VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

Tomyslav SLEDEVIC

AN EFFICIENT IMPLEMENTATION OF
LATTICE-LADDER MULTILAYER
PERCEPTRONS IN FIELD
PROGRAMMABLE GATE ARRAYS

DOCTORAL DISSERTATION

TECHNOLOGICAL SCIENCES,
ELECTRICAL AND ELECTRONIC ENGINEERING (01T)

o LEIDYKLA
Vilnius TECHNIKA 2016

Doctoral dissertation was prepared at Vilnius Gediminas Technical University in
2012-2016.

Scientific supervisor
Prof. Dr Dalius NAVAKAUSKAS (Vilnius Gediminas Technical University,
Electrical and Electronic Engineering — 01T).

The Dissertation Defense Council of Scientific Field of Electrical and Electronic
Engineering of Vilnius Gediminas Technical University:

Chairman
Prof. Dr Vytautas URBANAVICIUS (Vilnius Gediminas Technical University,
Electrical and Electronic Engineering — 01T).

Members:
Prof. Dr Habil Ariinas LUKOSEVICIUS (Kaunas University of Technology,
Electrical and Electronic Engineering — 01T),

Prof. Dr Jurij NOVICKIJ (Vilnius Gediminas Technical University, Electrical

and Electronic Engineering — 01T),

Prof. Dr Habil Adolfas Laimutis TELKSNYS (Vilnius University, Informatics
Engineering — 07T),

Dr Pawel WAWRZYNSKI (Warsaw University of Technology, Electrical and

Electronic Engineering — 01T).

The dissertation will be defended at the public meeting of the Dissertation
Defense Council of Electrical and Electronic Engineering in the Senate Hall of
Vilnius Gediminas Technical University at 2 p. m. on 8 June 2016.

Address: Saulétekio al. 11, LT-10223 Vilnius, Lithuania.
Tel. +370 5 274 4956; fax +370 5 270 0112; e-mail: doktor @vgtu.lt

A notification on the intend defending of the dissertation was send on 6 May
2016.

A copy of the doctoral dissertation is available for review at VGTU repository
http://dspace.vgtu.lt and at the Library of Vilnius Gediminas Technical
University (Saulétekio al. 14, LT-10223 Vilnius, Lithuania).

VGTU leidyklos TECHNIKA 2371-M mokslo literatiiros knyga
Parengta IXTX2, sistema

ISBN 978-609-457-933-2

© VGTU leidykla TECHNIKA, 2016
© TomyslavSledevic, 2016
tomyslav.sledevic@ugtu.lt

mailto:doktor@vgtu.lt
http://dspace.vgtu.lt
mailto:tomyslav.sledevic@vgtu.lt

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

Tomyslav SLEDEVIC

PYNUCIU-KOPETELIY
DAUGIASLUOKSNIY PERCEPTRONU
EFEKTYVUS |JGYVENDINIMAS
LAUKU PROGRAMUOJAMOMIS
LOGINEMIS MATRICOMIS

MOKSLO DAKTARO DISERTACIJA

TECHNOLOGIJOS MOKSLAI, 3
ELEKTROS IR ELEKTRONIKOS INZINERIJA (01T)

o LEIDYKLA
Vilnius TECHNIKA 2016

Disertacija rengta 2012—-2016 metais Vilniaus Gedimino technikos universitete.

Vadovas
prof. dr. Dalius NAVAKAUSKAS (Vilniaus Gedimino technikos universitetas,
elektros ir elektronikos inZinerija — O1T).

Vilniaus Gedimino technikos universiteto Elektros ir elektronikos inZinerijos
mokslo krypties disertacijos gynimo taryba:

Pirmininkas
prof. dr. Vytautas URBANAVICIUS (Vilniaus Gedimino technikos
universitetas, elektros ir elektronikos inZinerija — 01T).

Nariai:
prof. habil. dr. Arinas LUKOSEVICIUS (Kauno technologijos universitetas,
elektros ir elektronikos inZinerija — 01T),
prof. dr. Jurij NOVICKIJ (Vilniaus Gedimino technikos universitetas, elektros
ir elektronikos inZinerija — 01T),
prof. habil. dr. Adolfas Laimutis TELKSNYS (Vilniaus universitetas,
informatikos inZinerija — 07T),
dr. Pawel WAWRZYNSKI (VarSuvos technologijos universitetas, elektros ir
elektronikos inZinerija — 01T).

Disertacija bus ginama viesame Elektros ir elektronikos inZinerijos mokslo
krypties disertacijos gynimo tarybos posédyje 2016 m. birzelio 8 d. 14 val.
Vilniaus Gedimino technikos universiteto senato posédziy saléje.

Adresas: Saulétekio al. 11, LT-10223 Vilnius, Lietuva.
Tel. +370 5 274 4956; fax +370 5 270 0112; el. pastas: doktor @vgtu.lt
PraneSimai apie numatoma ginti disertacijq iSsiysti 2016 m. geguzés 6 d..

Disertacija galima perZzituréti VGTU talpykloje http://dspace.vgtu.lt ir
Vilniaus Gedimino technikos universiteto bibliotekoje (Saulétekio al. 14,
LT-10223 Vilnius, Lietuva).

mailto:doktor@vgtu.lt
http://dspace.vgtu.lt

Abstract

The implementation efficiency of electronic systems is a combination of con-
flicting requirements, as increasing volumes of computations, accelerating the
exchange of data, at the same time increasing energy consumption forcing the
researchers not only to optimize the algorithm, but also to quickly implement
in a specialized hardware. Therefore in this work, the problem of efficient and
straightforward implementation of operating in a real-time electronic intelli-
gent systems on field-programmable gate array (FPGA) is tackled. The object
of research is specialized FPGA intellectual property (IP) cores that operate in
a real-time. In the thesis the following main aspects of the research object are
investigated: implementation criteria and techniques.

The aim of the thesis is to optimize the FPGA implementation process
of selected class dynamic artificial neural networks. In order to solve stated
problem and reach the goal following main tasks of the thesis are formu-
lated: rationalize the selection of a class of Lattice-Ladder Multi-Layer Per-
ceptron (LLMLP) and its electronic intelligent system test-bed — a speaker
dependent Lithuanian speech recognizer, to be created and investigated; de-
velop dedicated technique for implementation of LLMLP class on FPGA that
is based on specialized efficiency criteria for a circuitry synthesis; develop
and experimentally affirm the efficiency of optimized FPGA IP cores used in
Lithuanian speech recognizer.

The dissertation contains: introduction, four chapters and general conclu-
sions. The first chapter reveals the fundamental knowledge on computer-aided-
design, artificial neural networks and speech recognition implementation on
FPGA. In the second chapter the efficiency criteria and technique of LLMLP
I[P cores implementation are proposed in order to make multi-objective op-
timization of throughput, LLMLP complexity and resource utilization. The
data flow graphs are applied for optimization of LLMLP computations. The
optimized neuron processing element is proposed. The IP cores for features
extraction and comparison are developed for Lithuanian speech recognizer and
analyzed in third chapter. The fourth chapter is devoted for experimental veri-
fication of developed numerous LLMLP IP cores. The experiments of isolated
word recognition accuracy and speed for different speakers, signal to noise ra-
tios, features extraction and accelerated comparison methods were performed.

The main results of the thesis were published in 12 scientific publications:
eight of them were printed in peer-reviewed scientific journals, four of them
in a Thomson Reuters Web of Science database, four articles — in conference
proceedings. The results were presented in 17 scientific conferences.

Reziume

Elektroniniy sistemy igyvendinimo efektyvumas yra priestaringy reikalavimy
derinys, nes didéjancCios skaiiavimy apimtys, spartéjantys duomeny mainai,
o tuo paciu didéjantis energijos suvartojimas vercia ne tik optimizuoti algorit-
mus, bet ir juos greitai ijgyvendinti specializuotoje aparatiiroje. Todeél diserta-
cijoje sprendZiama realiuoju laiku veikianciy elektroniniy intelektualiyjy sis-
temy efektyvaus igyvendinimo lauku programuojama logine matrica (LPLM)
problema. Tyrimo objektas yra specializuoti LPLM intelektinés nuosavybés
(IN) moduliai veikiantys realiuoju laiku. Disertacijoje tiriami Sie, su tiria-
muoju objektu susijg, dalykai: igyvendinimo kriterijai ir metodas.

Disertacijos tikslas — optimizuoti pasirinktos dinaminiy dirbtiniy neurony
tinklo klasés jgyvendinimo procesa LPLM. Siekiant iSspresti nurodyta prob-
lema ir pasiekti tiksla suformuluojami Sie pagrindiniai disertacijoje sprendZia-
mi uZdaviniai: Pagristi igyvendinimui ir tyrimams atrinkty pynuciy-kopétéliy
daugiasluoksnio perceptrono (PKDP) klasés ir jos elektroninés intelektualio-
sios testavimo aplinkos — nejgaliesiems skirto priklausomo nuo kalbétojo lietu-
viSkos $nekos atpazintuvo, pasirinkima; sukurti specializuotais grandyny sin-
tezés kriterijais paremta PKDP klasés igyvendinimo LPLM metoda; sukurti
optimizuotus LPLM IN modulius ir taikant lietuviy $nekos atpaZintuve ekspe-
rimentiSkai patvirtinti jy efektyvuma.

Disertacija sudaro ivadas, keturi skyriai, bendrosios iSvados. Pirmajame
skyriuje pateikiamos esminés Zinios apie kompiuterizuotg grandiniy, dirbtiniy
neurony tinkly ir kalbos atpaZinimo igyvendinima LPLM. Antrajame skyriuje
LPLM IN moduliy igyvendinimui siillomi efektyvumo kriterijai ir metodas
daugiakriteriniam optimizavimui pagal greitaveika, resursy naudojima ir PKDP
sudétinguma. PKDP skaiiavimams optimizuoti yra taikomi duomeny srauto
grafai. Pasiiloma optimizuota neuroninio apdorojimo elemento struktiira. Po-
Zymiy iSskyrimo ir palyginimo IN moduliai igyvendinti lietuviy Snekos at-
pazintuve ir yra analizuojami treciajame skyriuje. Igyvendinti PKDP IN mo-
duliai yra eksperimentiSkai patikrinti ketvirtajame skyriuje. Tiriamas lietuviy
$nekos pavieniy ZodZiy atpazinimo sistemos tikslumas ir greitaveika priklau-
somai nuo kalbétojo, signalo ir triuk§mo santykio, poZymiy i§skyrimo ir pa-
lyginimo metody. Tiriamos PKDP IN modulio taikymo galimybés triukSmui
Salinti kalbos signale.

Pagrindiniai disertacijos rezultatai paskelbti 12-oje moksliniy straipsniy,
1§ kuriy 8 atspausdinti recenzuojamuose mokslo Zurnaluose. IS jy 4 straipsniai
paskelbti mokslo Zurnaluose, itrauktuose i Thomson Reuters Web of Science
duomeny baz¢. Rezultatai vieSinti 17 moksliniy konferencijy.

vi

Notations

In General'

Text — emphasis;

Text — a foreign (depends on context) word or abbreviation;
Text — computer program, chip familly and number;

a — scalar (number);

a — vector (column of numbers);

A — matrix (multidimensional array of numbers);

A — set of elements (dataset), graph;

a — class (criteria);

A — program (in VHDL) variable;

dabel, 2% — main and supplement labels;

AU — main and supplement index;

> — important (to be specified) aspect;

Rl — value achieved by authors implementation;
S, — maximum and minimum values.

! All units of measurement related to digital electronics and computing complies with a stan-
dard IEEE 1541-2002.

vii

viii

NOTATIONS

Symbols

a;
A,B,C,D,P
c(n)

o0 ()
et(fo), € (fb)

en(n)
E
E(n)
E;
e el

gMA ’ éaMA
&,

MM

gRMS

fT

i
fou B i

10 m). 60 (n)

— LPC coefficients;

— DSP block input/output terminals;

— vector of cepstrum coefficient at time moment n of type
t: “LF” - LFCC, “MF” — MFCC, “LP” — LPCC;

— instantaneous error of Ath neuron in /th layer;

— relative to bandwidth f;, (normalized bandwidth f}) ab-
solute (normalized) errors of ¢: “b” — bandwidth, “c” —
central frequency;

— instantaneous output error of Ath neuron;

— mean square error;

— instantaneous mean square error;

— an ¢th edge of directed graph (subgraph);

— a set of edges of directed graph and a set of edges of /-th
sub-graph of type ¢: “*” — all subgraphs, “C” — covered;

— mean absolute error (MAE) and normalized MAE;

— maximum magnitude error (MME);

— root mean square error (RMSE);

— maximal frequency of (circuit) operation;

— signal sampling frequency;

— float-point, fixed-point and normalized fixed-point de-
signs t: “h” — cut-off high frequency, “I” — cut-off low

[Pl

frequency, “c” - central frequency, “b” — bandwidth;
—lattice-ladder feedforward and feedback signals;

—Ith layer neuron activation function of type ¢: “htan” —
hyperbolic tangent, “step” — binary step, “ident” — identity;
— ¢th female speaker set of word records;

— neuron activation function gain coefficient;

— directed graph and [-th sub-graph (sets) of type t: “*” —
all subgraphs, “DSP” — supported by DSP, “C” — covered,
“L” — on schedule list, “S” — scheduled;

— indices for inputs, synapse weights (coefficients) and
outputs;

— the transfer function of the mel-scaled triangular mth
filter in a filter bank;

—index of ANN layer;

— a total number of ANN layers;

— an order of: a model and [th layer filters;

— 1th male speaker set of word records;

NOTATIONS

iX

n
N,NO
Nm, Ns, Ng

s (n), sV ()
Tiin(f;9)

iLN (f7 9, RBRAM)

— time (sample) index;

— a total number of: samples and /th layer neurons;

— a total number of multiplication, addition and trigono-
metric operations;

— a total number of mathematical operations (¢: II — mul-
tiplications, . — additions) performed by regressor of type
o 3, t4, t11 and t12;

— an input port of directed graph (subgraph);

— auto and cross power spectral densities;

— a quality of efficient implementation dependent on a set
of quality criteria of type ¢t: “Thr” — throughput, “Acc” —
accuracy, “Com” — complexity, “Res” — resource, “Pow” —
power, “Price” — price;

— autocorrelation coefficients;

— an amount of FPGA resources of type ¢ (“DSP”,
“BRAM”, “LUT”, “=LUT”, “Lat”) that needs to be used
by implementation techniques ¢ (“HLS”, “*””) in order to
implement LLMLP defined by parameters p;

—output signal of synapse connecting ¢th with htj neuron;

— signal before and after hth neuron activation function;

— floating point implementation LLLN (with gain g) esti-
mated transfer function;

— fixed-point implementation LLN (with gain g and
BRAM size Rpram) estimated transfer function;

— latency of FPGA implementation and its critical path;

— latency of implemented in FPGA object (o: synapse,
neuron) at specified junction ¢ indexed by: [— layer, n —
neuron, m — order, t — training;

— a set of LLMLP training algorithms t;;

— rotation angle of lattice coefficients;

—ladder coefficients;
— an ¢th vertex of directed graph (subgraph);

— a set of vertices of directed graph and a set of vertices
of [-th sub-graph of type t: “*” — all subgraphs, “DSP” —
supported by DSP, “C” — covered;

— white noise sample;

— weights or system parameters;

— word length in bits: total, integer and fractional parts.

X NOTATIONS

Operators and Functions

— equivalence;

— implication;

— substitution;

— definition;

— approximation;

— conjunction and disjunction;
— absolute value (modulus);
—norm (length);

— estimate;

— fixed-point calculations;
—normalized value;

> 0> §

<

=)

— mean;

L — feedforward and feedback processing order in parts ¢: ’s’ —
synapse; ‘'n’ — node

Vz(n) — instantaneous gradient w.r.t. z;

2, 271 — delay and advancement;

C(y) — discrete cosine transform;

F(.), F1(.) —direct and inverse fast Fourier transform;

Whr(s) — Dynamic Time Warping transform;

addr(a) — address of element a;

init(.), ter(s) —initial and terminal nodes of an edge;

max(.), min(,) — maximum and minimum;

mel(.) — mel-scale;

pri(.) — priority;

reg(s) — registry;

Re(.), Im(.) —real and imaginary parts of complex number.

Abbreviations

ANN — artificial neural network;

ARM — advanced RISC machines;

ASAP — as soon as possible;

ASIC — application-specific integrated circuit;

BRAM — block random access memory;

CAD — computer-aided design;

CPM — critical path method;

DFG — data-flow graph;

DFS — depth first search;

NOTATIONS

X1

DSP
DTW
FFT
FIR
FPGA
HDL
HLS
IIR

IP
LFCC
LL
LLF
LLMLP
LLN
LPC
LPCC
LSR
LUT
MAC
MAE
MECC
MLP
MME
NPE
PAR
PWL
RAM
RMSE
ROM
RTL
VLSI

— digital signal processor;

— dynamic time warping;

— fast Fourier transform;

— finite impulse response;

— field programmable gate array;

— hardware description language;

— high level synthesis;

— infinite impulse response;

— intellectual property;

— linear frequency cepstral coefficient;
— lattice-ladder;

— lattice-ladder filter;

— lattice-ladder multilayer perceptron;
— lattice-ladder neuron;

— linear predictive coding;

— linear prediction cepstral coefficient;
— Lithuanian speech recognizer;

— look-up table;

— multiply-accumulate;

— mean absolute error;

— mel frequency cepstral coefficient;
— multilayer perceptron;

— maximum magnitude error;

— neuron processing element;

— place and route;

— piecewise linear;

—random access memory;

— root mean square error;

— read-only memory;

— register-transfer level;

— very large scale integration.

NOTATIONS

Keywords?

