
An Efficient Implementation of Floating Point
Multiplier

Mohamed Al-Ashrafy
Mentor Graphics

Cairo, Egypt
Mohamed_Samy@Mentor.com

Ashraf Salem
Mentor Graphics

Cairo, Egypt
Ashraf_Salem@Mentor.com

Wagdy Anis
Communications and Electronics

Engineering
Ain Shams University

Cairo, Egypt
Wagdy4451@yahoo.com

Abstract—In this paper we describe an efficient implementation
of an IEEE 754 single precision floating point multiplier targeted
for Xilinx Virtex-5 FPGA. VHDL is used to implement a
technology-independent pipelined design. The multiplier
implementation handles the overflow and underflow cases.
Rounding is not implemented to give more precision when using
the multiplier in a Multiply and Accumulate (MAC) unit. With
latency of three clock cycles the design achieves 301 MFLOPs.
The multiplier was verified against Xilinx floating point
multiplier core.

Keywords-floating point; multiplication; FPGA; CAD design
flow

I. INTRODUCTION

Floating point numbers are one possible way of
representing real numbers in binary format; the IEEE 754 [1]
standard presents two different floating point formats, Binary
interchange format and Decimal interchange format.
Multiplying floating point numbers is a critical requirement for
DSP applications involving large dynamic range. This paper
focuses only on single precision normalized binary interchange
format. Fig. 1 shows the IEEE 754 single precision binary
format representation; it consists of a one bit sign (S), an eight
bit exponent (E), and a twenty three bit fraction (M or
Mantissa). An extra bit is added to the fraction to form what is
called the significand1. If the exponent is greater than 0 and
smaller than 255, and there is 1 in the MSB of the significand
then the number is said to be a normalized number; in this case
the real number is represented by (1)

Figure 1. IEEE single precision floating point format

� Z = (-1S) * 2 (E - Bias) * (1.M)�� ����

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 2-22+ m0 2-23;

Bias = 127.

1 Significand is the mantissa with an extra MSB bit.
This research has been supported by Mentor Graphics.

Multiplying two numbers in floating point format is done
by 1- adding the exponent of the two numbers then subtracting
the bias from their result, 2- multiplying the significand of the
two numbers, and 3- calculating the sign by XORing the sign
of the two numbers. In order to represent the multiplication
result as a normalized number there should be 1 in the MSB of
the result (leading one).

Floating-point implementation on FPGAs has been the
interest of many researchers. In [2], an IEEE 754 single
precision pipelined floating point multiplier was implemented
on multiple FPGAs (4 Actel A1280). In [3], a custom 16/18 bit
three stage pipelined floating point multiplier that doesn’t
support rounding modes was implemented. In [4], a single
precision floating point multiplier that doesn’t support
rounding modes was implemented using a digit-serial
multiplier: using the Altera FLEX 8000 it achieved 2.3
MFlops. In [5], a parameterizable floating point multiplier was
implemented using the software-like language Handel-C, using
the Xilinx XCV1000 FPGA; a five stages pipelined multiplier
achieved 28MFlops. In [6], a latency optimized floating point
unit using the primitives of Xilinx Virtex II FPGA was
implemented with a latency of 4 clock cycles. The multiplier
reached a maximum clock frequency of 100 MHz.

II. FLOATING POINT MULTIPLICATION ALGORITHM

As stated in the introduction, normalized floating point
numbers have the form of Z= (-1S) * 2 (E - Bias) * (1.M). To
multiply two floating point numbers the following is done:

1. Multiplying the significand; i.e. (1.M1*1.M2)

2. Placing the decimal point in the result

3. Adding the exponents; i.e. (E1 + E2 – Bias)

4. Obtaining the sign; i.e. s1 xor s2

5. Normalizing the result; i.e. obtaining 1 at the MSB of
the results’ significand

6. Rounding the result to fit in the available bits

7. Checking for underflow/overflow occurrence

Consider a floating point representation similar to the IEEE
754 single precision floating point format, but with a reduced

978-1-4577-0069-9/11/$26.00 ©2011 IEEE

number of mantissa bits (only 4) while still retaining the hidden
‘1’ bit for normalized numbers:

A = 0 10000100 0100 = 40, B = 1 10000001 1110 = -7.5

To multiply A and B
1. Multiply significand: 1.0100
 × 1.1110
 00000

 10100
 10100

 10100
 _10100____
 1001011000

2. Place the decimal point: 10.01011000
3. Add exponents: 10000100

+ 10000001
 100000101

The exponent representing the two numbers is already
shifted/biased by the bias value (127) and is not the true
exponent; i.e. EA = EA-true + bias and EB = EB-true + bias

And

 EA + EB = EA-true + EB-true + 2 bias

So we should subtract the bias from the resultant exponent
otherwise the bias will be added twice.

