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Abstract—In this paper we describe an efficient implementation 
of an IEEE 754 single precision floating point multiplier targeted 
for Xilinx Virtex-5 FPGA. VHDL is used to implement a 
technology-independent pipelined design. The multiplier 
implementation handles the overflow and underflow cases.
Rounding is not implemented to give more precision when using 
the multiplier in a Multiply and Accumulate (MAC) unit. With 
latency of three clock cycles the design achieves 301 MFLOPs. 
The multiplier was verified against Xilinx floating point 
multiplier core.
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I. INTRODUCTION

Floating point numbers are one possible way of 
representing real numbers in binary format; the IEEE 754 [1] 
standard presents two different floating point formats, Binary 
interchange format and Decimal interchange format. 
Multiplying floating point numbers is a critical requirement for
DSP applications involving large dynamic range. This paper 
focuses only on single precision normalized binary interchange 
format. Fig. 1 shows the IEEE 754 single precision binary 
format representation; it consists of a one bit sign (S), an eight 
bit exponent (E), and a twenty three bit fraction (M or
Mantissa). An extra bit is added to the fraction to form what is 
called the significand1. If the exponent is greater than 0 and 
smaller than 255, and there is 1 in the MSB of the significand 
then the number is said to be a normalized number; in this case 
the real number is represented by (1)

Figure 1. IEEE single precision floating point format

� Z = (-1S) * 2 (E - Bias) * (1.M)�� ����

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 2-22+ m0 2-23;

Bias = 127.

1 Significand is the mantissa with an extra MSB bit.
This research has been supported by Mentor Graphics.

Multiplying two numbers in floating point format is done 
by 1- adding the exponent of the two numbers then subtracting
the bias from their result, 2- multiplying the significand of the 
two numbers, and 3- calculating the sign by XORing the sign 
of the two numbers. In order to represent the multiplication 
result as a normalized number there should be 1 in the MSB of 
the result (leading one).

Floating-point implementation on FPGAs has been the 
interest of many researchers. In [2], an IEEE 754 single 
precision pipelined floating point multiplier was implemented 
on multiple FPGAs (4 Actel A1280). In [3], a custom 16/18 bit 
three stage pipelined floating point multiplier that doesn’t
support rounding modes was implemented. In [4], a single 
precision floating point multiplier that doesn’t support 
rounding modes was implemented using a digit-serial 
multiplier: using the Altera FLEX 8000 it achieved 2.3 
MFlops. In [5], a parameterizable floating point multiplier was 
implemented using the software-like language Handel-C, using 
the Xilinx XCV1000 FPGA; a five stages pipelined multiplier 
achieved 28MFlops. In [6], a latency optimized floating point 
unit using the primitives of Xilinx Virtex II FPGA was 
implemented with a latency of 4 clock cycles. The multiplier 
reached a maximum clock frequency of 100 MHz.

II. FLOATING POINT MULTIPLICATION ALGORITHM

As stated in the introduction, normalized floating point 
numbers have the form of Z= (-1S) * 2 (E - Bias) * (1.M). To
multiply two floating point numbers the following is done: 

1. Multiplying the significand; i.e. (1.M1*1.M2)

2. Placing the decimal point in the result

3. Adding the exponents; i.e. (E1 + E2 – Bias)

4. Obtaining the sign; i.e. s1 xor s2

5. Normalizing the result; i.e. obtaining 1 at the MSB of 
the results’ significand

6. Rounding the result to fit in the available bits

7. Checking for underflow/overflow occurrence

Consider a floating point representation similar to the IEEE 
754 single precision floating point format, but with a reduced 
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number of mantissa bits (only 4) while still retaining the hidden 
‘1’ bit for normalized numbers: 

A = 0 10000100 0100 = 40, B = 1 10000001 1110 = -7.5 

To multiply A and B 
1. Multiply significand:            1.0100 
        × 1.1110 
      00000 

       10100 
      10100 

        10100 
      _10100____ 
      1001011000 
 
2. Place the decimal point:   10.01011000 
3. Add exponents:   10000100 

+ 10000001 
 100000101 

The exponent representing the two numbers is already 
shifted/biased by the bias value (127) and is not the true 
exponent; i.e.  EA = EA-true  + bias and EB = EB-true  + bias 

And 

 EA + EB = EA-true + EB-true + 2 bias  

So we should subtract the bias from the resultant exponent 
otherwise the bias will be added twice. 

