, M N H -- M ,  N H. Then no 

augmenting path for M contains a vertex zn H. 
PROOF. The hypothesis implies we can refer to "a matched edge in H "  unambiguously. 

We do so below. 
Let  Q be an augmenting path  for M containing a vertex in H. We derive a contradic- 

tion, proving the lemma. 
Pa th  Q is not contained entirely in H. So we can set Q = (vl ,  v2, • • • , v2,), where for 

some i in 1 _< i < n, vertex v2,+~ E H and v~+2 ~ H. The matched edge v2,v~,+l is in H. 
So a vertex in this edge is outer in S , .  Since v2,+~ is nonouter, v2, is outer. 

Choose an index j ,  0 < j < i, so pa th  Q' = (v2j, v2j+l, -.  • , v2,+1) is in H, and vertex 
v~ is outer for j < k < i bu t  nonouter for j = k. This can be done, since if v2k is outer in 
H, then the matched edge v:k-2v2k-~ is in H. (Note i f j  = 0, we have vo = 0 and vl = u.) 

We derive a contradiction by  calculating FIRST(v2~+i) at  the end of S~. If x and y are 
adjacent  outer vertices, then at  the end of S , ,  F I R S T ( x )  = F I R S T ( y ) .  (This results 
from executing subroutine L on edge xy.) Applying this observation to vertices in pa th  Q' 
shows FIRST(v2~+i) -- v2~+1, the first nonouter vertex in Q'. (This vertex exists, since 
v2~+~ is nonouter.)  

However, pa th  P(v~+~) = (v2~+1, v2~ , . . .  ), so FIRST(v2j+i) = v2j. Since v2~ 
v2~+~, we have a contradiction. [] 

Now we show E works correctly. 
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TABLE I. Wons~-C~,sE TI~E BouNns 

Executions 
Steps Time per search Total time 

EO V + W - -  V s 
E l  c V V 
E2 c 2W V* 
E3-R V 1 V 2 
E4-LO c W V* 
LI~L6 V V/2 V* 
E5 c V /2  V* 
E6 c W V l 
E7 V 1 V ~ 

COROLLARY 3. E halts wzth a maximum matching specified by MATE.  
PltooF. F imt  note tha t  E always halts. We have seen tha t  subroutines L and R halt. 

So any search eventual ly stops, in step E2 or E3. E star ts  a finite number  of searches in 
step E l .  So Algorithm E halts. 

Corollary 2 shows tha t  M A T E  specifies a valid matching when E halts. To prove the 
last  matching is maximum, i t  suffices to show no augmenting pa th  exists, by  Berge's 
Lemma. Let  u be an unmatched vertex. Lemma 3 shows no augment  made by  E after S~, 
involves edges in H. So Lemma 3 can be applied to the  last  matching, to show there is 
no augmenting path  to u. [] 

We conclude this section by  describing a useful modification to Algorithm E, due to 
Edmonds [4]. The idea is to ignore a Hungarian subgraph H in searches after S~. (By 
Lemma 3, searching in H is fruitless. ) We change step E2 as follows: 

E2'. [Choose an edge.] Choose an edge . . .  If no such edge exists, go to El .  

Step E2 p causes step E7, which unlabels vertices, to be skipped after S~. I t  is easy to check 
tha t  in the modified algorithm, a vertex y E H is never labeled in a search after S~. 

This modification speeds up the algorithm if a maximum matching contains unmatched 
vertices. I t  does not  change the worst-case t ime bound. 

5. E~cieney and Applications 

Algorithm E requires at  most O(V ~) time units when executed on a random access com- 
puter. This is seen from Table I ,  which gives simple bounds on the t ime for each step. For  
example, steps E4-LO can be executed in a constant amount  of t ime (c) ; in a given search, 
they are executed at  most W times (where W is the  number of edges) ; since there are 
at  most V searches, and W g V( V - 1)/2,  the total  t ime for these two steps is O(V~). 
(Note  tha t  in step E2 we assume edges are chosen in a breadth-first  or similar method, 
where a list of outer  vertices is maintained. The list allows an unexamined edge to be 
chosen in t ime c J)  

Families of graphs tha t  require t ime O(V 3) can be constructed. We describe such a 
family, assuming Algori thm E uses the breadth-first  method in step E2. Similar families 
can be constructed for other methods [8]. 