 100000101
 - 01111111

 10000110
4. Obtain the sign bit and put the result together:

 1 10000110 10.01011000
5. Normalize the result so that there is a 1 just before the

radix point (decimal point). Moving the radix point
one place to the left increments the exponent by 1;
moving one place to the right decrements the
exponent by 1.

 1 10000110 10.01011000 (before normalizing)

 1 10000111 1.001011000 (normalized)

The result is (without the hidden bit):
1 10000111 00101100

6. The mantissa bits are more than 4 bits (mantissa
available bits); rounding is needed. If we applied the
truncation rounding mode then the stored value is:
1 10000111 0010.

In this paper we present a floating point multiplier in which
rounding support isn’t implemented. Rounding support can be
added as a separate unit that can be accessed by the multiplier
or by a floating point adder, thus accommodating for more
precision if the multiplier is connected directly to an adder in a
MAC unit. Fig. 2 shows the multiplier structure; Exponents
addition, Significand multiplication, and Result’s sign
calculation are independent and are done in parallel. The
significand multiplication is done on two 24 bit numbers and

results in a 48 bit product, which we will call the intermediate
product (IP). The IP is represented as (47 downto 0) and the
decimal point is located between bits 46 and 45 in the IP. The
following sections detail each block of the floating point
multiplier.

III. HARDWARE OF FLOATING POINT MULTIPLIER

A. Sign bit calculation
Multiplying two numbers results in a negative sign number

iff one of the multiplied numbers is of a negative value. By the
aid of a truth table we find that this can be obtained by XORing
the sign of two inputs.

B. Unsigned Adder (for exponent addition)
This unsigned adder is responsible for adding the exponent

of the first input to the exponent of the second input and
subtracting the Bias (127) from the addition result (i.e.
A_exponent + B_exponent - Bias). The result of this stage is
called the intermediate exponent. The add operation is done on
8 bits, and there is no need for a quick result because most of
the calculation time is spent in the significand multiplication
process (multiplying 24 bits by 24 bits); thus we need a
moderate exponent adder and a fast significand multiplier.

An 8-bit ripple carry adder is used to add the two input
exponents. As shown in Fig. 3 a ripple carry adder is a chain of
cascaded full adders and one half adder; each full adder has
three inputs (A, B, Ci) and two outputs (S, Co). The carry out
(Co) of each adder is fed to the next full adder (i.e each carry
bit "ripples" to the next full adder).

The addition process produces an 8 bit sum (S7 to S0) and a
carry bit (Co,7). These bits are concatenated to form a 9 bit
addition result (S8 to S0) from which the Bias is subtracted. The
Bias is subtracted using an array of ripple borrow subtractors.

Figure 3. Ripple Carry Adder

Figure 2. Floating point multiplier block diagram

A normal subtractor has
three inputs
(minuend (S), subtrahend (T),
Borrow in (Bi)) and two
outputs (Difference (R),
Borrow out (Bo)). The
subtractor logic can be
optimized if one of its inputs is
a constant value which is our
case, where the Bias is constant
(127|10 = 001111111|2). Table I
shows the truth table for a 1-bit subtractor with the input T
equal to 1 which we will call “one subtractor (OS)”

TABLE I. 1-BIT SUBTRACTOR WITH THE INPUT T = 1

S T Bi Difference(R) Bo
0 1 0 1 1
1 1 0 0 0
0 1 1 0 1
1 1 1 1 1

The Boolean equations (2) and (3) represent this subtractor:

 ���������� () = S ⊕ B� (2)

 �
��
����(��) = � + �� (3)

Table II shows the truth table for a 1-bit subtractor with the

input T equal to 0 which we will call “zero subtractor (ZS)”

TABLE II. 1-BIT SUBTRACTOR WITH THE INPUT T = 0

S T Bi Difference(R) Bo
0 0 0 0 0
1 0 0 1 0
0 0 1 1 1
1 0 1 0 0

The Boolean equations (4) and (5) represent this subtractor:

 ���������� () = S ⊕ B� (4)

 �
��
����(��) = S ⋅ B� (5)

Fig. 6 shows the Bias subtractor which is a chain of 7 one
subtractors (OS) followed by 2 zero subtractors (ZS); the
borrow output of each subtractor is fed to the next subtractor. If
an underflow occurs then Eresult < 0 and the number is out of
the IEEE 754 single precision normalized numbers range; in
this case the output is signaled to 0 and an underflow flag is
asserted.