                 100000101 
               -  01111111 

   10000110 
4. Obtain the sign bit and put the result together: 

 1 10000110 10.01011000 
5. Normalize the result so that there is a 1 just before the 

radix point (decimal point). Moving the radix point 
one place to the left increments the exponent by 1; 
moving one place to the right decrements the 
exponent by 1. 

 1  10000110  10.01011000  (before normalizing) 

     1  10000111  1.001011000  (normalized) 

The result is (without the hidden bit): 
1  10000111   00101100 

6. The mantissa bits are more than 4 bits (mantissa 
available bits); rounding is needed. If we applied the 
truncation rounding mode then the stored value is:      
1 10000111 0010. 

In this paper we present a floating point multiplier in which 
rounding support isn’t implemented. Rounding support can be 
added as a separate unit that can be accessed by the multiplier 
or by a floating point adder, thus accommodating for more 
precision if the multiplier is connected directly to an adder in a 
MAC unit. Fig. 2 shows the multiplier structure; Exponents 
addition, Significand multiplication, and Result’s sign 
calculation are independent and are done in parallel. The 
significand multiplication is done on two 24 bit numbers and 

results in a 48 bit product, which we will call the intermediate 
product (IP). The IP is represented as (47 downto 0) and the 
decimal point is located between bits 46 and 45 in the IP. The 
following sections detail each block of the floating point 
multiplier.  

 

III. HARDWARE OF FLOATING POINT MULTIPLIER 

A. Sign bit calculation 
Multiplying two numbers results in a negative sign number 

iff one of the multiplied numbers is of a negative value. By the 
aid of a truth table we find that this can be obtained by XORing 
the sign of two inputs. 

B. Unsigned Adder (for exponent addition) 
This unsigned adder is responsible for adding the exponent 

of the first input to the exponent of the second input and 
subtracting the Bias (127) from the addition result (i.e. 
A_exponent + B_exponent - Bias). The result of this stage is 
called the intermediate exponent. The add operation is done on 
8 bits, and there is no need for a quick result because most of 
the calculation time is spent in the significand multiplication 
process (multiplying 24 bits by 24 bits); thus we need a 
moderate exponent adder and a fast significand multiplier. 

An 8-bit ripple carry adder is used to add the two input 
exponents. As shown in Fig. 3 a ripple carry adder is a chain of 
cascaded full adders and one half adder; each full adder has 
three inputs (A, B, Ci) and two outputs (S, Co). The carry out 
(Co) of each adder is fed to the next full adder (i.e each carry 
bit "ripples" to the next full adder). 

 
 

The addition process produces an 8 bit sum (S7 to S0) and a 
carry bit (Co,7). These bits are concatenated to form a 9 bit 
addition result (S8 to S0) from which the Bias is subtracted. The 
Bias is subtracted using an array of ripple borrow subtractors.  

Figure 3. Ripple Carry Adder 

Figure 2. Floating point multiplier block diagram 



A normal subtractor has 
three inputs 
(minuend (S), subtrahend (T), 
Borrow in (Bi)) and two 
outputs (Difference (R), 
Borrow out (Bo)). The 
subtractor logic can be 
optimized if one of its inputs is 
a constant value which is our 
case, where the Bias is constant 
(127|10 = 001111111|2). Table I 
shows the truth table for a 1-bit subtractor with the input T 
equal to 1 which we will call “one subtractor (OS)”  

TABLE I.  1-BIT SUBTRACTOR WITH THE INPUT T = 1 

S T Bi Difference(R) Bo 
0 1 0 1 1 
1 1 0 0 0
0 1 1 0 1 
1 1 1 1 1 

 
The Boolean equations (2) and (3) represent this subtractor: 

 ���������� (	) =  S ⊕ B� (2)  

 �
��
����(��) =  � + �� (3) 
 

 
Table II shows the truth table for a 1-bit subtractor with the 

input T equal to 0 which we will call “zero subtractor (ZS)” 

TABLE II.  1-BIT SUBTRACTOR WITH THE INPUT T = 0 

S T Bi Difference(R) Bo 
0 0 0 0 0 
1 0 0 1 0 
0 0 1 1 1 
1 0 1 0 0 

 
The Boolean equations (4) and (5) represent this subtractor:  

 ���������� (	) =  S ⊕ B�  (4)  

 �
��
����(��) =  S ⋅ B� (5) 
 

 

Fig. 6 shows the Bias subtractor which is a chain of 7 one 
subtractors (OS) followed by 2 zero subtractors (ZS); the 
borrow output of each subtractor is fed to the next subtractor. If 
an underflow occurs then Eresult < 0 and the number is out of 
the IEEE 754 single precision normalized numbers range; in 
this case the output is signaled to 0 and an underflow flag is 
asserted. 