IEEE Taxonomy

i Circuits and systems

= Circuits

— Programmable circuits — Field programmable gate arrays

[Computational and artificial intelligence
[Artificial intelligence

= Intelligent systems

Neural networks

— ' Neural network hardware
[Computers and information processing
[Computer science

— Programming — Performance analysis
[Pattern recognition

= Speech recognition — Automatic speech recognition
— Software

= Software packages — MATLAB

[Mathematics

Algorithms

— Backpropagation algorithms
Computational efficiency
[Signal processing

—
Acoustic signal processing — Speech processing

— Systems engineering and theory
— System analysis and design
— .
System performance

Part(s)

1.2 1.3 34 41 4.2

12 21 22 32 41

13 3 4.2
11 2.2
2.2 4.1

2 4

3.1 3.2 33 42

2Keywords (assigned to parts) are structured and in-line with the latest IEEE taxonomy

(see <https://www.leee.org/documents/taxonomy_v101l.pdf>).

https://www.ieee.org/documents/taxonomy_v101.pdf

Contents

INTRODUCTION . . .ot 1
Problem Formulation i, 1
Relevance of the Thesis, 2
The Objectof the Research 3
The Aimof the Thesis i, 4
The Objectives of the Thesis, 4
Research Methodology i, 4
Scientific Novelty of the Thesis 4
Practical Value of the Research Findings......................... 5
The Defended Statementscciiiiiiiineenn.... 5
Approval of the Research Findings.............................. 6
Structure of the Dissertationcouuieiineinneenn .. 7
Acknowledgements i 7

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION IN

FIELD PROGRAMMABLE GATE ARRAYS ...t 9
1.1. Computer-Aided Design for Implementation in Field Programmable
Gate AITAY . . .ottt et e e e 9

1.1.1. Specifics of Field Programmable Gate Array Architectures 11
1.1.2. High Level Tools for Hardware Description Language
Generationt 13

Xiii

Xiv CONTENTS

1.2. Implementation of Artificial Neural Networks in Field Programmable

Gate ATTaY . . vttt ettt e 15
1.2.1. Specifics of Artificial Neural Networks................. 16
1.2.2. Artificial Neuron Structuresc..oouneenn .. 19
1.2.3. Dynamic Neuronooviiiiiinin it 21
1.2.4. Training of Dynamic Neuron 23
1.2.5. Indirect (High Level) Approach....................... 28
1.2.6. Direct (Low Level) Approach 29
1.2.7. Artificial Neural Network Chips 31
1.2.8. Efficiency Criteria of Neural Network Hardware. 32

1.3. Implementation of Speech Recognition in Field Programmable

Gate AITAY . . oottt et e e e 34
1.3.1. Linear Frequency Cepstral Analysis 37
1.3.2. Mel-Frequency Cepstral Analysis 38
1.3.3. Linear Predictive and Linear Predictive Cepstral Analysis. 39
1.3.4. Features Classificationo .. 41

1.4. Conclusions of the 1st Chapter and Formulation of the Thesis

ODbBJECHIVES o vttt e ettt e e 42

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER MULTI-
LAYER PERCEPTRON. 45
2.1. Implementation Qualityo, 46
2.2. Introduction to Implementation Technique 49
2.3. Neuron Processing Element Optimization 52

2.3.1. The Data Flow Graphs Generation 52
2.3.2. Subgraph Matching. oo, 53
2.3.3. Graph Covering and Merging 54
2.3.4. Critical Path Search 56
2.3.5. Resource Constrained Scheduling 58
2.3.6. Design Descriptionccoviiiiiiiniin... 60

2.4. Neuron Layers Optimizationcoooiienn.... 63

2.4.1. Accuracy Optimizationcouueeurneenn... 63
2.4.2. Throughput Optimized Implementation Strategy 68
2.4.3. Resource Optimized Implementation Strategy........... 71

2.5. Conclusions of the 2nd Chapter 73
3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER IN

FIELD PROGRAMMABLE GATEARRAY 75

3.1. Speech Recognition System Overview 76

3.2. Features Extraction Implementations 78

CONTENTS XV

3.2.1. Linear Frequency Cepstral Analysis Intellectual Property

COTe oot 78
3.2.2. Mel-Frequency Cepstral Analysis Intellectual Property Core 79
3.2.3. Linear Predictive Cepstral Analysis Intellectual Property

COTE ettt 80
3.3. Word Recognition Implementations 81
3.3.1. Dynamic Time Warping Intellectual Property Core 81
3.3.2. Accelerated Pattern Matching Intellectual Property Core.. 85
3.4. Iterative Voice Response Interface 88
3.5. Conclusions of the 3rd Chapter............................. 90
4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL
PROPERTY CORESo e 91
4.1. Investigation of Lattice-Ladder Multilayer Perceptron and its
Implementation Technique. 92
4.1.1. Word Length Selection 92
4.1.2. Neuron Activation Function Implementation 93
4.1.3. Lattice-Ladder Neuron Implementation 96
4.1.4. Single Layer of Lattice-Ladder Multilayer Perceptron
Implementationcoouiiiiiieinnnnn .. 102
4.1.5. Qualitative Lattice-Ladder Multilayer Perceptron
Implementationcuiiiiiieineenn... 103
4.2. Investigation of Lithuanian Speech Recognizer................ 105
4.2.1. Comparison with Initial Developments................. 106
4.2.2. Recognition Accuracy Tune-Up....................... 108
4.2.3. Execution Speed Determination 113
4.3. Conclusions of the 4th Chapter 115
GENERAL CONCLUSIONS 117

LIST OF SCIENTIFIC PUBLICATIONS BY THE AUTHOR ON THE

TOPIC OF THE DISSERTATION.o 133
SUMMARY IN LITHUANIANo 135
SUBJECT INDEX. . ..ot e 151
ANNEXES?. ..o 155

Annex A. Created Intellectual Property Cores 156

Annex B. The Co-authors’ Agreement to Present Publications Mate-

rial in the Dissertation i, 157

3The annexes are supplied in the enclosed compact disc

XVi CONTENTS

Annex C. The Copies of Scientific Publications by the Author on the
Topic of the Dissertationoiiiineineenn .. 162

Introduction

Problem Formulation

Rapid development of mobile, multimedia, 3D, and virtualization technology
is the foundation of the modern electronic world development (Spectrum 2014).
The fast spreading of intelligent technologies — the world’s 16.8 % annual in-
crease in smart phone sales in 2016 predicting 458 millions tablet computer
sales and their predominance makes the problem of electronic systems effi-
cient implementation more relevant (YANO 2015). During the implementation
of intelligent electronic system process a combination of conflicting demands
must be satisfied: accommodation of increasing computational complexity,
catch-up of acceleration in the data exchange, deal with increasing energy con-
sumption and computational resource requirements. All the mentioned reasons
forces the researchers not only to optimize the processing algorithms as such,
but to speed-up the whole implementation process, too.

The application of Field Programmable Gate Array (FPGA) technology
enables electronic systems to reduce development and testing time. Moreover,
due to FPGA array like structure, the parallelization and pipelining principles
in conjunction with pre-optimized customizable arithmetic, logic and memory
resources can be used in a way that the significant speed-up in the computa-
tions becomes possible. Therefore, in the following, the problem of efficient
and straightforward implementation of operating in a real-time electronic in-
telligent systems on field programmable gate array is tackled.

2 INTRODUCTION

In order to solve this problem such main hypothesis was raised and proven:
an intrinsic structural features of electronic intelligent system class can be used
for the formulation of specialized criteria for circuitry synthesis and the deve-
lopment of dedicated implementation technique, such that optimize the whole
system implementation on field programmable gate array.

Relevance of the Thesis

According to Disability and Working Capacity Assessment Office, the need
for permanent care is recognized for 17,731 persons and need for permanent
help is assigned for 16,694 persons in Lithuania in 2015 (NDNT 2016). Such
persons require a nursing staff to perform elementary actions: turn over in
bed, turn the lights on or off, handle the household appliances, call for medical
assistant, and so on. The ability to initiate actions by voice enables to increase
the independence of humans with physical disabilities, improve their quality
of life and reduce the need for nursing staff.

According to Ministry of Social Security and Labour of Lithuania 142,200
persons are registered with 30—40 % working capacity and 32,400 persons with
0-25 % working capacity in 2014 (Socmin 2015). The voice interface for those
people can be an additional control interface, which enables to improve work
efficiency and speed. Over the last 50 years the developed speech recognition
techniques allow to implement the services based on speech recognition in per-
sonal computers and mobile phones. Despite the declared naturalness of voice
interface and predicted growth, the spread of voice technology was not great.
Just few software tools, which allow to type text by voice, control programs
running on computer or phone can be found in a market.

The ability to produce voice controlled devices allows to create new ser-
vices not only for entertainment, or for small tasks, but also for social tasks.
One of the potential application areas of speech technology is people with
physical disabilities. Voice control devices would be integrated into speciali-
zed functional units (handicapped beds, wheelchairs, hoists or communication
with nursing systems), and other home devices (TV, lighting, window blinds,
room heating and air conditioning systems). The ability to manage by voice
would compensate a part of the lost skills and enhance the quality of life for
people with disabilities. Excellent example of the application of speech tech-
nology is a speech synthesis which is used in the work with computer for the
blind and weak-sighted people.

Over the last decade, the increased alternative of hardware equipment and
application of specialized electronic devices form the opportunities to cre-
ate speech recognition systems in a hardware. In particular a major boost

INTRODUCTION 3

to speech technology has provided the recently launched smart phones with
voice-controlled functions. Successful and well advertised product has reco-
vered the forgotten idea of voice controlled devices. Over the last couple of
years, Google, Nuance announced the creation of a voice controlled TV, of-
fered a voice-operated GPS navigators and voice technology re-evaluated as
one of the most promising forms of the human-machine interface (CES 2016).
The essential difference between these solutions — voice operated stand alone
devices, unrelated with computer and without online access to the network ser-
vices. This shows a needfully growth of hardware tools for speech recognition
and embedded systems requirements.

With the growing amount of data being processed, and in order to work
on real-time it is necessary to increase the processing speed of the algorithms
implemented on speech recognizers. For this purpose the accelerated intellec-
tual property (IP) cores are developed for FPGAs. The increasing use of FPGA
lies in the ability for algorithms parallelization, therefore, FPGA based devices
work more efficiently in comparison with modern processors, even if the clock
frequency is only in range of 10-300 MHz.

Due to the noisy environment, the creating of speech filtering IP core is
important in FPGA based recognizer. The lack of scientific exploration of ar-
tificial neural network (ANN) application in hardware recognizers for noise
reduction leads to the new investigations and development of ANN IP cores
dedicated for enhancement of speech recognition accuracy. The known class
of ANN is the lattice-ladder multilayer perceptron (LLMLP) and its FPGA
implementation is investigated insufficiently. The implementation of LLMLP
IP cores on FPGA is first time investigated in this thesis. The application of
optimized LLMLP IP core in speech recognizer for word recognition rate en-
hancement is appropriate due to the stability in lattice part. The fast evaluation
of the amount of required resources and proper FPGA chip selection is an im-
portant step in a system design. The creation of the automatic LLMLP IP
generation tool based of proposed technique is needful in order to fast verifica-
tion of design performance and suitable learning circuit selection at different
LLMLP complexity.

The Object of the Research

The object of the research is specialized field programmable gate array intel-
lectual property (FPGA IP) cores that operate in a real-time. The following
main aspects of the research object are investigated in the present thesis: im-
plementation criteria and techniques.

4 INTRODUCTION

The Aim of the Thesis

The aim of the thesis is to optimize the field programmable gate array im-
plementation process of lattice-ladder multi-layer perceptron and provide its
working example in Lithuanian speech recognizer for disabled persons’ use.

The Objectives of the Thesis

In order to solve stated problem and reach the aim of the thesis the following
main objectives are formulated:

1. To rationalize the selection of a class of lattice-ladder multi-layer per-
ceptron (LLMLP) and its electronic intelligent system test-bed — a
speaker dependent Lithuanian speech recognizer for the disabled per-
sons, to be created and investigated.

2. To develop technique for implementation of LLMLP class on FPGA
that is based on specialized criteria for a circuitry synthesis.

3. To develop and experimentally affirm the efficiency of optimized FPGA
[P cores used in Lithuanian speech recognizer.

Research Methodology

The following theories are applied in this work: digital signal processing, spec-
tral and cepstral analysis, speaker dependent word recognition, artificial neural
networks, optimization, data flow graph, and statistical analysis. Techniques of
linear prediction, mel-frequency scaling, dynamic time-warping, lattice-ladder
multilayer perceptron recall and training, graph covering, subgraph search, in-
struction scheduling, are adopted and implemented.

Original Lithuanian speech data sets for the experiments are recorded. The
simulations are carried out with the use of Matlab 7 and ModelSim 6.5 software
packages. The intelligent electronic systems are implemented on Virtex-4 and
ZynQ-7000 FPGA family. For their development and experimental investiga-
tion Xilinx ISE Design Suite 14.7, Vivado HLS 2015.4 together with originally
developed software tools are used.

Scientific Novelty of the Thesis

1. The new technique for LLMLP implementation, which takes into ac-
count FPGA specifics and generates [P core more efficiently in com-
parison with general purpose commercial tool, is created.

INTRODUCTION 5

2. Pareto frontiers estimation for the LLMLP specialized criteria of cir-
cuitry synthesis, which supports optimal decision of FPGA chip selec-
tion according to given requirements for LLMLP structure, sampling
frequency and other resources, is proposed.

3. The new accelerated pattern matching and double random seed match-
ing algorithms, which accelerate word recognition process in a work-
ing prototype of Lithuanian speech recognizer in FPGA, are developed.

4. The noise filtering by lattice-ladder neuron, which improves the recog-
nition accuracy, is proposed.

Practical Value of the Research Findings

Based on the proposed technique, a new compiler is created for LLMLP effi-
cient implementation in FPGA. The results presented by Pareto frontiers enable
us to choose a proper FPGA chip according to given requirements for LLMLP
complexity, sampling frequency and resources.

The implemented Lithuanian speech recognition system is based on a new
architecture ZynQ-7000 chip with integrated Artix-7 family FPGA and dual-
core ARM Cortex A9 MPCore processor that allow to control devices by voice.
The recognition system and implementation have been investigated and ap-
plied:

« in the scientific group project for technological development “Deve-
lopment and validation of control by Lithuanian speech unit model for
the disabled”, supported by Research Council of Lithuania (No. MIP-
092/2012, 2012-2014);

« in the scientific work of VGTU “Research of the digital signal process-
ing for real-time systems” (No. TMT 335, 2013-2017).

The device is able to communicate with human by voice, identify Lithua-
nian language given commands in a real-time and form a specified control sig-
nals. For each controlled device the list of the commands can be customized,
thus increasing the efficiency of voice control. In this respect, the FPGA based
recognizer does not have analogues in Lithuania and is one of a few in the
world.

The Defended Statements

1. The IP cores created by use of proposed LLMLP implementation in
FPGA technique are at least 3 times more efficient in comparison with
the Vivado HLS tool.

6 INTRODUCTION

2. Pareto frontiers estimation for the LLMLP specialized criteria of cir-
cuitry synthesis enables to make an optimal choice of FPGA chip
according to given requirements for LLMLP structure, sampling fre-
quency and other resources.

3. The optimized FPGA IP cores developed for Lithuanian speech reco-
gnizer are suitable for real-time isolated word recognition achieving
7800 word/s comparison speed.

4. The application of lattice-ladder neuron for 15dB SNR records pre-
processing improves the recognition rate by 4 %.

Approval of the Research Findings

The research results are published in 12 scientific publications:
« four articles are printed in a peer-reviewed scientific journals listed in a
Thomson Reuters Web of Science list and having impact factor (Slede-
vi¢, Navakauskas 2016, Tamulevicius et al. 2015, Serackis et al. 2014,
Sledevi€ et al. 2013);

« two articles are printed in a peer-reviewed scientific journal listed in In-
dex Copernicus database (Sledevi¢, Stasionis 2013, StaSionis, Sledevi¢
2013);

« two articles are printed in a peer-reviewed scientific journal listed in
SCImago database (Tamulevicius et al. 2014, Sledevic et al. 2013);

« four publications are printed in other scientific works: two — in in-
ternational conference proceedings listed in Thomson Reuters Web of
Science list ISI Proceedings category (Serackis et al. 2013, Sledevic,
Navakauskas 2013) and two — in international conference proceedings
listed in IEEEXPLORE (INSPEC) database (Sledevi¢, Navakauskas
2015, Sledevi¢, Navakauskas 2014).

The main results of the thesis are presented in the following 17 scientific
conferences:

e 13th international “Biennial Baltic Electronics Conference (BEC)”,
2012, Estonia, Tallinn;

« international conference on “Communication, Control and Computer
Engineering (ICCCCE)”, 2013, Turkey, Istanbul;

« 7th international European Modelling Symposium (EMS), 2013, Eng-
land, Manchester;

« international conference on “Computer as a Tool (EUROCON)”, 2013,
Croatia, Zagreb;

INTRODUCTION 7

« 16th international conference on “Image, Signal and Vision Comput-
ing (ICISVC)”, 2014, France, Paris;

« national conference “Multidisciplinary Research in Natural and Tech-
nology Sciences” 2014, Lithuania, Vilnius;

e 3rd international workshop on “Bio-Inspired Signal and Image Pro-
cessing (BISIP)”, 2014, Lithuania, Vilnius;

« 6th international seminar “Data Analysis Methods for Software Sys-
tems”, 2014, Lithuania, Druskininkai;

e 2nd international workshop on “Advances in Information, Electronic
and Electrical Engineering (AIEEE)”, 2014, Lithuania, Vilnius;

« international conferences “Electronics”’, 2013-2015, Lithuania, Palan-
ga;

e 3rd international workshop on “Advances in Information, Electronic
and Electrical Engineering (AIEEE)”, 2015, Latvia, Riga;

« annual national conferences “Science — Future of Lithuania”, 2013—
2016, Lithuania, Vilnius.

The technical presentation of Lithuanian speech isolated word recogni-
zer was recognized as one of the best in the conference “Multidisciplinary
Research in Natural and Technology Sciences”. This research was certificate
awarded by Lithuanian Academy of Sciences together with “Infobalt” associa-
tion established scholarship.

Structure of the Dissertation

The dissertation contains: introduction, four chapters, general conclusions,
summary in Lithuanian, 3 annexes, list of references with separately presented
list of publications by the author. The list of symbols, abbreviations, keywords
and subject index are presented. The dissertation consists of 156 pages, where:
87 displayed equations, 73 figures, 12 tables, 6 algorithms and 1 example are
presented. In total 152 references are cited in the thesis.

Acknowledgements

I would like to express my deepest gratitude to my supervisor Prof. Dr Dalius
Navakauskas, for his excellent guidance, caring, patience, enthusiasm, and pro-
viding me with an excellent atmosphere for doing research. I would also like
to thank all the staff at the Department of Electronic Systems of Vilnius Gedi-

8 INTRODUCTION

minas Technical University for guiding my research for the past several years
and helping me to develop my background in a field of electronics, artificial
intelligence and speech recognition.

Special thanks goes to Assoc. Prof. Dr Artiiras Serackis, who have first
introduced me to FPGA and inspired to new research directions. I am grateful
to Liudas StaSionis for the cooperation and assistance in recognizer implemen-
tation. I am thankful to Assoc. Prof. Dr Gintautas Tamulevi¢ius, who gave
me an understanding of methods applied in theory of speech recognition. I
also want to thank Assoc. Prof. Dr Vacius Malisauskas, who gave me, when [
was a young student, great insights into the nature of scientific work. I have
greatly enjoyed the opportunity to work with Dovilé Kurpyté, Darius Plonis,
Dalius Matuzevic¢ius, Raimond Laptik, Andrius Katkevicius, Audrius Kruko-
nis, Edgaras Ivanovas, and Ricardo Henrique Gracini Guiraldelli. Thank you
for the fun and many motivating discussions about life, Ph.D.s, computer sci-
ence, and all that we had over the last several years. I was very lucky to have
crossed paths with Andrius Gudiskis, Darius Kulakovskis, Eldar Sabanovig,
Vytautas Abromavicius, and Aurimas Gedminas. Thank you for your support
and encouragement.

I am especially grateful for all the members of the Biometrics and Machine
Learning Laboratory at Warsaw University of Technology for providing a great
work environment, for sharing their knowledge and for their help during my
internship.

I would also like to thank Lithuanian Academy of Sciences, Research
Council of Lithuania, Education Exchanges Support Foundation and “Infobalt”
association for research funding, foreign internship support, and scholarship
for conference.

Finally, I would also like to thank my parents and my brother. They were
always supporting me and encouraging me with their best wishes.

Review of Electronic Systems
Implementation in Field
Programmable Gate Arrays

In this chapter we give an overview of the aspects for efficient electronic sys-
tems implementation on FPGA. Firstly, we will cover the specifics of FPGA
architecture and the most essential design steps and tools in order to find out
an appropriate one for efficient design implementation. Afterwards, we will
go through overview of the artificial neural network (ANN) and they hard-
ware implementation issues. The specifics of neuron structure and training are
overviewed in order to select suitable one for speech recognition rate enhance-
ment. The advantages of high and low level approaches for ANN implementa-
tion are presented. Lastly, the aspects for speech recognition implementation in
FPGA are described with the emphasis on features extraction and classification
methods. At the end of this chapter the tasks for future work are formulated.

1.1. Computer-Aided Design for Implementation in
Field Programmable Gate Array

In the last two decades the FPGA became very popular between engineers and
scientists because of the opportunity to accelerate the traditional CPU-based
algorithms. This speed-up would be impossible without the appropriate digital
circuit design tools usually called as computer-aided design (CAD) tools for
FPGA. These tools are constantly improved together with more complex archi-
tecture of FPGA, as well as considering the demand of the programmers (Chen

10 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

et al. 2006). From the view of the consumers the FPGA developing suite must
be friendly, easily understandable and quickly verifiable. The main practical
purpose of the FPGA chips is a relatively short developing time comparing to
the application specific integrated circuit (ASIC) devices. Despite that ASICs
utilizes 20-30 times less area, works 3—4 times faster and consumes approxi-
mately 10 times less power, the FPGAs have advantages in cost, reconfigura-
tion and time to market (Kuon, Rose 2007).

Usually the CAD flow has a generalized and mostly vendor independent
structure, as shown in Fig. 1.1 (Czajkowski 2008). It is used for generation of
the uploadable bitstream for FPGA configuration.

Nowadays the high level synthesis (HLS) contains the implementation of
algorithm in a fast and consumer convenient way using tools, that works at
a high level of abstraction, e.g., Matlab, Simulink (Alecsa et al. 2012; Arias-
Garcia et al. 2013), LabView (Laird er al. 2013; Ursutiu et al. 2013). This
approach does not require a deep knowledge about FPGA specifics and make
the test of desired part of the system easier. The general-purpose behavior
description languages, e.g., C or SystemC can describe the design, however
not allows to evaluate the cycle-accurate behavior (Chen et al. 2000).