C. Unsigned Multiplier (for significand multiplication)
This unit is responsible for multiplying the unsigned

significand and placing the decimal point in the multiplication
product. The result of significand multiplication will be called
the intermediate product (IP). The unsigned significand
multiplication is done on 24 bit. Multiplier performance should
be taken into consideration so as not to affect the whole
multiplier’s performance. A 24x24 bit carry save multiplier
architecture is used as it has a moderate speed with a simple
architecture. In the carry save multiplier, the carry bits are
passed diagonally downwards (i.e. the carry bit is propagated
to the next stage). Partial products are made by ANDing the
inputs together and passing them to the appropriate adder.

Carry save multiplier has three main stages:
1- The first stage is an array of half adders.
2- The middle stages are arrays of full adders. The

number of middle stages is equal to the significand
size minus two.

3- The last stage is an array of ripple carry adders. This
stage is called the vector merging stage.

The number of adders (Half adders and Full adders) in each
stage is equal to the significand size minus one. For example,
a 4x4 carry save multiplier is shown in Fig. 7 and it has the
following stages:

1- The first stage consists of three half adders.
2- Two middle stages; each consists of three full adders.
3- The vector merging stage consists of one half adder

and two full adders.

The decimal point is between bits 45 and 46 in the
significand multiplier result. The multiplication time taken by
the carry save multiplier is determined by its critical path. The
critical path starts at the AND gate of the first partial products
(i.e. a1b0 and a0b1), passes through the carry logic of the first
half adder and the carry logic of the first full adder of the
middle stages, then passes through all the vector merging
adders. The critical path is marked in bold in Fig. 7

Subtractor
Bi

R

Bo

S T

Figure 4. 1-bit subtractor with the input T = 1

Figure 6. Ripple Borrow Subtractor

Figure 5. 1-bit subtractor with the input T = 0

In Fig. 7:
1- Partial product: aibj = ai and bj
2- HA: half adder
3- FA: full adder

D. Normalizer
The result of the significand multiplication (intermediate

product) must be normalized to have a leading ‘1’ just to the
left of the decimal point (i.e. in the bit 46 in the intermediate
product). Since the inputs are normalized numbers then the
intermediate product has the leading one at bit 46 or 47

1- If the leading one is at bit 46 (i.e. to the left of the decimal
point) then the intermediate product is already a
normalized number and no shift is needed.

2- If the leading one is at bit 47 then the intermediate
product is shifted to the right and the exponent is
incremented by 1.

The shift operation is done using combinational shift logic
made by multiplexers. Fig. 8 shows a simplified logic of a
Normalizer that has an 8 bit intermediate product input and a 6
bit intermediate exponent input.

Figure 8. Simplified Normalizer logic

IV. UNDERFLOW/OVERFLOW DETECTION
Overflow/underflow means that the result’s exponent is too

large/small to be represented in the exponent field. The
exponent of the result must be 8 bits in size, and must be

between 1 and 254 otherwise the value is not a normalized one.
An overflow may occur while adding the two exponents or
during normalization. Overflow due to exponent addition may
be compensated during subtraction of the bias; resulting in a
normal output value (normal operation). An underflow may
occur while subtracting the bias to form the intermediate
exponent. If the intermediate exponent < 0 then it’s an
underflow that can never be compensated; if the intermediate
exponent = 0 then it’s an underflow that may be compensated
during normalization by adding 1 to it.

When an overflow occurs an overflow flag signal goes high
and the result turns to ±Infinity (sign determined according to
the sign of the floating point multiplier inputs). When an
underflow occurs an underflow flag signal goes high and the
result turns to ±Zero (sign determined according to the sign of
the floating point multiplier inputs). Denormalized numbers
are signaled to Zero with the appropriate sign calculated from
the inputs and an underflow flag is raised. Assume that E1 and
E2 are the exponents of the two numbers A and B respectively;
the result’s exponent is calculated by (6)

 Eresult = E1 + E2 - 127 (6)

E1 and E2 can have the values from 1 to 254; resulting in
Eresult having values from -125 (2-127) to 381 (508-127); but
for normalized numbers, Eresult can only have the values from 1
to 254. Table III summarizes the Eresult different values and the
effect of normalization on it.

TABLE III. NORMALIZATION EFFECT ON RESULT’S EXPONENT AND
OVERFLOW/UNDERFLOW DETECTION

Eresult Category Comments

-125 ≤ Eresult < 0 Underflow Can’t be compensated during
normalization

Eresult = 0 Zero May turn to normalized number during
normalization (by adding 1 to it)

1 < Eresult < 254 Normalized
number

May result in overflow during
normalization

255 ≤ Eresult Overflow Can’t be compensated

V. PIPELINING THE MULTIPLIER
In order to enhance the performance of the multiplier, three

pipelining stages are used to divide the critical path thus
increasing the maximum operating frequency of the multiplier.
The pipelining stages are imbedded at the following locations:

1. In the middle of the significand multiplier, and in the
middle of the exponent adder (before the bias
subtraction).

2. After the significand multiplier, and after the
exponent adder.

3. At the floating point multiplier outputs (sign,
exponent and mantissa bits).

Fig. 9 shows the pipelining stages as dotted lines.