 

C. Unsigned Multiplier (for significand multiplication) 
This unit is responsible for multiplying the unsigned 

significand and placing the decimal point in the multiplication 
product. The result of significand multiplication will be called 
the intermediate product (IP). The unsigned significand 
multiplication is done on 24 bit. Multiplier performance should 
be taken into consideration so as not to affect the whole 
multiplier’s performance. A 24x24 bit carry save multiplier 
architecture is used as it has a moderate speed with a simple 
architecture. In the carry save multiplier, the carry bits are 
passed diagonally downwards (i.e. the carry bit is propagated 
to the next stage). Partial products are made by ANDing the 
inputs together and passing them to the appropriate adder. 

Carry save multiplier has three main stages: 
1- The first stage is an array of half adders. 
2- The middle stages are arrays of full adders. The 

number of middle stages is equal to the significand 
size minus two. 

3- The last stage is an array of ripple carry adders. This 
stage is called the vector merging stage. 

The number of adders (Half adders and Full adders) in each 
stage is equal to the significand size minus one. For example, 
a 4x4 carry save multiplier is shown in Fig. 7 and it has the 
following stages: 

1- The first stage consists of three half adders. 
2- Two middle stages; each consists of three full adders. 
3- The vector merging stage consists of one half adder 

and two full adders. 
 

The decimal point is between bits 45 and 46 in the 
significand multiplier result. The multiplication time taken by 
the carry save multiplier is determined by its critical path. The 
critical path starts at the AND gate of the first partial products 
(i.e. a1b0 and a0b1), passes through the carry logic of the first 
half adder and the carry logic of the first full adder of the 
middle stages, then passes through all the vector merging 
adders. The critical path is marked in bold in Fig. 7 

 
 

 
 
 

Subtractor 
Bi 

R 

Bo

S T 

Figure 4. 1-bit subtractor with the input T = 1 

Figure 6. Ripple Borrow Subtractor 

Figure 5. 1-bit subtractor with the input T = 0 



  

In Fig. 7:   
1- Partial product: aibj = ai and bj 
2- HA: half adder 
3- FA: full adder 

D. Normalizer 
The result of the significand multiplication (intermediate 

product) must be normalized to have a leading ‘1’ just to the 
left of the decimal point (i.e. in the bit 46 in the intermediate 
product). Since the inputs are normalized numbers then the 
intermediate product has the leading one at bit 46 or 47 

1- If the leading one is at bit 46 (i.e. to the left of the decimal 
point) then the intermediate product is already a 
normalized number and no shift is needed. 

2- If the leading one is at bit 47 then the intermediate 
product is shifted to the right and the exponent is 
incremented by 1. 
 

The shift operation is done using combinational shift logic 
made by multiplexers. Fig. 8 shows a simplified logic of a 
Normalizer that has an 8 bit intermediate product input and a 6 
bit intermediate exponent input. 

 
Figure 8. Simplified Normalizer logic 

IV. UNDERFLOW/OVERFLOW DETECTION 
Overflow/underflow means that the result’s exponent is too 

large/small to be represented in the exponent field. The 
exponent of the result must be 8 bits in size, and must be 

between 1 and 254 otherwise the value is not a normalized one.  
An overflow may occur while adding the two exponents or 
during normalization. Overflow due to exponent addition may 
be compensated during subtraction of the bias; resulting in a 
normal output value (normal operation). An underflow may 
occur while subtracting the bias to form the intermediate 
exponent. If the intermediate exponent < 0 then it’s an 
underflow that can never be compensated; if the intermediate 
exponent = 0 then it’s an underflow that may be compensated 
during normalization by adding 1 to it. 