The more tradition way to design the logic circuit in a register transfer
level is the application of hardware description language (HDL), e.g., Verilog
or VHDL. These languages describe the behavior of the logic circuit at each
clock cycle applying strictly defined templates of logic, arithmetic and memory
blocks. At the circuit synthesis stage the circuitry at Register Transfer Level
(RTL) is transformed into a netlist. The netlist stores an information about the

| High Level Synthesis |

v

| Register Transfer Level |

v

| Circuit Synthesis |
Y

| Mapping |
v

| Place and Route |

v

| Timing Analysis |
v

| Bitstream Generation |

Fig. 1.1. The implementation stages of bitstream for field programmable
gate array

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 11

description of logic gates and their interconnections. At the mapping stage one
or more netlists are combined into groups with the aim to fit the design effi-
ciently in the look-up tables (LUT). The mapper needs information about the
FPGA target architecture. At the place and route stage the mapped components
are assigned to the physical LUT, DSP, RAM resources at various locations in
the FPGA. These resources are routed together using available routing wires
and switching matrices. The optimization of LUT location takes the most time
because it must satisfy the user defined timing constraints and placement re-
quirements. The bitstream generation starts after the successful done of the
timing and placement. The final FPGA programming file contains the connec-
tion settings for the programmable switch matrix and the true-tables, that will
be loaded in the RAMs and LUTs (Vandenbout 2013).

The HLS and RTL are mainly used by researchers and engineers for the
circuit implementation on FPGA. Any high level tool accelerates the design
process, however it not allows to deny or skip the RTL. Moreover, comparing
to other levels the reasonable performance of the design is achievable work-
ing in RTL (Misra, Saha 2010; Ronak, Fahmy 2014). The deeper we come in
the implementation chain, the more information about certain FPGA internal
architecture and configurable block interconnection must be known. Any edit-
ing of placed and routed design at the lower level is hardly realizable, since
the control options are hidden by FPGA manufacturer. Furthermore, designing
at the lowest possible level do not ensures optimal performance. The known
RapidSmith tool works at place and route (PAR) level and is based on already
mapped hard macro primitives placement (Lavin et al. 2013). It reduces the
compile time by 50 times, however it 3 times slows down a clock rate of final
design. Therefore, with respect to above statements, we prefer that created
compiler implements an efficient circuits at RTL. The FPGA primitives essen-
tial for LLMLP implementation in RTL are discussed below.

1.1.1. Specifics of Field Programmable Gate Array
Architectures

Any FPGA is composed of a finite number of predefined resources with pro-
grammable interconnections. There can be distinguished three main groups
of resources: arithmetic, logic and memory. The LLMLP is most hungry for
arithmetic resources, as is shown in Table 1.4. The dedicated DSP slices are
used for a fast arithmetic operation implementation. DSP slices can be dynam-
ically reconfigured to process a piece of the equation suitable for instantaneous
DSP configuration. The DSP may accept the configuration according to the
equation:

P=CP+(D+A)xB, (1.1)

12 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

where A, B, C, D are the values of the data at the DSP input; P is the data value
on the output of DSP; C|P means that data from input C or previous output
value P is used.

The DSP is purposely designed for pipelined data processing with maxi-
mum performance. This is achieved inserting flip-flops (storage elements) and
minimizing critical path in a circuit, as is shown in Fig. 1.2. Sequentially con-
nected flip-flops introduces latency of 4 clock cycles in the dataflow processing
independent on the selected instantaneous DSP configuration.

Fig. 1.2. The simplified structure of digital signal processing slice in 7th
series field programmable gate array

If the DSP pattern do not contains any multiplication operation, then it can
be directly instantiated in the RTL. It is efficient only for patterns with addition
and subtraction, because of single clock cycle latency for addition/subtraction
operations instead of 4 clock cycles latency for any kind of pattern imple-
mented on DSP. List of the useful DSP patterns for LLMLP implementation is
shown in Table 1.1.

The logic resources on the FPGA can perform logic functions. Logic re-
sources are grouped in slices to create configurable logic blocks. Dependent
on the FPGA manufacturer each slice contains various number of basic el-
ements like k-input look-up tables, storage elements — flip-flops (FF), multi-
plexers, arithmetic and carry chain, as is shown in simplified slice structure in
Fig. 1.3. There are two types of slices called SLICEM and SLICEL (Xilinx
2012a). Only SLICEM supports additional configurations to shift registers and
distributed RAM.

Table 1.1. List of the pattern for digital signal processing slice configuration
DSP configuration ‘ DSP configuration or direct instantiation
CP+(D+A)xB | C[P+(D+A4)

ClP+DxB CP+D
(D+A)xB D+ A
DXxB

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 13

N £ Slice |\
'S - lk-input] E
ool |e LUE[‘ Carry o0
IR chain =
B 2
7 N7
NS £ NS

Fig. 1.3. The reconfigurable slice structure with look-up tables, carry chain
and flip-flops in field programmable gate array

Due to the DSP sharing the intermediate calculation results must be stored
in FPGA for fast access. To form small distributed memories in the latest
FPGA each LUT in the SLICEM can be configured to the distributed 64 b
RAM or ROM. All four LUT in a single SLICEM can form 256 b memory
formatted in various ways as single, dual or quad port RAM with asynchronous
or registered output. To create a large buffers, the block RAM (BRAM) is used.
BRAM can be configured as single or dual port RAM or ROM (Fig. 1.4).

ADDRA[9:0] —»,
DINA[17:0] —f — DOUTA[17:0]
WEA —»

CLKA —»
BRAM

ADDRB[9:0] —»| 1024%18
DINB[17:0] —» > DOUTB[17:0]
WEB >

CLKB >

Fig. 1.4. The interface of the configurable dual port block random access
memory in field programmable gate array

The modern Xilinx FPGAs contains a hundreds of BRAM each 1024 x18 b
size (Xilinx 2013d). Such blocks will be used to store synapse weights, for-
ward/backward signals and trigonometric function values.

1.1.2. High Level Tools for Hardware Description Language
Generation

One of the main challenges in designs efficient implementation in FPGA is
the lack of the direct connection between algorithm design and hardware im-
plementation. There can be hard to verify operation on chip against algorithm

14 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

specifications as hand coded HDL can bb error prone and hard to debug. There
can also be differences between a fixed-point implementation and a floating-
point specification of the algorithm. With different elements of the tool chain
often sourced from different vendors requiring multiple purchase request which
can be difficult to budget. To address these challenges hardware designers of-
ten looks at model-based design like Matlab and Simulink. HDL Coder allows
to convert the Simulink models and Matlab code (written in embedded Mat-
lab form with restrictions) to HDL synthesizable code and testbenches (Math-
Works 2013). Better performance is achieved using Xilinx System Generator
(XSG) for DSP (Xilinx 2013b), because each block is a pre-optimized IP core
for Xilinx FPGAs. However, the cycle accurate scheduling nor resource shar-
ing is hard to apply with XSG. Moreover, the XSG generated HDL code is
rather long and complex (Van Beeck et al. 2010).

The StateCAD allows to design of the state machines through graphical
interface automatically generating synthesizable HDL code direct from the di-
agram (Xilinx 2007). Despite that StateCAD reduces product development
cost, this tool was removed since ISE Design Suite 11 version, because lack of
popularity and support only on Windows platform.

The Matlab AccelDSP tool was used to map high-level described applica-
tion to DSP slices for Xilinx FPGAs. It allows to generate synthesizable HDL
source with automated float to fixed-point conversion and testbench verifica-
tion (Xilinx 2012b). Unfortunately, AccelDSP synthesis tool has been discon-
tinued and is no longer available.

The commercial HLS tools C-to-Silicon, Catapult C, Synphony or Vivado
HLS take a software description and turn it into effective hardware. Their
objective is to generate hardware whose performance rivals with hand-written
designs. The advantage is that same design described in software can be reused
for different FPGA (Cadence 2013). However, these tools have limitations
when transforming sequential software to hardware. The high performance is
achievable only for easy-to-pipeline algorithms with regular structure trivial
filters. As a proof, the favourite example is still the FIR filter (Xilinx 2015b).
The performance of more irregular design with feedback loops and dynamic
memory allocations is rather poor.

First four HLS tools in Table 1.2 are model-based. It means, that design
is assembled by hand from pre-compiled blocks and each of them has straight
defined reflection in the following RTL code. The required blocks must be
manually entered into the design. Therefore, designer must still worry about
proper sequence of the block and compatibility of data type.

The HLS tools are very useful for quickly verification and validation of
the algorithm in a hardware, when the design time is prior to the final design
performance. But till nowadays, for a greater design optimization we have to

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 15

Table 1.2. Comparison of high level synthesis tools

Tool Programming Generated
way/language code
HDL Coder Blocks RTL
XSG Blocks/Embedded-M RTL
LabView Blocks RTL
AccelDSP Blocks RTL
StateCAD State diagrams RTL/Abel
C-to-Silicon C/C++/SystemC RTL
Catapult C C RTL
Synphony C RTL
Vivado HLS C/C++ RTL/SystemC

hand code, despite the large choice of HLS tools, which significantly reduces
FPGA design time at the cost of increasing latency or resource utilization. The
main advantages of the HLS design tools: fast implementation and verification,
user friendly. Disadvantage: weak performance control, hard to meet of the
timing or resource constraints, complicated code readability.

Regarding the mentioned disadvantages the researchers are developing a
custom HLS tool for a specific design implementation mainly based on data
and control flow graphs exploiting the design transformations (pipelining, re-
timing, folding) for circuit performance optimization (Cong, Jiang 2008; Ka-
zanavicius, Venteris 2000; Ronak, Fahmy 2012). The created tools are used
for efficient mapping of mathematical expressions into DSP slices (Ronak,
Fahmy 2014), mapping the Kahn processor network into DSP and FPGA ar-
chitecture (Zvironas, Kazanavi¢ius 2006) or targeting multiple application do-
mains (Cong et al. 2011). Therefore, in the next section we will go through the
specifics of artificial neural network implementation on FPGA with the aim to
distinguish suitable structures for further application in speech recognition.

1.2. Implementation of Artificial Neural Networks
in Field Programmable Gate Array

Speech recognition systems work better if they are allowed to adapt to a new
speaker, the environment is quiet, and the user speaks relatively carefully. Any
deviation from these conditions will result in significantly increased errors.
In most of the practical applications the speech is corrupted by a background
noise (Chan ef al. 2013; Yiu et al. 2014). This strongly degrades the accuracy
of speech recognizers and makes it unpractical to use in applications that are

16 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

working in real conditions. Therefore, to make the FPGA-based recognizer
more robust, many methods for noise cancellation are proposed, e.g., indepen-
dent component analysis (Kim et al. 2003), spectral subtraction (Firdauzi et
al. 2013), adaptive filtering (Hadei, Lotfizad 2011; Thilagam, Karthigaikumar
2015) or artificial neural networks (ANN) (Bosque et al. 2014; Er et al. 2005).

The adaptive filters in conjunction with multilayer perceptron (MLP) seems
to be attractive in speech enhancement application (Navakauskas 1999). Such
MLP can have finite impulse response (FIR), infinite impulse response (IIR)
or lattice-ladder (LL) filters in a place of the neuron weights. These filters
can be employed for speech signal preprocessing and adaptive noise reduc-
tion. The filter coefficients updating algorithm is well known and tested on
PC applications. But since the [IR MLP (Back, Tsoi 1993) or lattice-ladder
multilayer perceptron (LLMLP) (Navakauskas 2003) was firstly proposed, till
nowadays they are not implemented on FPGA. Therefore, our interest in this
thesis is the efficient LLMLP implementation on FPGA for the improvement of
speech recognition. As LLMLP has same hardware implementation specifics
as other ANN, thus the basic principles for mapping ANN algorithms to hard-
ware structures are described below.

The FPGA has a suitable structure for pipelined and parallel ANN im-
plementation. The main advantages of mapping ANN to FPGA are follow-
ing (Misra, Saha 2010):

o The hardware offers very high computational speed at limited price.

« Provides reduced system cost by lowering the total component count
and decreasing power requirements.

o The parallel and distributed architectures allow applications to con-
tinue functioning with slightly reduced performance even in the pre-
sence of faults in some components.

To obtain successful implementation of ANN, it is essential to have an un-
derstanding of the properties of the ANN circuit to be implemented. For exam-
ple, sensitivity to coefficient errors affects on signal quality, the final arithmetic
behavior affects the robustness of the algorithm and thereby its usefulness. The
computational properties of the ANN are also important, e.g., parallelism and
maximal sample rate affects the performance and implementation cost. These
and other important specifics for efficient ANN implementation in FPGA are
considered in following subsections.

1.2.1. Specifics of Artificial Neural Networks

Because of limited hardware resources the implementable ANN size and speed
highly depends on efficient implementation of the single neuron (Muthurama-

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 17

lingam et al. 2008). Therefore, the implementation of a large network on FPGA
with resource and speed trade-off is a challenging task. The main problem is
in the replacing of floating-point numbers to the fixed-point. The input data
must be normalized in a range from 1 to —1 with restricted number of levels.
Therefore, the limited accuracy plays significant role. The minimum 16 b for
weights and 8 b for activation function inputs is good enough for applications
with feed-forward ANN (Holt, Hwang 1993). The higher precision gives lower
quantization error. While higher speed, lower area and power consumption are
available with lower bit precision. One of the disadvantage is a saturation, be-
cause the range of weight xdata product has fixed length (Moussa et al. 2006).
Before implementation of any type of ANN in FPGA the issues presented in
Fig. 1.5 must be solved.

Precision. The recurrent part in the LLF alerts about growing error if the
number of bits assigned to the signal is too low. Using the Xilinx IP core
generator the maximum 64 b signal width is available. 16 b width connections
in feed-forward pass of ANN are acceptable. The ANN with feed-back loops
requires rather wide, i.e., 24-32 b, width signals and depends on accuracy de-
mand for specific application.

Latency. The performance of whole ANN depends on the combinational
and sequential paths delay of the longest route in the synthesized circuit. The
bad HDL practice as asynchronous resets, adder threes instead of adder chains,
incorrect synthesis tool settings, gated clocks, high number of nests within se-
quential statements has become a bottleneck in aspiration of maximum fre-
quency. The pipelined implementation gives the possibility to put a data to the
input of ANN synchronously at each clock. It is not always possible to imple-
ment the ANN with feed-back wires in a pipelined way. Using of the variables
helps to merge a long arithmetic chain to easily be completed in a single clock
cycle. But the longer the unregistered path in a chain, the lower the maximum
frequency in a final system. For the reasonable design at least 200-300 MHz
frequency is expected and is possible with some serious scrutiny.

Resources

ANN FPGA implementation issues

Physical structure

. Reconfigurability
Description level

Fig. 1.5. The hardware implementation issues of artificial neural network

18 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

Resources. The ANN requires a lot of arithmetic operations like summa-
tion, multiplication and activation function stored in ROM. One DSP slice per-
forms a multiplication of 1825 b signals. The increase of precision requires
higher DSPs utilization rate, e.g., 32 b data multiplication utilizes 4 DSP, 64 b —
16 DSPs. It is possible to use multipliers created from logic cells. In such case
32x32b multiplier uses 1088 LUT6 and it is more than 2 % of total number
of LUTs in e.g., ZynQ-7000 family xc7z020 FPGA. The limited number of re-
sources makes it impossible to physically implement large ANN. In example,
10-th order LLF utilizes all DSP slices in ZynQ-7000 Artix-7 FPGA. There-
fore, physically implemented small part of ANN must share the resources to
create larger network. Since the hardware complexity of a multiplier is pro-
portional to the square of the word-length, a filter with more multipliers and
smaller word-length can sometimes be implemented with less hardware, than
a filter with less multipliers and larger word-length. Therefore, the hardware
complexity of a digital filter should be determined carefully depending upon
the frequency specifications for LLF (Chung, Parhi 1996).

Test bench. To test the accuracy of the ANN various test bench files must
be evaluated on the simulations first of all. It is important to check the network
precision and weight dependence on different parameters as input signal, LLF
order, number of layers, bit width of the data. All the results must be compared
with the floating point precision ANN to get a relative error.

Physical structure. Limited resources do not allows physically implement
whole network. For example, the M-th order LLF with their learning algo-
rithm utilizes at least 36 x M + 4 DSP slices if 32 b signals are used. There-
fore, it is more convenient to have few physical neurons and share them through
larger virtual ANN (Misra, Saha 2010).

Description level. 1Tt is considered that VHDL and Verilog are the main
hardware description languages. They describe a circuit at low level, at that
time FPGA primitives are manually arranged in a design. The HDL gives
us full performance and resource control. For inexperienced designers or for
those, who want to implement design quickly, there are a lot of high level
synthesis tools, that will be described in next section. The HLS accelerates
FPGA design and verification time, but it hides the options to precisely manage
the resource allocation and timing constraints.

Reconfigurability. The partial reconfiguration allows the modification of
an operating FPGA design by loading partial reconfiguration file, thus modi-
fying ANN topology (Finker et al. 2013). The reconfiguration time is directly
related to the size of partial configuration file and usually takes less than a
second (Xilinx 2014b). We are interested not in the reconfigurability based on
supplementary file loading to FPGA, however on synchronous reconfiguration
of DSP for new operation.

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 19

1.2.2. Artificial Neuron Structures

The artificial neuron is a mathematical model of biological neuron. The body
of biological neuron is based on soma, which acts as the summation function.
The input signals arrive in the soma from the dendrites (synapses). The output
of the artificial neuron is analogous to the axon of biological neuron. Each
time when the soma reaches a certain potential threshold, the axon transmits
output signal to synapses of other neurons. Therefore, the axon is analogous to
the activation function in artificial neuron.

There are two different neuron configuration in a hardware (Omondi ef al.
2006): tree (Fig. 1.6a) and chain (Fig. 1.6b). The trade-off is between process-
ing latency and efficient use of logic resources. With a tree configuration the
use of slice logic is quite uneven and less efficient than with a chain. If number
of inputs is large, then a combination of these two approaches is used. Such a
reservation of a single DSP for one synapse allows to implement parallel ANN
structures, which size is highly limited by FPGA internal interconnection re-
sources. The number of available synapses is also restricted by the number of
DSP. In Fig. 1.6 presented neuron is suitable for small and fast ANN structures
with a pipelined input. The activation functions can be implemented as polyno-
mial approximations, CORDIC algorithm, table-driven method. For hardware
implementation the trade-off between accuracy, performance and cost are all
important.

It is often unnecessary to have such ANN, that captures data at each rising
edge of clock. Therefore, it is possible to use one multiplication (DSP slice)
to compute the product and summation of each weight x data operation in a se-
quential manner (Fig. 1.7). In this case, the latency is proportional to the num-
ber of synapses in each neuron. Such a model of neuron is popular in a hard-
ware implementation of the feed-forward neural network, i.e., MLP (Ferreira
et al. 2007; Muthuramalingam et al. 2008). The structure of MLP with parallel
neural unit that calculates 32 products at each clock cycle is proposed (Lotric,
Buli¢ 2011).

The precision of the activation functions plays a significant role especially
if the number of hidden layer in the MLP is high. It is possible to implement
the sigmoid function in a simplified manner replacing e™* with 1.4426x27*
and splitting the = into whole number and fractional part (Muthuramalingam
et al. 2008). Such approach needs a 100 cycles to implement an activation
function. Therefore, the look-up tables are proposed to use as a faster way for
nonlinearity estimation.

An important problem for designers of FPGA-based ANN is a proper se-
lection of the ANN model suitable for limited hardware resources. A compar-
ative analysis of hardware requirement for implementing MLP in Simulink and

20 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

data 3

|
weight 3— Mul

Sum —L || Activation

Sum

j function
a) The tree configuration

data 2| > result

weight 2— Mul

data 1—

weight 1— Mul

Sum

data 0—
weight 0—|

ST

Mul

data 3 —

weight 3 — Mul

weight 2 —|

data 1
weight 1 —

77 Sum]
data 2 | Mul Sum]
|| Sum T

Mul

result

L o
Sum Activation |,

data 0 Mul — | | function

weight 0—

b) The chain configuration

Fig. 1.6. Two distinct implementation of the neuron: the tree a) and chain b)
configurations

MAC lj
data P Mul — Sum [/ > result

weight

v

Fig. 1.7. Digital neuron model based on multiply-accumulate (MAC) unit

translating to hardware indicates that the not complex spiking neural network
(SNN) is a most appropriate model for non-linear task solving in a FPGA (John-
ston et al. 2005). The reason is a type of neuron. The spiking neuron do not
uses multipiers in a synapses, however only addition and threshold operations
are required. Any FPGA always has more configurable logic blocks with sum-
mation and comparison operators than DSPs. Therefore, SNN is more area
efficient and relatively easier to construct than any other ANN. However, it is
much harder to develop a model of SNN with stable behavior that computes a
specific function (Carrillo et al. 2012). Moreover, current FPGA routing struc-
tures cannot accommodate the high levels of interneuron connectivity inherent
in complex SNNs (Harkin et al. 2009).