Figure 7. 4x4 bit Carry Save multiplier

Three pipelining stages mean that there is latency in the

output by three clocks. The synthesis tool “retiming” option
was used so that the synthesizer uses its optimization logic to
better place the pipelining registers across the critical path.

VI. IMPLEMENTATION AND TESTING
The whole multiplier (top unit) was tested against the

Xilinx floating point multiplier core generated by Xilinx
coregen. Xilinx core was customized to have two flags to
indicate overflow and underflow, and to have a maximum
latency of three cycles. Xilinx core implements the “round to
nearest” rounding mode.

A testbench is used to generate the stimulus and applies it
to the implemented floating point multiplier and to the Xilinx
core then compares the results. The floating point multiplier
code was also checked using DesignChecker [7].
DesignChecker is a linting tool which helps in filtering design
issues like gated clocks, unused/undriven logic, and
combinational loops. The design was synthesized using
Precision synthesis tool [8] targeting Xilinx Virtex-5
5VFX200TFF1738 with a timing constraint of 300MHz. Post
synthesis and place and route simulations were made to ensure
the design functionality after synthesis and place and route.
Table IV shows the resources and frequency of the
implemented floating point multiplier and Xilinx core.

TABLE IV. AREA AND FREQUENCY COMPARISON BETWEEN THE
IMPLEMENTED FLOATING POINT MULTIPLIER AND XILINX CORE

 Our Floating Point
Multiplier

Xilinx Core

Function Generators 1263 765
CLB Slices 604 266
DFF 293 241
Max Frequency 301.114 MHz 221.484 MHz

The area of Xilinx core is less than the implemented
floating point multiplier because the latter doesn’t
truncate/round the 48 bits result of the mantissa multiplier
which is reflected in the amount of function generators and
registers used to perform operations on the extra bits; also the
speed of Xilinx core is affected by the fact that it implements
the round to nearest rounding mode.

VII. CONCLUSIONS AND FUTURE WORK
This paper presents an implementation of a floating point

multiplier that supports the IEEE 754-2008 binary interchange
format; the multiplier doesn’t implement rounding and just
presents the significand multiplication result as is (48 bits); this
gives better precision if the whole 48 bits are utilized in another
unit; i.e. a floating point adder to form a MAC unit. The design
has three pipelining stages and after implementation on a
Xilinx Virtex5 FPGA it achieves 301 MFLOPs.

ACKNOWLEDGMENT
Authors would like to thank Randa Hashem for her

invaluable support and contribution.

REFERENCES
[1] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic, 2008.
[2] B. Fagin and C. Renard, “Field Programmable Gate Arrays and Floating

Point Arithmetic,” IEEE Transactions on VLSI, vol. 2, no. 3, pp. 365–
367, 1994.

[3] N. Shirazi, A. Walters, and P. Athanas, “Quantitative Analysis of
Floating Point Arithmetic on FPGA Based Custom Computing
Machines,” Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM’95), pp.155–162, 1995.

[4] L. Louca, T. A. Cook, and W. H. Johnson, “Implementation of IEEE
Single Precision Floating Point Addition and Multiplication on FPGAs,”
Proceedings of 83 the IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM’96), pp. 107–116, 1996.

[5] A. Jaenicke and W. Luk, "Parameterized Floating-Point
Arithmetic on FPGAs", Proc. of IEEE ICASSP, 2001, vol. 2, pp.
897-900.

[6] B. Lee and N. Burgess, “Parameterisable Floating-point Operations on
FPGA,” Conference Record of the Thirty-Sixth Asilomar Conference on
Signals, Systems, and Computers, 2002

[7] “DesignChecker User Guide”, HDL Designer Series 2010.2a, Mentor
Graphics, 2010

[8] “Precision® Synthesis User’s Manual”, Precision RTL plus 2010a
update 2, Mentor Graphics, 2010.

[9] Patterson, D. & Hennessy, J. (2005), Computer Organization and
Design: The Hardware/software Interface , Morgan Kaufmann .

[10] John G. Proakis and Dimitris G. Manolakis (1996), “Digital Signal
Processing: Principles,. Algorithms and Applications”, Third Edition.

Figure 9. Floating point multiplier with pipelined stages