When an overflow occurs an overflow flag signal goes high 
and the result turns to ±Infinity (sign determined according to 
the sign of the floating point multiplier inputs). When an 
underflow occurs an underflow flag signal goes high and the 
result turns to ±Zero (sign determined according to the sign of 
the floating point multiplier inputs).  Denormalized numbers 
are signaled to Zero with the appropriate sign calculated from 
the inputs and an underflow flag is raised. Assume that E1 and 
E2 are the exponents of the two numbers A and B respectively; 
the result’s exponent is calculated by (6) 

   Eresult = E1 + E2 - 127              (6) 

E1 and E2 can have the values from 1 to 254; resulting in 
Eresult having values from -125 (2-127) to 381 (508-127); but 
for normalized numbers, Eresult can only have the values from 1 
to 254. Table III summarizes the Eresult different values and the 
effect of normalization on it.

TABLE III.  NORMALIZATION EFFECT ON RESULT’S EXPONENT AND 
OVERFLOW/UNDERFLOW DETECTION 

Eresult Category Comments 

-125 ≤ Eresult < 0 Underflow Can’t be compensated during 
normalization 

Eresult = 0 Zero May turn to normalized number during 
normalization (by adding 1 to it) 

1 < Eresult < 254 Normalized 
number 

May result in overflow during 
normalization 

255 ≤ Eresult  Overflow Can’t be compensated 

V. PIPELINING THE MULTIPLIER 
In order to enhance the performance of the multiplier, three 

pipelining stages are used to divide the critical path thus 
increasing the maximum operating frequency of the multiplier. 
The pipelining stages are imbedded at the following locations: 

1. In the middle of the significand multiplier, and in the 
middle of the exponent adder (before the bias 
subtraction). 

2. After the significand multiplier, and after the 
exponent adder. 

3. At the floating point multiplier outputs (sign, 
exponent and mantissa bits). 

Fig. 9 shows the pipelining stages as dotted lines. 

Figure 7. 4x4 bit Carry Save multiplier 



 
Three pipelining stages mean that there is latency in the 

output by three clocks. The synthesis tool “retiming” option 
was used so that the synthesizer uses its optimization logic to 
better place the pipelining registers across the critical path. 

VI. IMPLEMENTATION AND TESTING 
The whole multiplier (top unit) was tested against the 

Xilinx floating point multiplier core generated by Xilinx 
coregen. Xilinx core was customized to have two flags to 
indicate overflow and underflow, and to have a maximum 
latency of three cycles. Xilinx core implements the “round to 
nearest” rounding mode.  

A testbench is used to generate the stimulus and applies it 
to the implemented floating point multiplier and to the Xilinx 
core then compares the results. The floating point multiplier 
code was also checked using DesignChecker [7]. 
DesignChecker is a linting tool which helps in filtering design 
issues like gated clocks, unused/undriven logic, and 
combinational loops. The design was synthesized using 
Precision synthesis tool [8] targeting Xilinx Virtex-5 
5VFX200TFF1738 with a timing constraint of 300MHz. Post 
synthesis and place and route simulations were made to ensure 
the design functionality after synthesis and place and route. 
Table IV shows the resources and frequency of the 
implemented floating point multiplier and Xilinx core. 

TABLE IV.  AREA AND FREQUENCY COMPARISON BETWEEN THE 
IMPLEMENTED FLOATING POINT MULTIPLIER AND XILINX CORE 

 Our Floating Point 
Multiplier 

Xilinx Core 

Function Generators 1263 765 
CLB Slices                  604 266 
DFF 293 241 
Max Frequency 301.114 MHz 221.484 MHz 

The area of Xilinx core is less than the implemented 
floating point multiplier because the latter doesn’t 
truncate/round the 48 bits result of the mantissa multiplier 
which is reflected in the amount of function generators and 
registers used to perform operations on the extra bits; also the 
speed of Xilinx core is affected by the fact that it implements 
the round to nearest rounding mode.

VII. CONCLUSIONS AND FUTURE WORK  
This paper presents an implementation of a floating point 

multiplier that supports the IEEE 754-2008 binary interchange 
format; the multiplier doesn’t implement rounding and just 
presents the significand multiplication result as is (48 bits); this 
gives better precision if the whole 48 bits are utilized in another 
unit; i.e. a floating point adder to form a MAC unit. The design 
has three pipelining stages and after implementation on a 
Xilinx Virtex5 FPGA it achieves 301 MFLOPs. 
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Figure 9. Floating point multiplier with pipelined stages 