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 21

1.2.3. Dynamic Neuron

Regardless of the type of ANN, the synapse of a neuron always plays a mean-
ing role, since its ability to adapt. For the processing of a time-varying signals
usually it is useful to replace a single weight synapse with a band-pass filter
of the desired order. Therefore, associated dynamic neuron training algorithm
becomes more sophisticated especially if infinite impulse response filters are
used. When the direct structure of such filter is selected the number of param-
eters to be adapted becomes proportional to 2M + 1, where M is the filter
order (usually M is set the same for the synapses of particular layer). However
the main disadvantage of such dynamic neuron training implementation lies
in the elaborated control of filter stability during the learning process. Thus
the rearrangement of the filter to the lattice-ladder structure with the simplest
stability check (Regalia 1995) is appealing for the implementation.

The presented neurons (Fig. 1.6 and 1.7) will be dynamic if the synapses
are replaced by filters. One of the possible filter is the LLF presented in
Fig. 1.9. Each section of the LLF consists of a normalized lattice autoregressive-
moving average filter. The local flow of information in the lattice part of filter
for j section is defined by:

[fj—l(n)] _ [COS(‘% —Sinej] [1(n)]; (1.2)

~ |sin®; cosO; z7b;_1(n)
M

Sout(n) = @(Z bj(n)vj> , (1.3)
=0

with initial and boundary conditions bg(n) = fo(n) and fir(n) = sp(n),
where sj, (n) — input signal; v;(n) — weights of the ladder; ©; — rotation angles
of the lattice; fj(n) and b;(n) — forward and backward signals of the lattice,
correspondingly; s(n) — the output of the LLN with N inputs and Mth order
LLF as its synapses; ¢{.} — neuron activation function.

Fig. 1.8. The structure of normalized lattice section used in Fig. 1.9
presented lattice-ladder filter

22 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

In a time-varying environment the normalized lattice filter is superior over
other lattice forms with one, two or three multipliers (Gray, Markel 1975).
Contrary each normalized lattice section requires four times more multiplica-
tion operations when compared to a single multiplier lattice for the cost of
stability. It could be shown that equality:

| fi—1(n) + ibj(n)| = | fi(n) +ibj_1(n — 1), (14)

holds for all j sections (Gray, Markel 1975). Therefore, the normalized lattice
filter requires only the starting point to be stable and any truncation of the filter
coefficient don’t moves poles outside the unit circle. Thus there is no need to
check lattice stability for normalized lattice filter.

sin(n) cos O, cos@,,_, cos O

Fig. 1.9. The critical path in the M-th order lattice-ladder filter

The unregistered critical path in the LLF is marked by a gray color in
Fig. 1.9. In the LLF the computation time delay in critical path is proportional
to the filter order M and equal to (M + 1)x2. The longer the critical path,
the higher delay is between the synapse input s;,(n) and the synapse output
Sout(). If this filter will be implemented as is, its maximal clock frequency
degrades drastically, because of the growing filter order M. In order to achieve
higher performance the LLF can be pipelined through retiming and interleav-
ing procedures (Chung, Parhi 2012; Parhi 2013). Such a circuit manipulation
procedures are indeed helpful for pipelining a design without feedbacks, if
there is no input sin(n) = f(sow(n)) dependence on the output seu(n). The
Mth order LLFs (Fig. 1.9) are used as synapses in artificial neurons. The
neurons distributed in parallel construct a single layer of MLP presented in
Fig. 1.10. The MLP consists of multiple layers, with each layer fully connected
to the next one. A lattice-ladder multilayer perceptron (LLMLP) is defined by
number of layers L, number of neurons in each layer {NO NO N}
and filter orders {M© MO .. M®}. The input layer denotes the number
of features/dimensions in the input signals. The number of outputs in LLMLP

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 23

s (n)

Fig. 1.10. Representation of multilayer perceptron

is directly related with number of neurons in the last Lth output layer. All the
layers arranged between input and output layers are hidden.

1.2.4. Training of Dynamic Neuron

Development of the lattice version of the gradient descent algorithm follows
the same methodology as for the direct form. The output error ¢ is differenti-
ated with respect to the filter parameters sin ©,,, cos @, to obtain negative
gradient signals Vg,,. The main advantage of the lattice form over the di-
rect form is related with LLF stability. The LLF is inherently stable for time-
varying signals (due to the fact that sin©@,, < 1, cos©@,, < 1), while the
direct form is not (Regalia 1995). Synapse presented in Fig. 1.9 has to learn ©);
and v; parameters using simplified gradient descent training algorithm, when
weight updates are expressed:

Oj(n+1) = 60;(n) + uiVe,(n); (1.5)
vj(n+1) = vj(n) + uéb;(n); (1.6)
§ = (1 — sou(n)?)e(n), (17)

here | — a training step; ¢ — an instantaneous output error; e(n) = sk, (n) —
Sout(n) — error between desired s3,(n) and output signal seu(n); Ve, ; — gra-
dients of lattice weights; b;(n) — backward signal inside of lattice.

There are in total 14 possible ways how to exactly implement order recur-
sion required for gradient training algorithm (Navakauskas 2003). And only
four of them (t3, t4, t11, t12) have a straightforward implementation, as is
shown in Fig. 1.11 and Fig. 1.12. That is justified by the fact that the other
ten remaining cases have one or several un-implementable advanced opera-
tors. The dashed boxes separates the “main order” calculations from the cal-
culations involved with the delays and additional signals going from lattice
part of the LLF. The gradients Vg, of lattice weights are estimated by cir-

24 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

cuits presented in Fig. 1.13-1.16 for four useful cases of the order recursions
t; Vi € {3,4,11,12}. Each regressor lattice is formed cascading M sec-
tions of the order recursion blocks and taking in account boundary conditions.
Gradients Vg,, for lattice parameters are calculated using extra addition and
multiplication with constant cos™ @ A7 Operations.

The selection of certain regressor lattice (Fig. 1.11, Fig. 1.12) for practical
implementation influences the amount of operations. The number of arithmetic
and trigonometric operations required to train the LLMLP can be expressed:

NH_ZN N U(5MO 424 N* l))+2ZN (1.8)

+ Z NONCDNO,

L
Ny =Y NONCD <9M(l) +34 N “) Z NONGD (19)
=1 =1
L
+ Z N@N(l_l)N;(l) + ND,
=2
L L—-1
s =3> NONCIMO L3 NO, (1.10)
=1 =1

here N1, Ny, Ng are the numbers of multiplication, addition and trigonomet-

ric operation; N @ _ number of neurons in /th layer; M O _ the LLF order in /th

*()

layer; L — total number of layers; Ny~ — number of multiplications in a regres-

sin®;

a) b)

Fig. 1.11. Simplified order recursions of type: a) — t3 and b) — t4

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 25

Fig. 1.12. Simplified order recursions of type: a) — t;; and b) — t1o

cos1O,

Fig. 1.13. The connected circuit of lattice-ladder filter and t3 type regressor
lattice for Vg, (n) gradients estimation

sor in the [th layer; Ng(l) — number of additions in a regressor in the /th layer.

Both parameters Nﬂ(l) and Ng@ depend on the regressor type as summarized
in Table 1.3. Despite that regressor lattices t3 and t4 need sin @j, cost Qj and
alike t11 and t;9 need sin @j, cos Qj, cos! 93’ trigonometric functions to be
calculated for each order recursion, the total number of trigonometric opera-
tions Og is same for all regressor lattice types t; (last row in Table 1.3). Each
additional order recursion in t; requires only cos™ @ ; calculation, since sin 0,
cos ©; are computed in primary lattice and results are shared with regressor
lattice. The total number of operation necessary for LLMLP implementation
in conjunction with weight adaptation is summarized in Table 1.4.

26 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

sin(n) O—

cos 1O,

Fig. 1.14. The connected circuit of lattice-ladder filter and type t4 regressor
lattice for Vg, (n) gradients estimation

Fig. 1.15. The connected circuit of lattice-ladder filter and type t;; regressor
lattice for Vg, (n) gradients estimation

The newest FPGA contains up to 3600 DSP blocks dedicated for multi-
plication and addition (Xilinx 2014a). The parallel implementation of large
LLMLP is restricted by limited arithmetic resources. Therefore, the LLMLP
with only few neurons and low order LLF can be implemented in single FPGA

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 27

Soul(n)

19
cos O,

Fig. 1.16. The connected circuit of lattice-ladder filter and type t;5 regressor
lattice for Vg, (n) gradients estimation

Table 1.3. The total number of operations for lattice-ladder filter and regres-

sor
Mathematical Single Single regressor of type
calculations LLF t3 ty ti t1o
Multiplications, N} | 5M + 1 aM aM 6M +1 6M
Additions, Ny, 3M | 10M -1 9M -1 10M -2 11M -3
Trig. functions, Nj 2M 1M 1M 1M 1M

Table 1.4. The total number of operations for different lattice-ladder multi-
layer perceptron sizes
NO MO | Ny Ny, Ng
2-2 2 220 230 48
1-10-1 4-6 | 1620 1961 310
2-10-1 4-6 | 2170 2531 430
1-10-10-1 2-4-6 | 8480 10981 1460
5-10-10-1 2-4-6 | 9640 12141 1700

without resource sharing. Obviously the DSP slice sharing through time is
necessary for large LLMLP implementation. To solve the issues of large ANN
implementation on restricted FPGA, the researchers invoke the high or low

level approaches.

28 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

1.2.5. Indirect (High Level) Approach

The implementation of desired ANN in a high level is a fastest way from the
programmer point of view to code the ANN equations and take less care about
physical ANN structure. Many researchers applied their own written tools
in C, Matlab or others high-level languages to implement desired ANN on
FPGA in a convenient way. In most cases the tools generate VHDL or RTL
output files, that exactly describe the ANN in a lower level. Afterwards the
FPGA vendors synthesis, mapping and PAR tools are used. It is popular to
use Simulink tool in combination with Xilinx system generator as a high level
description of ANN (Oniga ef al. 2008). The advantage of Simulink application
is a fast description time of ANN at the expense of final circuit performance.

A special program is developed in C++ to automatic generation of VHDL
code of the ANN (Dinu et al. 2010), while each neuron is represented as special
case of Boolean function. The parameters of ANN are feed to the C++ program
as a matrices in text file. The Matlab is used to develop MLP VHDL IP core
which can run a network with 2 hidden layers, 128 neurons and 31 inputs for
each neuron (Rosado-Munoz et al. 2008). The generated VHDL files contains
the generate instruction and generic parameters, which are customizable after
generation of IP core. Every single neuron have a multiply-accumulate (MAC)
structure (Fig. 1.7) and makes calculation in pipeline.

The support vector machine (SVM) IP core compiler was developed in a
C# language to generate the VHDL files (Anguita et al. 2011). In a created GUI
it is able to configure the SVM to desired precision, choose a number of sup-
port vectors and many others parameters. To solve the quadratic programming
problem the sequential minimal optimization was used. The SVM uses fixed-
point arithmetic, therefore can be implemented on resource-constrained hard-
ware (Anguita et al. 2008). The SVM achieves 6 % classification rate while
using 12b for coefficient and kernel precision. The lowest 6 cycles latency
is achieved using linear piecewise kernel architecture. The highest 15 cycles
latency gives a CORDIC-like kernel.

The automatic VHDL files generator for self-organizing features map was
developed in (Onoo et al. 2009). The network size problem is solved intro-
ducing physical and logical neuron concept when the size of desired neural
network is larger than available FPGA resources (Yamamoto et al. 2011). The
physical neurons sequentially executes the logical neurons. The advantage is
in smaller circuit size, but the execution time is longer. The Simulink based
approach for self-organizing features map with on-chip learning implementa-
tion was developed (Tisan, Cirstea 2012). Two DSP slices are hardwired to
unique neuron, so the maximal network size is determined by available FPGA
resources.

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 29

All the mentioned ANN implementation approaches reduce the design
time, because network structure is described in a high-level language. But it is
still unknown, whether the network has an optimal composition in the physical
circuit. This issue is considered in next subsection.

1.2.6. Direct (Low Level) Approach

Towards the direct ANN implementation in FPGA at the RTL level the care
must be taken firstly about limited arithmetic resources. Therefore, instead of
implementing a complete network it is advisable to implement only the single
largest layer. Afterwards, combine the entire ANN using the layer multiplex-
ing and some control logic (Himavathi et al. 2007). Instead of dedicating a
multiplication operator for each synapse, a DSP slice configured to MAC can
process all the inputs of neuron in serial (Savich et al. 2007). The use of FPGA
partial reconfigurable areas reduce resource usage by dynamically inserting
and removing neuron blocks on the network and this way configure MLP with
different topologies (Alberto de Albuquerque Silva et al. 2015).

If multiplication operation has to be implemented in DSP48ET1 slices on
Xilinx FPGA, then the maximum 25x 18 b width input product can be achieved
utilising single DSP slice Xilinx (2014a). The higher precision requirements
can be satisfied in two ways: by time-multiplexing of a single DSP slice (how-
ever that will increase a total latency of the system) or by the use of two DSP
slices (however that will consume DSP slices very fast).

One of the most important issue in the hardware-based ANN is the im-
plementation of nonlinear activation functions such as sigmoid (Nambiar et
al. 2014), logarithmic sigmoid (Vaitkus et al. 2014) or hyperbolic tangent (Ba-
houra 2014). Such functions have easily computed derivative, which is im-
portant for training process, because that decreases the computational load.
However, the precise implementation of the nonlinearity in FPGA gives cause
for concern. The reasonable solutions while solving this issue can be: com-
binational (Tommiska 2003; Zamanlooy, Mirhassani 2014), piecewise linear
(PWL) (Armato et al. 2011; Ferreira et al. 2007) or quadratic (PWQ) approx-
imations (del Campo et al. 2013; Nambiar et al. 2014), look-up tables (LUT)
synthesized in a logic (Gomperts et al. 2011; Lotri¢, Buli¢ 2012) or stored
in on-chip memory (Bahoura 2014). The straightforward implementation of
nonlinear function in hardware is not a correct approach, because both expo-
nentiation and division are logic and arithmetic resource hungry operations
(Gomperts et al. 2011; Tommiska 2003). The CORDIC algorithm introduces
latency and has limited input domain (Armato ef al. 2011).

Efficient FPGA implementation of activation function is a multi-criteria
task. The balancing of the accuracy, resources and processing speed must be

30 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

considered (Armato et al. 2011). High precision requires more resource. Signal
routing through high amount of logic is a bottleneck to achieve higher clock
frequency for the synthesized design, due to the growing delay in a critical path
of not compact hardware. Moreover, resource reduction makes circuit faster,
but also influences inaccuracy in approximated activation function.

When only few bits are used as the input of activation function, then it
makes sense to use combinational approximation based on direct bit level map-
ping, that doesn’t requires any arithmetic operators. The bit level mapping
method was proposed in (Tommiska 2003). It is shown that with 6 b precision
the maximal absolute error of the activation function is less than 1 %.

The polynomial approximation methods are based on the function input
range division into equal parts, where each function subinterval is approxi-
mated by line or curve (Armato et al. 2011). The PWL approximation of hy-
perbolic tangent with 256 linear sections provides a maximum error of 0.002 %
using 32 b arithmetic (Ferreira ef al. 2007). The controlled accuracy second or-
der approximation of sigmoid function was implemented on single DSP slice
with maximum allowable 1 % error (del Campo et al. 2013). The amount of
additional logic resources changes depending on the required word-length and
error. The PWQ approximation can be implemented by reusing already uti-
lized multiplier and adder units in neuron block proposed in (Nambiar ef al.
2014). The main disadvantage of polynomial approximation technique is the
increased latency due to the growing number of multiplication operations for
the higher-order polynomial. The maximum allowable 2 % error with 9 b input
is achieved using hybrid PWL and LUT methods in (Meher 2010) implement-
ing hyperbolic tangent function in hardware.

The LUT-based approach works much faster than polynomial approxima-
tion, since LUT consumes memory. Small LUT is usually implemented in
distributed memory, which does not require delay units, but has a limited size
(Bahoura 2014). Newest FPGA chips have at least 0.5 MB of on-chip block
RAM (BRAM) with one clock cycle latency to access stored data (Xilinx
2013c). Therefore, large LUT is generally stored in BRAM. The accuracy of
approximated hyperbolic tangent under various precision input signal and LUT
size was investigated in (Gomperts et al. 2011). Depending on the application
and required accuracy for the activation function, different sizes LUTs from
28 samples (Lotri¢, Buli¢ 2012) to 215 samples (Bahoura 2014) are used.

The description in the literature of limits for accuracy of activation func-
tion is fragmented and it lacks commonly acceptable values. The average €ayy
and maximum €, error values usually depend on the precision requirements
for the application and in many cases maximum error 0.4 % (Sledevic, Nava-
kauskas 2016), 1.5 % (Armato et al. 2011) or even 2 % (Meher 2010; Zaman-
looy, Mirhassani 2014) is tolerable.

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 31

The more common way to implementing the nonlinear function in current
FPGA-based neural network is to have a LUT. Using nowadays FPGA there
is not much concern about random access memory, therefore LUT stored in
BRAM is advantageous and will be used in our implementation.

1.2.7. Artificial Neural Network Chips

The neurochip always contains a weight xinput multiplication and their sum-
mation blocks. The other blocks for neuron state, activation function, weighs
loading controllers can be on or off chip. There are several categories of dedi-
cated chip:

e Bit-like — first neurochips constructed from cheap building blocks (sin-
gle neurons) with off-chip learning possibility and from few to dozens
of neurons and synapses on single chip (Mauduit et al. 1992; MD1220
Neuro Bit Slice; NLX-420 Datasheet).

e Single instruction multiple data (SIMD) neurochip run the same in-
struction simultaneously on multiple processing elements (PE) with
different data for each PE. The number of PEs in single chip varies
from 16 to 64 (Hammerstrom 1990; Kim et al. 2005; Means, Lisenbee
1991).

o In the systolic array each PE process instructions synchronously with
other PEs and the result from first layer is passed to each next layer
in the pipelined manner. The array structure is well matched to ANN
having potentially high utilization ratio of the processing unit because
the multiplier in each synapse has maximal load (Amin et al. 1999;
Chung et al. 1992; MA16 Technical Report). The main disadvantages
of the systolic PE stucture are: the complex array interfacing and syn-
chronous weight update control.

Different ANN design evaluation in a short time, reasonable cost and re-
duced hardware development cycle bring FPGA to effective programmable re-
sources for ANN implementation. Partial and online reconfiguration provide
software like flexibility and additional advantages. In contrast to VLSI the cir-
cuit density is still lower in the FPGA and it restricts the implementation of
large scale ANN with thousands of neurons.

A potential issue with implementing a ANN in FPGA is the limited amo-
unt of routing resources (Misra, Saha 2010). Unlike the logic resources (flip-
flops, look-up tables or memory blocks), routing resources are difficult to quan-
tify. The growing ANN hits the routing limits very quickly. Place and route
process takes longer to fit the ANN into FPGA and it creates a connections
through logic cells if available routing resources are insufficient. Therefore,

32 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

most of the researchers takes this approach and choose on hardware implemen-
tation of several neurons only for bigger virtual ANN creation using schedul-
ing and multiplexing in time. Having just one physical layer of neurons re-
duces hardware requirements (Nedjah e al. 2009). Such a technique requires
additional amount of memory to store connectivity weights and intermediate
results. The big issue is to write a scheduler, which keeps memory buses satu-
rated in order to achieve maximal throughput.

The direct register transfer level approach is more advantageous against
ANN implementation in high-level of abstraction. From programmers point of
view, one of the fastest and easiest way for efficient implementation of ANN
in FPGA is to use well known HDL and describe the net as a set of equa-
tions. Then put this set to the circuit design chain and finally only remains
to hope that synthesizer, mapper, placer-and-router will give optimal circuit.
The vendor standard FPGA design tools are general purpose, therefore have
a global resource, power or latency optimization goals. Consequently, we are
not guaranteed, that ANN optimally fits constrained hardware after the final
PAR stage. The direct low-level ANN implementation gives full control of
primitives and their routing, but requires additional knowledge about internal
structure of slices and routing resources. In the design chain each additional
circuit conversion step brings uncertainty to final structure. The closer the
ANN description is to FPGA primitive building block, the more efficient net-
work deploying can be achieved.

The main FPGA vendors provide design software suite with special tools —
editors for already placed and routed designs (Altera 2013; Xilinx 2013a).
These tools as a rule are dedicated for timing and routing analysis. The man-
ual optimization of already routed circuit is a bad practice, since the timing
requirement is still not guaranteed and rather become worse (Clayton 2008).