Figure 8(a)  shows a graph G6~, with a maximum matching. This graph is formed from 
vertices 1, 2, . .  • , 6m by joining vertices 1, 2, • . .  , 4m in a complete graph, K4~, and 
joining vertex 2i - -  1 with vertex 4m "-b i, for 1 < i < 2m. Adjacency lists contain vertices 
in numerical order. Figure 8(b)  shows the intermediate matching with 2m edges con- 
s tructed by  Algori thm E. Figure 8(c)  il lustrates a typical  search to match vertex 4m -b i. 
( H e r e / i s  odd.) All vertices except 1, 3, 5, • • • , 2/ - 1 are made outer. An augmenting 

1 The run time of Algorithm E is at most O(VWa(W, V)), if an efficient set merging algorithm is 
used to maintain FIRST in step L5. Here a is a very slowly growing function; a(W, V) < 3 for all 
graphs that can be stored in an existing computer memory [12]. For sparse graphs (W << V~), this 
variant of E is preferable. 
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(b) 

4m,l 4m*i 4m.Sitl 6m 

2i . l l  2i 2it,! 2it2 

, K4m 
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4m4i 4m,itl 

K4m 

(c) 

i r  4m~i 

I ~ 4 m - I  

4m,I 4 4m,2 4m,i-I 2it2 4m 
FIG. 8. Worst-case graph G~ 

path to vertex 4m "4- i + 1 is found when outer vertex 2~ + 1 is chosen in step E2. Over 4mi 
edges are chosen in this search, and over 4m 3 edges are scanned in the last m searches. 
Thus the time is O(V3). 

Several experiments were conducted with an implementation of E in Algol W on the 
IBM 360/165. For the worst-case graphs described above, run times proportional to V 2"s 
were observed, over the interval 11 _< m < 24 (66 < V < 144, 968 < W < 4608), with 
times from .18 to 1.6 sec. For a similar experiment on Edmonds'  algorithm, times propor- 
tional to V ~ 5 were observed (versus V 4 predicted) with time 1.7 sec for m = 11. Experi- 
ments on E on "random" graphs gave times one order of magnitude faster than worst-case 
graphs with 3200 edges [8]. 

The space used by the Algol W implementation of E is 5V + 4W words. This includes 
V -4- 4W words for the graph; 2V words for MATE and LABEL; V words for FIRST, 
also used by the stack of recursive calls to R; and V words for a list of outer vertices for 
step E2. 

Algorithm E can be used to speed up the scheduler devised by Fujii et. al. [6]. They 
solved the following problem: Compute an optimal schedule for N tasks to be executed by 
two processors, assuming the tasks have equal length and arbitrary precedence constraints. 
Their approach is to construct a compatibility graph, showing which tasks can be executed 
simultaneously; then find a maximum matching on the compatibility graph; finally, se- 
quence the matched task pairs and the unmatched tasks according to precedence con- 
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straints. This algorithm was thought to require time 0(N4)[6, Erratum]. But thefirst and 
last steps can be executed in time O(Na), and Algorithm E finds the matching in time 
O(N:~). So the scheduler is an O(N 3) algorithm. (Recent work by Coffman and Graham 
[3] solves this scheduling problem in time O(N~). Their elegant method does not employ 
matchings directly.) 

Algorithm E can be generalized to find maximum matchings on weighted graphs. In a 
weighted graph, each edge has a weight that is a real number. The problem is to find a 
matching with maximum weight. Matching on ordinary graphs is the special case of this 
problem where all edges have equal weight. Edmonds [5] first developed an efficient 
(O(V4)) algorithm for this problem. The generalization of Algorithm E takes 
time 0(V3)[8]. 
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