1.2.8. Efficiency Criteria of Neural Network Hardware

The ANN are generally described in terms of topology, learning algorithm, ac-
tivation function, number of processing elements, layers, the type and number
of inputs/outputs. The ANN implemented in FPGA are additionally specified
by data representation, precision, weight storage, synaptic connection (hard-
wired or programmable), and on-chip learning possibility. Considering the
mentioned parameters many ANN performance ratings are proposed and three
of them are commonly used (Misra, Saha 2010):

o The processing speed measured in connections per second. It is a rate
of multiplication, addition and activation function computation and
shows how well the chosen network fits the hardware architecture.

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 33

o The learning speed measured in connection updates per second. It in-
dicates the weights updating rate and measures the amount of samples
to learn.

e The average energy in watt per synapse needed to compute and update
the synapse.

Despite above mentioned main performance measurement rates, more hard-
ware specific criteria exist:

e Reconfigurability number defined as the size of the set of all imple-
mentable but different net topologies.

e Effective connection primitives per second provides improved measure
of processing speed, which takes into account input and weight accu-
racy in bits (van Keulen et al. 1994).

e The algorithmic efficiency is measured as an impact of the hardware
constraints on the convergence of learning error in various ANN struc-
tures implemented in neurochip (Cornu, Ienne 1994).

o Nonlinear functions implemented in a hardware consumes time and
area resources. The overhead of the activation function (AF) suggests
to use LUTs (Hammerstrom 1990; Noory, Groza 2003) or piecewise
linear functions for the approximation (Amin ef al. 1997). An exper-
imental study on the precision requirements denotes that 16b is suf-
ficient for the encoding of AF (Holt, Hwang 1993). The AF interpo-
lation by Taylor series allows to decrease the number of LUT saving
relatively high accuracy (Beiu 1998).

e The synaptic storage density plays significant role especially in large
scale ANN, when trade-off must be achieved between memory size
and power consumption. The type of memory. The distributed RAM
provides high density, but consumes more power. On the other hand
static RAM consumes less power with 4 times worse memory den-
sity (Misra, Saha 2010).

e The Quality of Results (QoR) is the most often meaning of the maxi-
mum clock frequency, at which a given design must operate in a spe-
cific FPGA. QoR is an indicator of critical path performance, which is
highly related with the timing constraints, coding style and PAR tool.

The mentioned criteria are usually valuated independently on one another.
However, e.g., the acceleration of synaptic processing or learning speed through
parallelization of ANN structure yields the growth of FPGA resource utiliza-
tion. Therefore, optimization by one individual objective makes any other indi-
vidual worse. The lack of multi-objective analysis of ANN implementation in
FPGA allows to lead out new criteria taking into account conflicting require-
ments.

34 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

1.3. Implementation of Speech Recognition in
Field Programmable Gate Array

Nowadays people spend more and more time interacting with many electronic
devices installed at their homes, working places, transportation vehicles, other
public places. Therefore, human machine communication is a hot research
topic. Speech is a natural and one of the easiest means for humans to use for
communication and information exchange. Reliable and fast device control
by speech can strongly facilitate everyday life of people. Therefore, a lot of
research efforts are directed towards improvement of the speech recognition
accuracy and the recognition speed.

Despite of recent software-based Lithuanian speech recognition (Lileikyté,
Telksnys 2011) and synthesis (Pyz et al. 2012) implementations on personal
computers and servers there is an unaddressed need of embedded systems for
mobile and stand-alone devices, interactive voice controlled systems, disabled
person equipment, etc. Embedded systems bring in their specific requirements
for speech recognizers: the limited speed of processing, the limited size of me-
mory, the low power consumption. The recognition of large vocabulary and
continuous speech requires complicated algorithms with huge amounts of cal-
culations, large quantities of memory (Choi et al. 2010; Veitch et al. 2010).
This can result in enlarged power consumption, longer recognition time and
higher recognition error rate.

Many automatic speech recognition systems for the languages of minor
use are now developed. Presented in (MartinCi¢-Ipsi¢ et al. 2011) Croatian
speech recognizer uses acoustic models based on context-dependent triphone
hidden Markov models (HMM) and phonetic rules. Experimentally it is shown
that the system can be used for speech recognition with word error rate below
5 %. In (Sojka et al. 2004) a speaker independent speech recognition system
for Estonian language is described. Clustered triphones with Gaussian mix-
ture components are used there for acoustic modelling. The error rate of the
system is improved to 27.3 %. In (Hirsimaki, Kurimo 2004) Finnish speech
recognition based on sub-word decoders is presented. The pursued task was to
find the most probable HMM state sequence. The word error rate there is de-
creased up to 32 % for very large vocabulary. For Czech speech recognition in
(Prochazka et al. 2011) investigation on usability of publicly available n-gram
corpora to create Czech language models is carried out. The experiments on
large test data illustrate the impact of Czech as highly inflective language on
the perplexity. The best achieved average error rate is 20 %. The multi-lingual
Italian — Lithuanian small vocabulary speech recognition is implemented using
multilingual transcription in (Maskelitinas, Esposito 2012). The average recog-

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 35

nition accuracy of ten spoken numbers for the Lithuanian language is 93 % and
for the Italian — 98 %. It is important to acknowledge that all above analysed
speech recognizers are implemented in software.

In some cases the robustness and correctness of recognition, together with
the low power consumption are preferred against the size of the vocabulary
(Zhang et al. 2011). Then the natural choice is an isolated word recognition
approach leading to lower hardware requirements: much smaller vocabulary
(Iess memory), simpler classification (lower speed and power consumption),
potentially higher recognition rate (correctness), and at the same time an ability
to use advanced noise cancellation (robustness) (Stasionis, Serackis 2011).

The FPGA platform lets to employ the parallelization and pipelining tech-
nique in speech recognition. It is a flexible architecture to develop systems in
comparison to implementations on the ASIC devices. The embedded processor-
based solutions on the market have an average 80 % recognition rate and lim-
ited size of the dictionary: 32 (EasyVR (Chakravarty 2014)) or 75 (NLP (Sen-
sory 2012)) commands. The main issue in such recognizer is to ensure real-
time requirements for the speech recognition (especially at the features com-
parison stage). Contrary for this approach the implemented features extraction
and matching processes can run independently in FPGA (Choi et al. 2010),
(Veitch et al. 2010), (Zhang et al. 2011), (Pan et al. 2011) or GPU (Sart et al.
2010), (Zhang et al. 2012).

First soft-core implementations on Virtex-4 family FPGA of Lithuanian
isolated word recognizer were done by Electronic Intelligent System group in
VGTU Electronic Faculty (Arminas et al. 2010). The use of soft-core proces-
sor MicroBlaze together with intellectual property cores for signal processing
enables to accelerate word recognition process by 1.55 times (Ivanovas 2012;
Tamulevicius et al. 2010), however it was still not enough for a real-time oper-
ation.

The common speech recognition algorithm consists of several steps, as
shown in Fig. 1.17. The speech signal can be loaded from memory or captured
from microphone in a real-time. The preprocessing step involves the noise re-
duction and signal partitioning into equal overlapped 10-30 ms frames. For
each frame the features vector is formed employing predictive or cepstral anal-
ysis. The extracted features are compared with the features stored in dictionary.
If both vectors of features match each other a concrete command related with
recognized word is executed.

Speech recognition process is quite elaborative, thus it requires a lot of
arithmetic, logic and memory access operations. When a speech recognition
algorithm primarily implemented on a computer is moved to the embedded
system, its execution speed drastically decreases. In this case, the only way
to maintain the speed is to use the parallelisation and pipelining techniques.

36 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

(1. Start)

2. Speech reading

|95

-

(-

‘ 3. Preprocessing ‘

(-

‘ 4. Features extraction }i>

5. Dictionary
Kﬁ formation

/=

‘ 6. Word recognition

7

‘ 7. Command execution ‘
C 8. End)

Fig. 1.17. Isolated word recognition algorithm

G

Therefore, during the last decade researchers are increasingly implementing
speech recognizers on FPGA or graphics processing units (Amudha et al. 2008;
Sart et al. 2010; Veitch et al. 2011; Zhang et al. 2012). FPGA provides an op-
portunity of parallel signal processing and addressing at relatively low frequen-
cies compared with a central processing unit. If speech recognition application
works on a battery powered device, a one logic array in case of size and power
consumption is superior to the multi-core processor.

The main issues, which prevent to design a reliable and universal method
for speech recognition, are the environmental impacts, poor pronunciation,
speech variability, limited vocabulary size, and a similar phonetic transcription
of the words (Tamulevicius 2008a). These issues influence the correctness of
features extraction in a speech. Therefore, an evaluation of algorithms is im-
portant especially for the real-time recognizers. The experimental investigation
of factors influencing recognition accuracy shows that setting the same training
and testing environments yields improved accuracy (Lileikyté, Telksnys 2011;
Ceidaite, Telksnys 2010). Authors claim that features based on cepstrum coef-
ficients are very sensitive to environment. However the autoregression based
features, e.g., linear predictive coefficients (LPC) and linear predictive cep-
stral coefficients (LPCC), have an average sensitivity. The quality estimation
of the speech features shows that linear frequency cepstral coefficients (LFCC),
Mel-scale frequency cepstral coefficients (MFCC) are suitable for Lithuanian
phonemes recognition. Experiments on small vocabulary Lithuanian speech
recognition confirmed that accuracy of 93 % is acceptable for application with
multilingual transcriptions engines (Maskelitinas, Esposito 2012).

In a last few years the MFCC and LPCC features become a reasonable
leaders in the recognition systems. A 98.5 % rate was achieved recognizing

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 37

isolated words in a small vocabulary using MFCC (Darabkh et al. 2012). The
MFCC and LPCC features are suitable for classification of speech disfluen-
cies with 92.55 % and 94.51 % rates accordingly (Ai et al. 2012). A com-
parative study of LFCC vs MFCC was performed in (Zhou et al. 2011). Re-
sults show that LFCC consistently outperforms MFCC. The benefits are visi-
ble especially on female speech recognition. There are known hardware-based
MEFCC and LPCC implementations, which allows to accelerate features ex-
traction process (Staworko, Rawski 2010; Vu et al. 2010). The combination
of MFCC and LPCC are also appropriate for speaker identification with max-
imum 97.12 % (Yujin et al. 2010). The LPCC always outperforms the LPC
features over normal and noisy conditions (Fook et al. 2012). The highest
91.4 % recognition rate was achieved using LPC and artificial neural network
in a small vocabulary system (Wijoyo 2011). The autoregression based al-
gorithm (e.g., LPC) are more suitable for software implementation rather than
hardware due to precision requirements (Xu et al. 2005). Therefore, a soft-core
processor is popular for recursion implementation (Atri et al. 2012).

For features extraction in speech signal in most above mentioned recogniz-
ers the spectral, MFCC (Martin¢ié-IpSi€ et al. 2011), LFCC (Tamulevicius et
al. 2010), LPC, LPCC, perceptual linear prediction (Lileikyté, Telksnys 2011)
analysis are applied. The brief overview of these methods is given further.

1.3.1. Linear Frequency Cepstral Analysis

A real-time calculation of cepstrum coefficients can be performed (Tamule-
vi€ius et al. 2010). In most cases, the speech signal is divided in short 10—
30 ms half overlapped frames. Then, the LFCC feature vector is estimated for
each single frame by:

cur(n) = real(]—"(logz‘]:(s(n)) D) (1.11)

here ¢x(n) is the cepstrum vector; s(n) is the signal frame; F is the fast
Fourier transform operator. The feature vector is composed of several first
cepstrum coefficients. The LFCC are estimated according to signal flow-graph
in Fig. 1.18.

A signal frame Feature vector

v 4
| F() of abs() o log() o F() P real(y) |

Fig. 1.18. The signal flow-graph of linear frequency cepstral coefficients

extraction

38 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

The F operator is provided by FPGA manufacturer as an optimized IP
core for certain hardware architecture (Altera 2014; Xilinx 2015a). The log;,
operator can be implemented using LUT, multiplexers and single sum opera-
tion (Wang et al. 2002). The accuracy of such log;, approximation depends
linearly on LUT size. However, in FPGA is more convenient to implement the
log, function as a search of index for first left bit in a binary number. The abs
and real operators are trivial and easy implementable. Therefore, generally the
LFCC features are appropriate for FPGA implementation and speech analysis
in real-time.

1.3.2. Mel-Frequency Cepstral Analysis

The mel-frequency cepstral coefficients extraction process is accomplished in
five steps in Fig. 1.19.

A signal frame Feature vector

v
‘ F(s) HPOWGI"(-)H Filterbank H log(.) H C(.) ‘

Fig. 1.19. The signal flow-graph of mel-frequency cepstral coefficients

extraction
The MFCC are defined by:
Ny .
—0.5
evri(n) = Z log Sy (n) - cos M, Viel0, Ny —1]; (1.12a)
m=1 NM
Np—1
2 .
Sm(n) = Y |F(s(n)[Km(j), ¥m e L, Ny, (1.12b)
§=0

here s(n) is a signal frame at time instant n; K,,(j) is the transfer function
of the given mth filter bank; j is the frequency bin index; NV is the number
of discrete frequencies; Sy, (n) is the mel-filtered energy spectrum (at time
instant n) filtered by N,, mel-scaled triangular filters; c.r;(n) is the ith mel-
scale frequency cepstral coefficient, when discrete cosine transform C(.) is
used.

The possible implementation of fast Fourier transform F and log operator
in field programmable gate array have been reviewed in previous subsection.
The sum of the squared output of the F block is taken as energy spectrum uti-
lizing two multipliers for both real and imaginary part and one adder (Bahoura,
Ezzaidi 2013; Sarkar, Saha 2010). The mapping of the linear-scale frequency

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 39

to the mel-scale frequency in a filterbank block is realized according to loga-
rithmic dependence:

B /
mel(f) = 1127 ln<1 + ﬁ), (113)

here f is linear frequency; mel(f) is a mel-scale frequency.

Instead of implementing the (1.13) directly in a hardware, the transfer func-
tion coefficients K, () usually are stored in read-only memory and the mel-
filtered energy spectrum can by implemented on single multiply-accumulate
unit (Bahoura, Ezzaidi 2013; Schmadecke, Blume 2013; Vu et al. 2010). The
filter banks can be implemented with multiplexer, shifts and additions (Sta-
worko, Rawski 2010). Thus the size of multiplexers and the number of com-
binational circuits for bit shifts and additions increases proportionally to the
number of filter coefficients. The C(.) calculation can be implemented on sin-
gle MAC, where the values of the cos function are precomputed and stored in
LUT (Sarkar, Saha 2010; Vu et al. 2010).

The Simulink or LabView tool can be used to fast calculation of MFECC
but such method is not always efficient due to low performance and less than
100 MHz of maximum operating frequency (Bahoura, Ezzaidi 2013; Farjo et
al. 2012). At least two times higher operating frequency of MFCC circuit can
be achieved using hardware description language (Veitch et al. 2010). If em-
bedded processor is fast enough to calculate speech features in real-time then
it can be used in co-design with FPGA. It becomes popular and one of the
fastest way to develop MFCC features extraction in FPGA with soft-core pro-
cessors (Cheng et al. 2011; Manikandan, Venkataramani 2011; Pan, Li 2012;
Zhang et al. 2011).

1.3.3. Linear Predictive and Linear Predictive Cepstral
Analysis

Linear predictive analysis is based on simplified vocal tract model, where the
voice production can be modelled by process of passing excitation signals
through autoregressive filter. The coefficients of this filter describes the com-
pressed voice and they are obtained by using Levinson-Durbin autoregression.
The LPC features by itself are sensitive to quantization errors. Therefore, the
LPC features should be converted to less quantization sensitive linear predic-
tive cepstral coefficients (LPCC), which are more suitable for implementation
in FPGA with fixed-point precision without (Wu et al. 2006) or with hardware
accelerators (Liu, Bergmann 2010). These features are extracted in three steps,
as is shown in Fig. 1.20.

40 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

A signal frame LPC vector LPCC vector

I t t

‘ Autocorrelation H Autoregression H Conversion ‘

Fig. 1.20. The signal flow-graph of linear predictive and linear predictive
cepstral coefficients extraction

The autocorrelation coefficients r; are estimated by:

Nw—1
r; = Z s(n)s(n+1), Yiel0,M], (1.14)
n=0

here Ny, is the window length of speech signal s(n); M is the autocorrelation
length.

The systolic array is often used for autocorrelation implementation, be-
cause of suitable arrangement and interconnection of DSP cores in a hardware
Fig. 1.21 (Atri et al. 2012).

Signal — 21 -
v A
DSP 2! DSP z—---—» DSP
To T1 ™M

Fig. 1.21. The systolic array for the autocorrelation

The LPC and LPCC features are extracted using Levinsin-Durbin algo-
rithm (Tamulevicius 2008b):

eo =ro; ki =ri/e; a1 = ki; (1.15)
ei=(1—-k)ei_1, Vie[l,M]; (1.16)
i—1
ki = (ri — Zajri—j)ez’—la (1.17a)
j=1
a; = aj — kiai,j, (1.17b)
i1 .
Crpi = Q4 — Z(% Crpj Clz;j), Vi€ [l,M]andj € [1,4], (1.17¢)

J=1

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 41

here e is the temporal energy value; k is the reflection coefficient; M is the LP
analysis order; a and ¢, are the LPC and LPCC vectors.

Despite the advantage of parallelism in signal processing, the quantization
error accumulates during the autoregression and conversion stages adversely
affecting features accuracy (Xu et al. 2005). Therefore, the recursive part of
LPCC analysis is more often implemented on soft-core processor with floating-
point arithmetic rather than pure in a hardware.

1.3.4. Features Classification

The main difficulties in speech recognition arise from speech variability, in-
correct pronunciation, environmental impact, phonetic transcription similari-
ties, or dictionary size limits (Tamulevi&ius 2008b; Ceidaité, Telksnys 2010).
Therefore, many methods for the speech features classification are developed,
e.g., the dynamic time warping (DTW) (Hussain, Rashid 2012; Sart et al. 2010;
Tamulevicius et al. 2010; Zhang et al. 2012), hidden Markov models (Gavat et
al. 2008; Hirsimaki, Kurimo 2004; Prochazka et al. 2011), Gaussian mixture
models (Sojka et al. 2004) and artificial neural networks (Amudha et al. 2008).

For precise spoken word recognition with HMM it is preferred to use
floating-point numbers due to the specifics of Viterbi algorithm, which op-
erates on probabilities of acoustic models. Another issue is the learning of
new word. The phonetic transcription and the statistical model must be created
for each new word added to dictionary. It is time consuming process. As well
as adapting the ANN, that updates the weights and changes topology, when it
is trained for unknown word. Different from above mentioned classifiers, the
DTW do not requires any specific training algorithm, because it needs only to
store a feature vector of new word.

We are concentrated in the speaker dependent Lithuanian isolated word
recognition. Each spoken word can be presented as a finite set of features re-
stricted in a time. The time-limited signals are most appropriate to compare
with the DTW algorithm, which is suitable for FPGA due to straightforward
arithmetic on fixed-point numbers and pipelined signal processing (Sart et al.
2010; Zhang et al. 2012). The DTW is already more than four decades old
but still an effective method to match two templates varied in the time do-
main (Ding et al. 2008). The length of each template as well as the number
of templates stored in a dictionary influences the matching time. A speed-up
of the whole process can be achieved by duplication of DTW cores in single
FPGA (Hussain, Rashid 2012). Various basic and parallel DTW implementa-
tions are proposed. The experimental studies in last mentioned references con-
firm that using such approach one DTW can be calculated in approximately
0.57 ms at 100 MHz clock with 64 x64 size of the error matrix.

42 1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION...

Another way of DTW acceleration is the normalization: reduction of the
length of all time series from their original length to the predefined length (Sart
et al. 2010). This method becomes efficient when comparable data series are
very long (the duration of comparison process is proportional to the squared
length of the time series). In a recent paper the normalization block is em-
ployed to normalize the length of input series to exactly 128 samples. The
authors claim that normalization of raw data does not affect the accuracy of
DTW. The proposed warper uses an error matrix with the 128 x128 size. The
DTW is based on a systolic array that is primarily described in C language and
converted to VHDL via ROCCC compiler (Buyukkurt, Najjar 2008). The sim-
ilarity search algorithm works on 250 MHz clock and requires 128 clock cycles
to calculate the DTW distance. The time series with the reduced precision of
8 b integers are used intentionally with the aim to increase the performance.

Even if features extraction algorithm works correct, there is still important
to chose proper classification method. The DTW method is an appropriate way
to find similarities in two vectors of features. FPGA based pipelined implemen-
tation of the classification allows to accelerate speech recognition process (Pan,
Li 2012; Zhang et al. 2011). A comparative study of DTW implementations on
different platforms shows that FPGA-based DTW outperforms the GPU and
CPU-based implementations more than 44 and 2100 times accordingly (Sart
et al. 2010; Zhang et al. 2012). These arguments inspires to implement DTW
intellectual property core for a real-time isolated word recognition.

1.4. Conclusions of the 1st Chapter and
Formulation of the Thesis Objectives

On the basis of the analytical review it is possible to assert that:

1. The higher circuit implementation level, the less guarantee that logic
circuit optimally fits to FPGA resources. However, from the designer
point of view the system can be described faster with HLS tool.

2. The lower circuit implementation level, the more time is requited to
evaluate all possible paths and find an optimal one. Lower level is
designer unfriendly, but gives possibility to implement the circuit on
an optimal criteria.

3. The FPGA contains optimized DSP, memory and logic blocks suitable
for efficient lattice-ladder multilayer perceptron (LLMLP) implemen-
tation.

4. The LLMLP neural network was never before implemented on FPGA.
A large number of required arithmetic resources suggests to reuse DSP
slices for network implementation.

1. REVIEW OF ELECTRONIC SYSTEMS IMPLEMENTATION... 43

5. The general purpose high level synthesis tools generates design with
poor performance and are suitable only for fast concept proof, however
not for long-term functioning solution. Therefore, specialized hard-
ware description language compiler must be written for LLMLP imple-
mentation with respect to hardware limitations and LLMLP specifics.

6. The trade-off between artificial neural network (ANN) accuracy, FPGA
utilization rate and processing speed must be maintained, while imple-
menting parallel ANN with training structures.

7. The speech signal analysis methods requires a lot of arithmetic op-
erations. Some of them have recursive processes, which are not ap-
propriate for implementation in a hardware. Therefore, the soft-core
processors must be used.

8. Using few dynamic time warping cores on single FPGA or a systolic
FPGA structure it is possible to achieve fast features comparison on a
relatively low system clock through increased resource utilization and
pipelined design.

The following tasks must be solved:

1. The creation of the technique for efficient LLMLP implementation on
FPGA based on specialized quality criteria and specifics of LLMLP.

2. Develop the optimized intellectual property (IP) cores used in Lithua-
nian speech recognizer.

3. Experimentally verify the efficiency of IP cores.

4. Investigate isolated word recognition accuracy and speed.

Efficient Implementation of
Lattice-Ladder Multilayer
Perceptron

Pursuing the Task 2 of the Thesis the results of LLMLP efficient implementa-
tion criteria and technique original development are presented in this chapter.
In Section 2.1 LLMLP implementation quality and a set of criteria that deter-
mine it are discussed. Idea of Pareto frontier calculation for the implemen-
tation quality criteria is raised. A new LLMLP implementation technique is
introduced in Section 2.2. Here the specialized criteria for circuitry synthesis
is brought in together with a selected way to tailor the implementation tech-
nique to the intrinsic LLMLP structural features. Afterwards major stages of
the technique are elucidated. In Section 2.3 all the steps for a single neuron pro-
cessing element (NPE) optimization are in details presented. An emphasis on
subgraph matching, covering, merging and scheduling algorithms is done. As
aresult the NPE is optimized for optional pipeline stages and latency/resources
optimal training. In Section 2.4 optimization steps of neuron layers implemen-
tation are presented. Accuracy optimization as well as two equivalent imple-
mentation strategies, namely throughput optimization (Subsection 2.4.2) and
resource optimization (Subsection 2.4.3) are crafted by corresponding algo-
rithms.

The research results are published in author publications (Sledevi¢, Nava-
kauskas 2016, Sledevic¢, Navakauskas 2015, Sledevi¢, Navakauskas 2014). The
main results are announced in international: “Electronics” (Palanga, 2015),
AIEEE (Vilnius, 2014; Riga, 2015); and national “Science — Future of Lithua-
nia”(Vilnius, 2015, 2016) scientific conferences.

45

46 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

2.1. Implementation Quality

As was discussed in Chapter 1, there is not enough resources for implementa-
tion of large LLMLP in parallel manner even on modern FPGA. Therefore, the
strategy, that we propose to perform NPE, consists of two steps:
« implement a configurable NPE with maximal throughput maintaining
shortest possible processing latency 7ype and maximal clock frequency
f T of synthesized design;

« place and share the NPEs through whole LLMLP maintaining paral-
lelism of synapse, neuron or layer if resources allow.

The efficient implementation of LLMLP employing multiple optimized
NPE in FPGA is a multi-criteria task dependent on the optimization goal.
These criteria can split into hardware and network related groups of quality
criteria. The amount of used resources, accuracy, power consumption and
FPGA chip price are related to hardware quality criteria, which can be im-
proved selecting a correct programming tool or changing FPGA chip. The size
of LLMLP, the type of training and latency of the signal propagation from the
input layer to the output are all related to the group of network quality crite-
ria improved only by the modifications in LLMLP topology. The total quality
Q covers hardware and network related criteria and is equivalent to set of all
mentioned criteria:

9= {thm 9JAcer 9Res» dCcom» IPow> qPrice}’ (2.1)

here g, is a quality criteria of type ¢: “Thr” — throughput, “Acc” — accuracy,
“Res” —resource, “Com” — complexity, “Pow” — power, “Price” — price.

The performance of the NPE circuit depends on the clock frequency, which
is known only after final PAR step in the FPGA implementation chain. Usually
the maximum clock frequency f ' is highly related to the coding style. Register
insertion to the signal propagation path yields shorter delay of the signal in a
critical path and higher clock frequency. Therefore, the ratio f /7y Will be
used as a throughput criteria for the performance of NPE. The lower it is, the
less time is needed for signal processing using single NPE. The throughput cri-
teria gry,, shows the maximal sampling frequency for data during the LLMLP
weights updating in training mode. And in a forward filtering mode the gy,
shows the maximal sampling frequency of the signals on the input of LLMLP.
The gy, criteria covers the Quality of Results, processing and learning speed
criteria analysed in Section 1.2.8. The aim is to achieve lowest possible latency,
which will increase the highest possible frequency for data sampling. The gy,
depends on the f7 at which the synthesized LLMLP can be clocked and on the
latency Twpg Of signal processing by NPE:

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 47

e (2.2)

The accuracy criteria g, evaluates the precision of the LLMLP based on
fixed-point arithmetic, since FPGA works efficiently only on integer numbers.
The precision of fixed-point design must be compared with reference floating-
point design implemented on PC.

dace = ¥ (fixed-point design, floating-point design) . (2.3)

The workflow for investigation of a fixed-point design implementation is pro-
posed further in this chapter.

The resources criteria qg., evaluates the equivalent amount of arithmetic
Rpsp, logic Ry yr and memory Rggay resources:

Ores = ¥ (wissp Rose + WiT Ruor + WiRAM Rera) » (2.4)
with respective weights wsgéiff, wiie and wilhe dependent on FPGA serie.
These weights are calculated when the arithmetic, logic and memory resources
are expressed in LUT equivalent units. For 7th series Xilinx FPGA it is known
that a single DSP can be synthesized using 196 LUT, thus w]gS)P = 196. One
BRAM contains 18432 b of with dual port access and one LUT configured to
RAM can store 32 b in this manner w](;R) am = 976. The LUT weight takes into
account that only 0.7-0.8 part of LUT can be efficiently utilized in FPGA due
to limited routing resources. In addition, if all the LUTs are used as RAM, then
FPGA dependent 0.3-0.5 coefficient must be applied for wI(L)T considering that
only part of LUT can be configured as memory block.

The less resources is utilized, the more complex LLMLP can be implemented
on FPGA. Therefore, the resource criteria is an inversion of equivalent re-
sources:

ORes = 1/RELUT' (2.6)

The LLMLP complexity criteria qc,, depends on number of layers L,
neurons IV, synapse order M and an optimal training algorithm from a set J:

qumEW(LvNan(‘T)' (2-7)

The aim is to fit largest complexity LLMLP to FPGA with minimal resource R
utilization and minimal processing latency 7 optimizing by training type J:

48 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

1
dcom = ming (R(‘J'7 L, N, M)) ming (T(-T’LvN,M) .

(2.8)

The consumed power criteria qp,, depends on resource utilisation and
maximal clock frequency of the implemented design:

qpow = v (R7 fT) . (29)

The FPGA price criteria qp;.. depends on available resources on FPGA
and the chip family:

Iprice = ¥ (R, chip family) . (2.10)

Definitely all these criteria cannot be optimized simultaneously, because
of the conflicts between them. The improvement of the accuracy or through-
put criteria yields to the rising resource utilisation and as a result the selection
of higher price FPGA. The growing LLMLP complexity leads to the higher
power consumption. Therefore, we propose to derive the efficiency criteria
of LLMLP implementation on FPGA through perspective of user changeable
parameters. It is considered that the developer usually prefer to modify the
LLMLP structure, change the FPGA chip and set desired sampling frequency
depending on the application requirements. Therefore, from the developer
point of view to the LLMLP implementation we propose to distinguish two
strategies to design optimization for importance criteria:

o The desired sampling frequency of the signals, that are entered to the
LLMLP (throughput criteria).

o The specific FPGA chip or their resources partial utilisation (resources
criteria) for particular structure of LLMLP.

In the multi-criteria optimization problem, there does not exist a single
solution that simultaneously optimizes each criteria without making at least
one individual worse. In our case, the criteria are conflicting and there exists
more that one Pareto efficient solution. Evaluation of the criteria of LLMLP
through Pareto frontier will enable us to take optimal decisions in the presence
of trade-off between two conflicting throughput and resources objectives:

QPareto £ maX(thra qRes)' (2'11)

The result of optimization by throughput criteria is a maximal possible
sampling frequency checking the solution space through constrained resources
and different LLMLP configurations. Having a solution space of throughput
Athr = ¥ (qRes) it is possible to fast evaluate the LLMLP design for certain

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 49

FPGA. During the optimization by resource criteria, the LLMLP design is
optimized for minimal resource utilisation giving as an input arguments ¢y,
and LLMLP structure: qges = ¥ (qqy). Such approach enables us to select
the cost efficient FPGA chip in resources utilisation Pareto optimal surface for
certain qpy, criteria and net complexity. The throughput and resource optimal
algorithms for desired complexity LLMLP evaluation are elucidated in next
subsections.

The power and price criteria are considered to be second importance, since
the close relation with resources requirement. The suitability of certain train-
ing circuit and accuracy must be investigated before the optimization by first
importance criteria. The efficient training circuit depends only on the synapse
order, therefore the predefined optimal training type can be hardwired to the de-
sired LLMLP complexity criteria qc,,,- The required precision for the signals
in fixed-point design will be estimated in comparison with the same floating-
point design. The determined optimal width of the signals will be used in all
the prospective LLMLP implementations.

The main difference between proposed criteria for LLMLP implementa-
tion and analogous purpose criteria for efficient ANN implementation is that
proposed criteria takes into account conflicting requirements as throughput and
resources. While majority of analogous purpose criteria uses single-objective
optimization by criteria listed in Section 1.2 (Misra, Saha 2010).

2.2. Introduction to Implementation Technique

A direct implementation of LLN with its cost-effective t3 type training circuit
in a hardware will require: 9M + 1 multiplications for the forward LLF and its
regressor calculations. 4M + 2 multiplications are required for weight updates
in (1.5) and (1.6), and 2 multiplications for § calculation in (1.7). Thus, a hard-
ware implementation of the LLN with NV inputs and M th order synapses with
its training algorithm in total requires N (13M + 3) + 2 multiplication opera-
tions. Having N = 5 inputs and M = 3 order synapses LLN implementation
will utilize, e.g., 96 % of DSP slices available in Artix-7 XC7A100T FPGA.
Therefore, willing to increase the size of LLN the DSP slice resources must
be shared. Moreover, the LLF with the regressor lattice cannot be pipelined to
receive and process data simultaneously with filter coefficients update at each
rising edge of clock, because the value of updated weight for next input sam-
ple is dependent on the present value of neuron output. Therefore, the FPGA
resources must be shared in time over several operations. Such approach elim-
inates long idle period for single DSP slice and tends to compact all necessary
operations for LLMLP also optimizing the total latency.

50 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

All recent FPGA have dedicated DSP slices for fast arithmetic implemen-
tation. Such a DSP slice can be shared to process data from different sources
and also it can be dynamically reconfigured to implement different processing
orders. The DSP block is purposely designed for pipelined data processing
with maximum performance. This is achieved inserting flip-flops and mini-
mizing critical path in a circuit, as shown in Fig. 1.2. Sequentially connected
flip-flops introduce latency of 4 clock cycles in the data flow processing in-
dependently on the selected instantaneous DSP configuration and subgraph
constellation (Xilinx 2014a).

The flexible structure of DSP slice (Fig. 1.2) can be considered as a con-
figurable directed subgraph, where each vertex express certain arithmetic oper-
ator. The source vertices are interconnected with destination vertices by edges.
Each edge has a delay element consisting of D-type flip-flops, that fragments a
signal-flow path of the subgraph in smallest possible pieces (operators isolated
by flip-flops) and enables the shortest propagation time of the signal between
adjacent vertices.

The LLMLP with its training circuit contains addition, subtraction and
multiplication operations. All these operations are supported by DSP. There-
fore, the LLMLP can be also successfully represented as a data flow graph
(DFG), which is composed form a set of subgraphs that are supported by the
DSP block. The aim is to partition whole LLMLP graph into subgraphs and
then cover the graph with largest detected subgraphs minimizing resource uti-
lization. The DSP slice subgraph has maximum four input terminal vertices: A,
B, C, D and a single output terminal vertex P in Fig. 1.2. The source vertex can
be connected with a destination vertex to create a subgraph only if the source
vertex has no branches to other vertices except the unique branch to destina-
tion vertex. Such a constraint follows from physical DSP slice structure. It
is reasonable to cover largest subgraphs first, as such approach decreases total
number of subgraphs resulting in minimal latency and reduces FPGA resource
usage, since the internal signals in DSP do not need to be stored in registers
outside DSP.

In general, each LLMLP can be described as a set (2.12) of equations. The
LLMLP implementation on FPGA is based on the translation of LLMLP equa-
tions from human-readable high-level of abstraction to the low level machine
code. Such tool, which translates the high-level language into a lower-level
code, is called a compiler. In our case the compiler takes a file with LLMLP
equations and transforms it to HDL file understandable for machine in register-
transfer level. The HDL file later is used in FPGA vendor tool for implemen-
tation of bit file for FPGA programming.

The stages of the technique for efficient LLMLP implementation on FPGA
is shown in Fig. 2.1. It is based on the conversion of LLMLP equation to the

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 51

M,N,L M, T
v
’ Equation generation LLMLP
v training

’ Directed data flow graph generation ‘

(’ Subgraph matching ‘

v
t]gr%g/llal{igs Graph coverinf and merging ‘
’ Critical path search ‘ }

v

’ Resource-constrained scheduling ‘

v

’ NPE optimization for optional pipeline stage ‘

v

’ Accuracy (., optimization ‘

Neuron optimization
A

’ Pareto efficient gy, qges Optimization ‘

v
’ HDL generation ‘

v
NPE instructions and HDL files

Layer optimization

Fig. 2.1. The proposed technique for lattice-ladder multilayer perceptron
implementation in field programmable gate array

DFG and splitting it to the DSP supportable subgraphs and further schedul-
ing of DSP operations. At the first stage the LLMLP is expressed as set of
equations:

Seq = {€qy,€dy, - - -, €qx }- (2.12)

Each equation must have two operands and single operator (e.g., eq; = f1 +
b1). Such only two operand restriction comes from physical property for im-
plementation of arithmetic operation in FPGA keeping shortest possible delay
in critical path for triggered circuits. The generation of these equations is au-
tomated for the LLMLP with various filter order M, number of neurons N,
layers L and training types J. The list of arbitrary operators necessary to de-
scribe LLMLP is summarized in Table 2.1.

Input equations for first order direct and regressor (type t3) lattices are
shown in Example 1. The equations describes a flow graph presented in Fig. 2.4.

52 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

Table 2.1. The list of operators required for lattice-ladder multilayer percep-
tron implementation

Operator | Operator meaning

+ Addition of two signals
— Subtraction of two signals
* Multiplication of two signals

Signal delay for single clock cycle

Read the value of activation function from LUT
Read the value of trigonometric function from LUT

¢ 3k

|
Example 2.1 (Equations for first order direct and regressor lattices)

1) * flcl x cl1 ; 12) + AD1 Svb0O blvl ;

2) * zb0sl zb0 sl ; 13) + N1 blvl LCsl ;

3) * flsl x sl ; 14) - CcB1 flvl Bl ;

4) * zb0cl zb0O cl ; 15) * LCsl LCl sl ;

5) - b0 flcl zbOsl ; 16) - LCsAD1 AD1 LCsl ;
6) + bl flsl zbOcl ; 17) * LCsADsl LCsADl sl ;
7) * blvl bl vl ; 18) + B1 LCsADsl L1 ;

8) * b0Ov0 b0 vO ; 19) + DO N1 bOvO ;

9) + Svb0 blvl bOv0 ; 20) * Nablal CB1l ncosl ;
10) * flvl x vl ; 21) = zb0 b0 bO ;

11) + LCl1 L1 fivl ; 22) = L1 DO DO ;

As it follows from analytical review of ANN implementation on FPGA the
LLMLP was never before implemented on FPGA. Proposed method shares the
arithmetic, memory and logic resources of FPGA in order to minimize resource
usage. The main differences between proposed and known methods for ANN
implementations on FPGA is that they do not take advantage of dynamic re-
configurability of DSP and dedicate single DSP for synapse of neuron (Misra,
Saha 2010). Even if the reconfigurability feature of DSP is employed, but not
shared, it restricts the size of synthesized circuit (Ronak, Fahmy 2014) and
therefore the desired high complexity of LLMLP is limited.

2.3. Neuron Processing Element Optimization

2.3.1. The Data Flow Graphs Generation

At the DFG generation stage the operators in the set Seq are converted to a set of
vertices V(9) connected by set of edges £(9) in a directed graph § = (V, &)
together with initial and terminal edges to vertex (& — V) maps assigning

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 53

to every edge E an initial vertex init(F) and a terminal vertex ter(E). The
vertex V' € V represents an operator or an input port. Each operational vertex
V' has two inputs and attributes specifying its operator type. An edge E =
(init(E), ter(E), P) € & indicates a data transfer from init(E) to input port
P of ter(E).

The DFG of LLMLP is stored as an adjacency list, since list is a compact
and memory efficient way for formal description of DFG instead of sparse
adjacency or incidence matrices. Each row in adjacency list is related with
certain destination vertex and store a set of source vertices.

2.3.2. Subgraph Matching

On this step all the DSP supportable subgraphs Gpsp described by (1.1) and il-
lustrated in Fig. 2.2 must be found in a graph §. We consider that the mark +/—

denotes two different operators, then 15 types of subgraphs 91(;%13 CSpsp |z €

[1,15] must be enumerated. The first subgraph 9](;3%}, in Fig. 2.2 has indices
x € [1,4], the 2nd—4th subgraphs have = € [5,12] and the 5th—6th subgraphs
have z € [13,15].

Through subgraphs G, search in a graph G = (V,€),all 69 are matched
with a subgraphs §' = (V', &), where V/ C Vand & C €. The 9,(33“;),, is detected
in G if there exist one-to-one correspondence between vertices of subgraphs

@ _ (V]()?P, 81()”;)1)) and §' = (V', &), when 6@ contains all the edges E c &

with initial vertex init(F) € V]():CS)P and terminal vertex ter(F) € V]():CS)P, then two

subgraphs 9[()2, and G’ are equal 9[()2)? = G’ and isomorphic. During the sub-
graph matching the DSP constraints must be satisfied. Therefore, the subgraph
is registered and indexed if it has only single branch between any two internal
nodes. The depth-first search (DFS) strategy with respect to DSP constraints
is implemented in proposed subgraph matching Algorithm 2.1.

D A B D

D

O O @)
B@ cp(x) o
Q Q

A CIP A B D

0

Fig. 2.2. The subgraphs compatible with configurations of digital signal
processing slice

54 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

Require: Graphs: § = (V,€), 9, |z € {1,...,15}.
1: foriin1to |G| do

2 if3le € {13,14,15} : V; = V%, , then

3 reg(\?(z’l(m ={V;}, S(I’l) = 0);l(z)++.

4 if | £(V;)| =3 and El'm 6 {1,2,3} : V; = init(E,,) then

5: Vi = ter(En,).

6: if 3z € {5,...,12} : V; = V2, , then

7 reg(\?(z l(z)) ={Vi,Vj}, S(M) = {En})sl(x)++.

8 if | E(V;)| =3and 3ln € {1 ,3} : V; = init(E,,) then

9: Vi = ter(Ey).

10: if 3z € {1,...,4} : V; = V¥, then

11: reg(V§y 1) v v, i), e = {Ey, En}):
I(z)++

12: end if

13: end if

14: end if

15: end if

16: end if

17: end for

18: return V' e v, e e g () |2 € {1,...,15).
L |

The proposed subgraph matching algorithm return subsets of vertex Véﬁ’l(x))

and edges Eg‘z’l(m)) for detected subgraphs SDSP @) in G and the number [(z) of

registered subgraphs for each type of subgraph .

2.3.3. Graph Covering and Merging

The graph G covering is a 9](392)1) selection process, that attempts to find an ap-
propriate set of subgraphs which minimizes resources usage and latency. The

largest subgraphs 9](32, detected in graph G are covered first using greedy al-
gorithm (Cong, Jiang 2008; Ronak, Fahmy 2014). The greedy covering algo-
rithm adapted to our set of subgraphs is shown in Algorithm 2.2. It checks

presence of largest subgraphs Séz’i) first in G scanning through all subgraph
types x € {1,...,15} and through all ith subgraphs belonging to particular
type x. The covered subgraphs are registered in 92), Afterwards, all sub-

graphs 9 Se 7 with overlapping vertices are eliminated from a set of candidates
for further covering.

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 55

Require: Graphs: § = (V, &), 9&?,1@) |z e{l,...,15}.
1: for zin 1 to 15 do

2 foriin 1 tol(x) do
3 if G5o*" is valid then
4 Cover 9&2’” on G: Sék) = gégg”’i), E++.
5: if IV AV [y e {1, 15}, € {1,...,U()} then
6 Eliminate candidate graph ngd),
7 end if
8 end if
9: end for
10: end for

11: for¢in 1 to k£ do ‘ ‘
12: if |V | > 2 and operator of VY (| V) | is +/— then

3 3V e v v — it (€0 (VO(VO) £ vV - 1)
then ‘ A ‘

14: if ter (VD)) = VO (VL |) then

15: Merge 99 with Séj).

16: Modify instruction and latency for 98).

17: end if

18: end if

19: endif

20: end for

21: return 93) |z e{l,....k}.
[|

The DSP has a property to add/subtract output value P of previous clock
cycle through the multiplexed output feedback to last vertex of DSP subgraph,
as shown in Fig. 1.2. Therefore, DSP must be reconfigured to access output P
instead of input C (1.1). Such DSP configuration allows to process a subgraph
in single clock cycle due to the pipelined subgraph processing. In order to
apply the pipelining for two or more adjacent subgraphs, the pairs of subgraphs
must be merged, when a common edge exists between two terminal vertices.
We distinguish few important circuits inherent for LLMLP, where subgraph
merging can be applied, as shown in Fig. 2.3. The graph for first order lattice
consists of four subgraphs as shown in Fig. 2.3a. The 9&1) is merged with

EQ) and 9&3) with 9((;4). The DSP instructions for subgraphs 9,(52) and 9&4) are
modified to P = P + D x B. The graph of ladder filter (Fig. 2.3b) and sum

of synapses (Fig. 2.3c) consists of merged subgraphs 9&1), 9532) and 9&3). Ina

56 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

cos O,

fi Jfo

sin ©; sin 6 V2 vy Vo : Sout

b b1 bo 51

Fig. 2.3. The covered and merged subgraphs (in grey) for a) lattice filter, b)

ladder filter, ¢) sum of synapses

ladder graph the instructions for 9&2) and 9&3) are modified toP =P + D x B.
The P = P 4+ D + A instruction is assigned to 9&2), 9&3) for sum of synapses
graph. All modified instructions will be executed in single cycle. The covered
and merged subgraphs 9&’“) are returned for further scheduling.

The example of first order synapse with t3 type regressor DFG and its
partitioning in subgraphs (in grey) is shown in Fig. 2.4. The merged subgraphs
are connected by grey curves.

2.3.4. Critical Path Search

The scheduling is resources constrained due to limited FPGA resources for
LLMLP implementation. Only single neuron with 5 inputs and 3rd order
synapses is suitable to fit into FPGA without DSP sharing (Sledevi¢, Nava-
kauskas 2015). Therefore, the arithmetic resources must be shared through
other operations simultaneously exploiting the pipeline property of DSP. More-
over, each instruction must be exactly placed in time maintaining shortest la-
tency for whole covered graph Séx) execution. It is known, that for resources
unconstrained scheduling the critical path method (CPM) gives a shortest pos-
sible delay limited only by data dependence in critical path. For the reason that

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 57

Fig. 2.4. A graph of the first order direct and t3 regressor lattices and its
partitioning into subgraphs (in grey) for digital signal processing slice

the results of first subgraph are needed by another before the first has finished
executing, the pipeline hazard occurs, because the second subgraph must wait
for the first to complete.

Giving a set of graphs ng) |z € {1,...,k} for CPM it returns: the min-
imal latency needed for k& subgraphs computation, the set of subgraphs 9&”?
located on critical path and the vector ¢J; with early start time values. The
subgraphs, which are on the critical path (bold arrows in Fig. 2.4), must be
executed with highest priority, since the latency is directly related with delay

in critical path. The priority of all other subgraphs 99 ¢ 983,), which lie not
(@)

on critical path, depends on the early start time. The earlier the G starts,
the higher is its priority. Assuming, that we have unconstrained resources with

58 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

unlimited interconnections, the schedule for first order synapse and its training
circuit is shown in Fig. 2.5. The instructions connected by arrows lie on criti-
cal path. The dashed lines mark slack for instructions, which not influence the
total latency.

2.3.5. Resource Constrained Scheduling

In a Gantt chart (Fig. 2.5) there are 12 instructions and each one requires a DSP
slice to be executed. To make it implementable on single shared and pipelined
DSP, the instructions must be scheduled according to hardware constraints,
maintaining shortest possible delay in critical path. The pipelined resources
can be shared, even if the corresponding operations overlap. This necessarily
requires that the operations do not start in the same time step and no data de-
pendency exists between the operations. Moreover, the buffers are required on
DSP inputs to load signals synchronously in particular time step. As a conse-
quence, each instruction is lengthen by 2 clock cycles. One cycle is needed to
write result in buffer and second one to read signal from buffer.

The Gantt chart for resources constrained scheduling is shown in Fig. 2.6.
The latency of 9&37) calculation is shortest possible. It can be seen from the se-
quence of the scheduled instructions located exactly one after another in crit-
ical path and connected by directed arrows. The 9th instruction starts not at
0 time step, however 2 cycles later increasing total latency by 2 cycles. It is
affected by resource constraints, since only single instruction can start at each
discrete time step. The two sets of data dependent subgraphs {9&9), 9&2), 9&10)}

and {9&8), 9&3), 9&11)} have same 15 clock cycles latency and both belong to

3 IO T T T T T A A O O ith instruction
9 o A T R A B B B B -
12 N T T T T T IO Bttt 4 Slack
4 2 :ﬂ— T T T T T T O T O O A O R R A
5 3 WH! 1o \"\"\"_\"\“\"1\ [N R A R A
S| = N A A A R
Bl v Y10 [R T R B T I I B R
Z P M Hioooo D
Tl e T
P M3 [R A
T T T T A T A I B [
T T O R e T R R A R O R R N I B o
0 5 10 15 20 25
Clock cycles

Fig. 2.5. The resources unconstrained instruction schedule for first order
lattice-ladder and regressive lattice after critical path search

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 59

ith instruction
[
[
[
[
[
[
[
[
[

Instructions

A 7 [
coor s M
R RN R | 2

25 30 35

- - = -

»
»

|

|

|

|

|

|

|
0 5 10 15 20
Clock cycles
Fig. 2.6. The resource constrained schedule for first order lattice-ladder and
regressive lattice graph

critical path, as shown in Fig. 2.5. Therefore, it is not important which one set
{9&9), 9&2), 9&10)} or {9&8), 9&3), 9&11)} starts first, since 9&10) and 991) have
same priority and both are source subgraphs for the 9&7) .

The proposed subgraph scheduling algorithm handles pipelined DSP re-
sources by allowing the scheduling of overlapping operations with no data
dependency and different start times. If two or more operations have same
start time, then they are delayed until DSP will be released. The stages in Al-

gorithm 2.3 lines 8-14 ensure the minimal latency for instruction execution.

)

The algorithm includes the candidate subgraph 9? to set of subgraphs 9@

on schedule list only if all predecessor vertices for 9(@ are computed. Then
it schedules exactly one subgraph from set 986) with highest priority. Thus
the subgraphs 986)) located on critical path are scheduled first before all other

subgraphs. The subgraphs 98*“) ¢ 98? have a slack of free time steps and are
scheduled with as soon as possible (ASAP) strategy. The algorithm returns
instruction start vector of time steps tgx), x € {1,...,k}, which is used next in

HDL generation placing DSP instructions in right order.

Algorithm 2.3 (Resource constrained scheduling)

Require: Graphs: § |z € {1,...,k}, k — number of covered G,
L [S9. 4,77 = CPM(SY) | € {1,....k}).
if 369D NGY |2 € {1,...,k} then

Set pri(5®) = max, (7 — téf)) for G on critical path.
else

Set pri(G®) = < — () for all G ¢ G

—_

60 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

6: end if

7: while 36 £ 6@ |z € {1,...,k} do

8 Update predecessors V V& : 6@ — g

9: if V init(&®) predecessors are ready for € € G then

10: Add G candidates to schedule list @ = G,

11: endif

122 if 3G9 pri(§9) > pri(5¥)),y € {1,...,k} and y # = then
13: Schedule subgraph 95’3 = SE‘”) and remove 95””) form schedule list.
14: Capture instruction start time t§w) =t.

15: if 9@ merged with child subgraph then

16: Reserve DSP for next cycle.

17: else

18: Release DSP resource.

19: end if

20: end if

21: t+ +.

22: end while
23: return tg"’.

2.3.6. Design Description

The final architecture of processing element described in HDL is shown in
Fig. 2.7. It contains: single DSP as a configurable subgraph execution unit,
four buffers connected to DSP inputs and the memory dedicated for nonlinear
functions. The index generator consists of binary counter. With this counter a
proper instruction is selected at each clock cycle from a set of instructions. The
size of memory buffer depends only on the instruction width. The instruction
set format consists of: four write/read addresses, DSP operation select bits,
multiplexer select bits and nonlinear functions select bits in address modifica-
tion block. The data buffers as well as nonlinear functions are implemented
on dual (left and right) port memory. The left port of buffer is a write port,
through which multiplexed data from: NPE input, result of nonlinear function
or DSP output is stored in buffers. Data are loaded to DSP through right port
of buffers. The DSP output P is: returned back to buffers, connected to NPE
output, used as argument in nonlinear activation function accessible through
left port of dual port ROM. The sin @, cos @, cos™ ©); tables are accessed
through the right port of ROM. Due to the additional multiplexer requirement
and buffer limitation to write only single value on clock cycle, the four nonlin-
ear functions are implemented on the same ROM. The access of tanh P do not
need any address modification, since the highest two bits are zeros. To access
the sin ©; cos ©;, and cos ! ©); the address of right port is modified changing

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 61

Input Index generator ; Instruction generator‘
select Instruction bus Operation select

Dual port RAM
D buffer
A buffer

,| Address modificator

Input

o——

Output

Dual port ROM
| @

QVJ
‘% | 8

B buffer
C buffer

—

@
2]
o
o

tanh P

Fig. 2.7. The processing element based on single digital signal processing
(DSP) slice

the highest two bits to “01”, “10”, “11” respectively in address modification
core.

Due to the simplification the delay elements in Fig. 2.7 are marked by “I”
crossing data lines. Through the read/write operation memories brings addi-
tional single clock cycle latency, therefore the minimal latency of single in-
struction execution is equal to seven clock cycles: one cycle to read data from
buffer, five cycles to process a certain subgraph and last one to write result
back to buffer. The two cycle latency of RAM and four cycle latency of DSP
are determined by hardware constraints. The additional delay elements on each
data line between buffers and DSP was inserted during the experimental inves-
tigation of the NPE performance. The experiments were done changing the
number of pipeline stages (delay elements) also replacing the training circuits
of LLMLP and generating the HDL file of NPE (Fig. 2.7). The timing analysis
after PAR gives the maximum clock frequency f' at which the implemented
design can run (see Table 2.2). The latency and execution time are averaged
over LLF orders M = {1,...,10} and four different training circuits. An in-
creased number of pipeline stages results in increased f ', but also contributes
to an increase of latency taken to complete the processing of an instruction.
Therefore, the time optimal instruction execution was achieved with one addi-
tional flip-flop (delay element) between flip-flops located in buffers output and
DSP inputs, as shown in Table 2.2 and in Fig. 2.8.

Only the forward pass synapse and its regressor lattice is used in the in-
vestigation of optional pipeline stages in the NPE, since all other particular
circuits which form LLMLP are independent on training type and are same for
all the configurations of LLMLP. To identify an optimal number of optional

pipeline stages in NPE, the execution time of forward pass synapses TJS\ZT’ IS

62 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

Table 2.2. Timing results of neuron processing element

Optional pipeline stages | O 1 2 3 4
Average latency, cycles 613 668 728 798 869
s MHz 207 320 339 339 339
Average execution time, is | 296 2.09 2.15 235 256

T ts

0.95 | R
©),
£ 09 -
2085}]
£ 08
<}
;; 0.75 t
g 07}
&

0.65 |

0.6 -5 | 5 3

Optional pipeline stage
Fig. 2.8. The relative processing time dependence on optional pipeline stage
and training type

must be compared between order M, train type T and maximal clock frequency
f 7 of the design. For the comparison purposes, the execution time Rt]‘\}n% T is
averaged over synapse order M in (2.13) and normalized to the hlghest value

over four types of investigated regressors in (2.14):

_ 1
R?\zg’f'r = — m‘TfT/fT (2.13)

here T — regressor type, T € {t3, t4, t11, t12}; /7 — maximum cloc_k frequency,
which is investigated changing the number of pipeline stage; ﬁ?\?g fT — eX-

ecution time of NPE relative to highest average execution time R“mT T over
different regressor. For all the training types J the fastest execution is achieved
with single optional pipeline stage, as shown in Fig. 2.8.

Maintaining synapse parallelism the LLN with NV inputs consists of N 41
NPE, as shown in Fig. 2.9. The weight updating circuit, forward and regres-
sor lattice of the certain nth input is implemented on nth NPE. The additional
NPE is used for the summation of synapse outputs and instantaneous error cal-

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 63

culation. To form a layer with /N neuron parallelism the single neuron design
(Fig. 2.9) must be implemented N times.

The scheduled list of instructions for DSP generated by our technique can
also be used in NPE created in Xilinx System Generator (XSG) tool. In this
case, the NPE must be assembled manually in XSG by adding input buffers,
memories for instructions and nonlinear functions, multiplexers and delay ele-
ments to the DSP slice. After the creation of NPE (Fig. 2.7) it remains only to
load four initial coefficient files for instruction indices, instructions, nonlinear
functions and buffers.

2.4. Neuron Layers Optimization

Two strategies are proposed for neuron layers optimization. Throughput opti-
mized strategy, when NPE is dedicated for each forward and backward synapse
and node. The layer parallelism is reduced untill LLMLP structure fits in the
constrained FPGA resources. The resources optimized implementation stra-
tegy begins from LLMLP implementation on single NPE and iteratively adds
new NPE to the design untill meets processing time requirements.

2.4.1. Accuracy Optimization

A. Bit Width Selection

The workflow for the constrained lattice-ladder neuron implementation analy-
sis is shown (Fig. 2.10). Program Matlab is used to create a reference design
working on floating-point data. The essential for the investigation parameters
are two K length vectors of the lower f; and the upper f;, cut-off frequencies
that determine various band-pass Mth order lattice-ladder synapses. Other
investigation common parameters are /N length input and desired output sig-

B PEN-+1—+» Output

Fig. 2.9. The architecture of neuron with synapse parallelism

64 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

nals (Sin, Sj,) to be used for training and validation. Program Vivado HLS
from Xilinx is used to create, simulate and analyse constrained design. Con-
straint parameters: precision of fixed-point arithmetic in W bits and BRAM
size. After the simulations of floating-point and fixed-point designs the LLN
parameters ©; and v; are compared to determine the bandwidth and band-pass
central frequency discrepancies.

The latency of sin ©; and cos ©; values generation on parallel CORDIC
core is directly proportional to the word length used for ©; variables. There-
fore, CORDIC is expensive for high accuracy. Alternative approach could be
to store in memory only quarter of sine period and to generate the rest values
by simple manipulations with values and memory addresses, i.e., interpret 6
as an address in the LUT. During the investigation 7" = 16 k addresses are al-
located in BRAM to form quarter of sine period (similarly for inverse cosine)
and that was not changed even when word length of data was varied.

The Vivado HLS lets to create a new W = W, 4+ Wk length fixed-point
types with the desired number of bits for integer W, and fractional W; parts.
The overflow of integer bits is avoided by enabling saturation, thus value of the
signal never exceeds the margins, e.g., [—4,4) for W; = 3.

The neuron training step needs to be constrained from both sides. The
lower bound of [needs to be restricted because during weights ©; and v;
updates in (1.5) and (1.6) the product of three small parameters must be con-
sidered. Therefore the precision of L6V, (n) and LéVy, (n) is doubled inten-

W = {10,12,18,25}
, , M, s *u ’ ’) s
fl fh Sin> Sout Tsina Tcos

Reference design

v

Floating-point simulation

v

Bandwidth comparison [«

v

Graph plotting

> Constrained design

v

Fixed-point simulation

4

Resource/performance analysis

Fig. 2.10. The workflow for investigation of a fixed-point implementation of
lattice-ladder linear neuron and its training circuit

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 65

Gain, dB ~
A fe [
0 | |

fs/2 Frequency, Hz

Fig. 2.11. Illustration of bandpass discrepancies measurements

tionally only in the weights update loops. The upper bound of U is restricted
by ©; and v; parameter convergence to the reference. Increasing | will gener-
ally accelerate adaptation process and it is advised to increase [to the largest
value for which convergence is observed Regalia (1995). The largest value of
W beyond which convergence no longer occurs also depends on precision. The
lower precision is, the larger L must be used to ensure adjustment of ©; and v;
parameter.

The band-pass frequencies (measured at gain of —3 dB, see Fig. 2.11) for
floating-point and fixed-point designs can be expressed by f, = f, — f; and
ﬁ) = ﬁ — ﬁ accordingly, when by a tilde symbol constrained design results
are outlined. Because f) and f;, frequencies shifts independently and does not
yield desired central frequency fZ, central frequencies of both design types
fe = fi+ fv/2 and fc L 4+ fb/2 must be measured, too.

In order to investigate the constrained implementation quality independent
on the reference bandwidth f,, to be varied, we fix desired central frequency
f& = fs/4 and use relative errors of bandwidth ¢, and central frequency e,
expressed by:
ho= R fo- T

fo fo

Additionally output signal accuracy is determined by /;-norm construct —
Normalized Mean Absolute Error (normalized MAE) of reference and con-
strained designs output signals:

S 2 (}Vé sou(r) = Fou(w)]) / <leé

See Chapter 4 for the use of defined error indicators in the evaluation of exper-
imentation results.

e (fo) 2 (2.15)

& (fo) £

Sout() D . 16)

66 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

B. Nonlinearity Implementation

The proposed neuron activation function is divided in three regions: pass, pro-
cessing and saturation (see Fig. 2.12). In a pass region @Pypy = Pigent = S,
the signal s(n) is directly transferred to the output sy (n). The processing
region of the function @,y (s) is implemented in table and stored in BRAM.
In a saturation region, the LLN output is always @y = 1.

The hyperbolic tangent function is defined as follows:

62.0395(71) -1

ggtanh (S(n)) = W

, 217
+1 @17)

here s(n) = ¢gs(n) is the input of activation function.

To make the smoothed junction between the pass and processing regions,
the exponent value is set to 2.03 instead of original 2. The approximated LLN
output can be expressed:

;

L s(n) > 16;
5tanh(5(n)), 16 > s(n) > 1;
Sout = 4 5(n), —-1<s(n) <1, (2.18)
~Bann(s(n)), —16 < s(n) < —1;
-1, s(n) < 16.

The activation function output of negative value is obtained using asym-
metry principle @anh(— s(n)) = —Panh (s(n)) The amplification coefficient
g controls the output range of the hyperbolic tangent. If g = 1, then activation
function is linear. For g > 1, the nonlinearity in the LLN output grows. The
higher gain is the wider range of LUT is accessible. If g = 16, then sou(n)
varies in range [1, 1]. The amplification of §(n) more than 16 times is equiv-
alent to the squeeze of activation function or similarly to increase of the slope
of hyperbolic tangent for s(n) in range [1, 1].

Fig. 2.12. The plot of the proposed activation function

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 67

Program Matlab is used to create a reference design working on floating-
point data. Program Vivado HLS is used to create, simulate and analyse con-
strained design with fixed-point precision. After the simulations of floating-
point and fixed-point designs, the corresponding output signals sou(n) and
Sout(n) are compared to determine the synapse transfer function and the output
signal discrepancies.

The accuracy of the hyperbolic tangent approximation is evaluated using
[1-norm derived and commonly used indicator — Mean Absolute Error (MAE),
that will depend on memory size Rgray and gain g (Armato et al. 2011):

1 N-1
@@MA (gv RBRAM) S n Z

n=0

Sout (1) = Fou (n3 9, Basan) |- (2:19)

Moreover, fixing gain to its maximum value (g = 16), the accuracy of the
hyperbolic tangent approximation is also evaluated using /,-norm — Maximum
Magnitude Error (MME), when memory size Rgray and gain g of s(n) signal
varies (Armato et al. 2011):

S (RBRAM) £ max | Sout (n) - §out(n; g, RBRAM) ‘ (2.20)

g=16

The lattice-ladder can be set to work as nonlinear low, high, band-pass or
band-stop filter with additional gain control. Such a system has the transfer
function, which will have distortions dependent on the limited LUT size de-
dicated to the hyperbolic tangent function. To check the accuracy of the LLN
transfer function, the LLLN must be scanned by sin(n) signal, that contains all
the frequency components in range [0, fs/2], where f; is signal sampling fre-
quency. The frequency of sin(n) must linearly change in time. This property
has the chirp signal schirp(n):

Schirp(n) = cos (27 f;(n) + ¢o). (2.21)
with instantaneous frequency sweep function expressed by:

fin) = fo+ 210, (2.22)
ni
here fy and f; are desired starting and breakpoint frequencies at time n = 0
and n = n1; ¢o = 0 — signal initial phase.
To check the worst case of LLN transfer function implementation, the
synapse parameters ©,, = v, ¥V m € [1, M] except vy9 = 1 are set to
pass through all frequency components to the input of activation function.

68 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

The transfer function of LLN activation function is obtained by the estima-
tor (Broersen 1994):
_ By(f)

=30

here Py (f) — cross power spectral density of input s;,(n) and output Soy(7)
signals; P (f) — auto power spectral density of sin (1), when sin(n) = Schirp(72)
Vn e [l,N].

(2.23)

The distortions between reference and proposed LLN transfer functions are
evaluated through corresponding amplitude responses by use of from /s-norm
derived and commonly used indicator — Root Mean Square Error (RMSE):

9 f5/2

~ 2
g}{?\l/[{s (ga RBRAM) £ 7 Z(}TLNN(f;g)} - ‘TLNN(f; 9, RBRAM)D , (2.24)
S ¥

here ‘T (S5 9) T, w(f3g, RBRAM)’ — floating-point and fixed-point imple-
mentation LLN amplitude response with pre-selected gain g and BRAM size
Rgram calculated by (2.23).

B

2.4.2. Throughput Optimized Implementation Strategy

The total latency of the lattice-ladder multilayer perceptron training consists
of accumulated delay of the signal forward pass and error backpropagation.
The latency in a forward and backward LL synapse is defined as 7.7 , , and

-
T1,M0

Tz?v(lﬂ) and Tl‘;\,a +1
of the desired network. Before the optimization by latency there are known
only the LLMLP settings: L, N®, M® and the available resources R =
{Rpsp, Riur, Bram} on selected FPGA. Depending on above parameters the
LLMLP is implemented through using variable degree of parallelism (Savich
et al. 2012). The fully parallel design is possible only when it is enough
FPGA resources for processing signals in all synapses and nodes in paral-
lel. The best performance is achieved with pipelined design and layers par-
allel weight update rule when next condition is satisfied for each resource type
x = {DSP,LUT,RAM}:

respectively. The latency in a forward and backward node is defined as
, respectively. The total latency depends on the structure

L
23" (N<l—1> n 1)N<l> < w,R.. (2.25)
[=2

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 69

The latency is defined by the maximal signal delay in one of the four pipelined
stages (forward synapse, forward node, backward synapse, backward node):

T = max (min T T T T, T 1). (2.26)
2<l< N D) - (7,17M())7 LMOs ' NO=1> T N+

When the condition (2.25) is not meet the LLMLP is still implemented
with synapse and node parallelism, however only for single layer with maxi-
mum number of synapses:

2 max ((N<l—1> + 1)N<’>) < w,R,. 2.27)
2<I<KN@

Such LLMLP design is shared through all layers, therefore latency is a sum
of maximum delays in forward pass or backward pass circuits over all layers:

L
T = Z (maX (IIEH(T;IM@) + Tzl?]v(l—n y TZEG) + T;:E(H_l))). (228)
=2

When it is not enough resources w, R, to fit single layer of LLMLP on
FPGA, the same resources are shared through forward and backward pass cir-
cuits, if the next term is satisfied beginning from j = 1:

NED YNy o . x— 52
2SN D) <(+1))/.7 < we Ry, (2.29)

here 1 < 5 < N(l*), when

I* = argmax(NCINO), (2.30)
!
here [* is a layer with maximal number of synapses.

If the design does not meet (2.29) requirement, the j will be increased until
single neuron fits constrained FPGA resources. On this step the synapse paral-
lelism is still maintained, however the node parallelism decreases sequentially
with rising j. For the above condition latency can be described by:

L
_ . S n— S n .
T = Z < IIHH(TTJ,M(1>)7 Tl,N(lfl) s Tl,M(l) s Tl,N(lJrl))]' (231)
=2

And finally, if in N =1 Jayer the number of synapses exceeds the available
resources of field programmable gate array, then the synapse parallelism will

70 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

be decreased with rising synapse parallelism reduction index ¢. The N -1 / 1
synapses will be shared through all other synapses in N layer if the term is
satisfied: o

max (N /i +1) < w,R,, (2.32)

2<I<KND)
. . (arg max N¢=1)

here ¢ increases in range 1 < ¢ < N ! . The latency of such
LLMLP can be estimated by:

L

. s s - __n S n L
T = Z (Z HlTln(T{J:zM(l)), ZTl’;(l—l) 5 Tl,ﬂ(l) 5 Tl’;(l-&-l))N() (233)
=2

The algorithm for throughput optimal LLMLP implementation is summa-
rized in Algorithm 2.4.

Require: Load settings: L, N, M and FPGA resources R, = { Rosp, Rosps Bosp }-
1: Compute latency matrices: 757 3107 30> 7) Na—1T) NG+ -
Compute the resources utilization R, (7, L, N, M) for fully parallel LLMLP.
if R,(T,L, N, M) < w,R, is true for all = then
Implement LLMLP with maximal performance.
return latency 7 computed by (2.26).
end if
Change topology of LLMLP to single layer and compute p(T, L, N, M).
if R,(T,L,N, M) < w,R, is true for all 2 then
Implement single layer of LLMLP and share through whole net.
return latency 7 computed by (2.28).
: end if

VXA E RN

[E—.
— O

12: Compute R, (7T, L, N, M) for single layer with shared forward/backward circuit.
13: if R,(T,L, N, M) < w, R, is true for all 2 then
14: Implement single layer and share it through forward/backward circuits.
15: return latency 7 computed by (2.31) when j = 1.
16: end if
17: for jin2to N'" do
18: Decrease node parallelism by j for single layer and compute R, (T, L, N, M).
190 if R, (T,L,N,M) < w,R, is true for all z then
20: Implement single layer LLMLP with j reduced node parallelism.
21: return latency 7 computed by (2.31).
22: end if
23: end for
arg max(N(l -)
24: fortinlto N ¢ do
25: Compute R, (7, L, N, M) for a neuron with ¢ reduced synapse parallelism.
26: if R,(T,L,N,M) < w,R, is true for all = then

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 71

27 Implement single neuron with ¢ reduced synapse parallelism.
28: return latency 7 computed by (2.33).

29: endif

30: end for

31: return insufficient resources.
l |

If the FPGA resources do not meet all the conditions: (2.25), (2.27), (2.29),
(2.32), then the desired complexity LLMLP can not be implemented on the
verified FPGA. This problem can be solved with the simplification of LLMLP
structure or switching to resource-rich FPGA.

2.4.3. Resource Optimized Implementation Strategy

In this case, the required latency 774 is given together with LLMLP settings:
L,NO MO According to above parameters the LLMLP is implemented with
minimal resources. The new processing element NPE is sequentially added to
the design, until the latency condition will be satisfied. The whole LLMLP fits
to single NPE if the next requirement is meet for i = j = k = 1:

L
> (<(min(7y 'y o) + o) NEY fit

=2 (2.34)

+ (Tlrj;;(l_l) + Tlrj;_/:(l-kl)))N(l)/j) < 7

here 1 < i < NV~ is the number of synapses in layer [* — 1 covered by
NPEs; 1 < j < N is the number of neurons in layer [* covered by NPEs. The
synapse and node parallelism grows with the increasing ¢ and j accordingly.
The number of NPEs is:

Rpz = (i + 1)jk, (2.35)

here k shows how the forward and backward (fw/bf) pass circuits are imple-
mented: on the same NPE (k = 1) or on different NPE (k = 2). When on
different NPE, then latency is defined by maximal delay in forward or back-
ward pass and it must meet the conditions:

L
Z (max (HEH(T;ZM(D) + Tlr’l](?;(l*D 5 TZEG) + T;;(l+1)>> < 74, (236)
=2

If the above requirements are still not satisfied, then all the layers of lattice-
ladder multilayer perceptron are implemented in parallel. Therefore, the la-

72 2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER...

tency, defined by the maximal signal delay in one of the four pipelined stages,
must be less than required latency:

max <IIlTin(TfJS‘(ZM(l)), Tls,(;/l(z)) Tllj](:;(lfl)) T;;(l+l)) < 7, 2.37)

2<I<KN@D)

The number of NPE for pipelined LLMLP implementation is:
L
R =23 (N(l_l) + 1) NO. (2.38)
=2

The algorithm for resource optimal LLMLP implementation is summa-
rized in Algorithm 2.5.

Require: Load settings: L, N, M and required latency 774.
. 1 . Se— S<— ne— N«
1: Compute latency matrices: Ty L@ T 2@ T] Na-0T) N+ -

2: Check single layer with ¢ synapse, j node parallelism and shared fw/bw circuits:
3: for jin 1 to N' do

4: foriinlto N ~'do

5: Compute R(T, L, N, M) for a neuron with ¢ reduced synapse parallelism.
6: if (2.34) is true then

7 Implement the LLMLP on j(i 4+ 1) NPEs.

8: Calculate resources R(T, L, N, M).

9: return R(T,L, N, M).

10: end if
11: end for
12: end for

13: Check fully parallel layer with separate circuits for forward and backward pass:
14: if (2.36) is true then

15: Implement shared layer on 2N*" (N'" 4 1) NPEs.

16: Calculate resources R(T, L, N, M).

17: return R(T,L,N,M).

18: end if

19: Check fully parallel LLMLP:

20: if (2.37) is true then

L
21: Implement LLMLP on 2 3 (Nﬂ*l) n 1)N<l> NPEs.
=2

22: Calculate resources R(7, L, N, M).
23: return R(T,L,N,M).

24: end if

25: return 774 is too low.

2. EFFICIENT IMPLEMENTATION OF LATTICE-LADDER... 73

The desired complexity LLMLP can not be implemented on FPGA if the
required latency 79 do not meet all (2.34), (2.36), (2.37) conditions.

2.5. Conclusions of the 2nd Chapter

1.

The technique for lattice-ladder multilayer perceptron (LLMLP) effi-
cient implementation in FPGA is created and experimentally affirmed
that structure of proposed neuron processing element is speed optimal
with only 7 clock cycle latency.

. The application of proposed lattice-ladder specific subgraph matching,

covering, merging and scheduling algorithms ensures latency efficient
schedule of the generated instructions for DSP, keeping the maximal
clock frequency of neuron processing element IP core at 320 MHz.

Pareto frontiers estimation for the LLMLP specialized criteria of cir-
cuitry synthesis is proposed. Two implementation strategies: through-
put or resources optimization, are developed and enable us to make
an optimal choice of FPGA chip according to given requirements for
LLMLP structure, sampling frequency and FPGA resources.

The work-flow for investigation of the constrained design precision
based on band-pass discrepancies measurement is developed, ensur-
ing a balance between normalized bandwidth of the synapse and they
central frequency, bandwidth and output signal mean error.

. The nonlinearity implementation criteria based on the evaluation of

distortions in transfer function of lattice-ladder neuron enables us to
make and efficient choice of memory size as a trade off between the
error of proposed activation function, gain and block RAM size.

Implementation of Lithuanian
Speech Recognizer in Field
Programmable Gate Array

Fulfilling the Task 3 of the Thesis the results of a novel Lithuanian speech
recognizer (LSR) for disabled persons development and implementation on
FPGA are presented in this chapter. A general block diagram of LSR for dis-
abled persons and its final assemblage are commented in Section 3.1. Then
developed FPGA IP cores for speech feature extraction (Section 3.2) and word
recognition (Section 3.3) are analyzed. Previously introduced original tech-
nique for efficient implementation of LLMLP (Section 2.2), here is used for
speech filtering and noise reduction FPGA IP core development. Moreover
a new accelerated pattern matching technique to speed up the word recogni-
tion process using constrained dynamic time warping (DTW) is proposed. An
original the double random seed matching Algorithm 3.1 is developed and pro-
grammed in FPGA [P core. Lastly in Section 3.4 the original iterative voice
response interface enabling computer guided dialog for communication with
disabled persons is briefly described.

The research results are published in author publications (Tamulevicius
et al. 2015, Serackis et al. 2014, Tamulevicius et al. 2014, SledeviC et al. 2013,
Stasionis, Sledevi¢ 2013, Serackis etf al. 2013, Sledevi¢, Navakauskas 2013).
The main results are announced in international: “Electronics” (Palanga, 2014,
2013), DAMSS (Druskininkai, 2014), ICISVC (Paris, 2014), EMS (Manch-
ester, 2013), EUROCON (Zagreb, 2013); and national: “Science — Future of
Lithuania” (Vilnius, 2013), “Multidisciplinary Research in Natural and Tech-
nology Sciences" (Vilnius, 2014) scientific conferences.

75

76 3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER...

3.1. Speech Recognition System Overview

Whole recognition system is implemented in single FPGA chip. The word
recognition algorithm consists of several steps, as shown in Fig. 1.17. The
speech preprocessing involves filtering, framing and windowing. The extracted
features are stored in the dictionary and the spoken word is compared with a
part of context dictionary. The developed IP cores are used for all features ex-
traction and comparison algorithms. The hardware part of the proposed system
(Fig. 3.1) is clocked at 50 MHz while software part — at 100 MHz.

Fig. 3.1. Illustration of six prototypes of speech recognizers (primary
versions are on the top, final version is on the bottom)

The proposed system can work in non-real-time and real-time word recog-
nition modes. In the first mode, speech signal is read from external SD card
memory for the record dataset recognition accuracy verification. In the second
mode, the speech signal is constantly captured from microphone for device
control. Each implemented [P core must meet the 11.61 ms delay condition in
order to work in real-time. Such requirement is defined by the 23.22 ms du-
ration of signal frame. Due to the half overlapping frames the time between
incoming frames is twice shorter.

The block diagram in Fig. 3.2 shows the connectivity between IP cores
with bus width information. Each IP core in the proposed system works in-
dependently and communicates with others via synchronization signals. The
synchronization, clock and reset signals are not shown in Fig. 3.2. The audio
chip is configured to sample data at 44.100 kHz. The filtering IP core involves

3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER... 77

4 5
Audio codec SD card controller MicroBlaze processor
| | LPCC | | MFCC |
e A 4 M 8b
| o Filtering | ‘ Auto-regression ‘
| A | \
'8 8b ! 32b
8 A | v
‘ % Framing ‘ ARM processor BRAM
s \ : \ > T T 3
‘ ‘ 32b 32b 12b
! — v S.b ' 8b 24b MUX
| Windowing |) L
| | Autocorrelation
| 4 - J = — — — C f |
8b
— | 2x17b
|G I
‘ 2x17b LFCC ‘
| A 4 | A
18b 5b
1| abs(.) > log(.) F(s) Isolated word features
L. - - - _ - - - = - - ZT — —¢C _
J 12x12b
— 28b 12x12b ’
g Recognition < DTW < Dictionary
A
12b 28b
Accelerated pattern matching | Reference to reference memory
Controller p Memory Calculation Processor

Fig. 3.2. The block diagram of the isolated word recognition system

the LLMLP compiled by using technique proposed in Section 2.2. The fil-
tered speech signal is stored temporarily in internal FPGA four memory blocks.
These blocks are alternatively used to write and read 256 samples of partially
overlapped and framed speech signal. For the windowing operation the Han-
ning function Kp,n(n) is implemented as look-up table and is described by
equation:

™
Ny —1

Kian(n) = sin? <) , Vnelo,Ny—1], 3.1

here n is the index of the sample in a window; Ny, = 256 is the total number
of samples in a frame.

78 3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER...

The soft-core processor (grey block in Fig. 3.2) is used for the IP cores that
require precision and operation on floating-point numbers. The decision maker
is a linear function that sequentially compares two time series and matches
errors given from DTW IP core. In the real-time mode system firstly looks
for activation word. If this word is recognized, then second spoken command
is compared with dictionary in a features space. Up to 8 copies of utterance
can be assigned to a single command to improve recognition rate. There are
reserved 2!4 samples for each isolated word regardless of its real length. Each
word has 128 features vectors. Therefore, the size of DTW matrix is always
permanent and equal to 128 x128. The control signal is transmitted to device,
when associated command is recognized correctly.

The isolated word recognition process consists of two main parts. First
one is the features extraction in speech signal. Second one is the comparison
of feature vectors of the just spoken word with the set of command stored
in dictionary. Therefore, in the next sections the implementation of speech
analysis and comparison methods are presented.

3.2. Features Extraction Implementations

Four features extraction methods (LFCC, MFCC, LPC, LPCC) (cf. Section 1.3)
are selected for speech signal analysis with the aim of future evaluation and se-
lection of the best one in final application. The LFCC analysis is implemented
in FPGA logic. The other analysis methods are partially implemented in FPGA
and in general purpose soft-core processor, because of the requirements for
float-point arithmetic.

3.2.1. Linear Frequency Cepstral Analysis Intellectual
Property Core

The LFECC is performed by (1.11). The hardware implementation of LFCC
consists of two fast Fourier transforms, single logarithm and abs(.) IP cores.
After the windowing 8 b and 256 sample length speech signal is passed to the
F(.) core. The F(.) core utilizes 3 BRAMs and 3 DSP slices. The length
of F(.) is equal to the framed signal length. F(.) is implemented using the
Radix-2 butterfly core from the Xilinx IP core generator. The latency of F(.)
computation is 1662 clock cycles. The F(.) core outputs 17 b width real and
imaginary spectrum series. In the abs core the absolute 18 b value is calcu-
lated and sent to the log(.) core. Because the radix of a logarithm is equal
to 2, this operation can be implemented in the hardware as the search for the
highest bit in data (see Fig. 3.3). The experimental verification confirms that

3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER... 79

the maximum spectrum value is never higher than 16 b. Therefore, the result
of a logarithm is in the range from 0 to 15b and the output is described only
by 4 b. The result is rounded to the lowest integer number.

‘ abs(.) core ‘ = 2
12
4 9 10
0000001]101001011 6
0001010101111010
00000[1110101011
OOOOOOQQI 10110 256 samples
& &
‘ Highest bit finder F ‘ FFT core

Fig. 3.3. Illustration of the fast log, operator implementation

The 4 b width logarithm of the spectrum is forwarded to the next F(.) core
that calculates 12 b width LFCC features. Only real part of LFCC is saved in
memory dedicated for one word features that utilizes one BRAM. In order to
collect one word features the LFCC calculation is repeated 128 times. That
ends the LFCC feature extraction.

The LFCC calculation algorithm is sequential and there is no need to par-
allelise it because one feature extraction module can be successfully shared
between overlapped frames and used at the end of the frame only. The abs(.)
and log(.) operators are applied immediately for the complex spectrum that
comes from the F(.) core. The second F(.) operation gives 256 cepstrum co-
efficients for the one frame speech signal. Only first 12 coefficients are used in
further DTW calculation.

3.2.2. Mel-Frequency Cepstral Analysis Intellectual Property
Core

The signal-flow graph of MFCC extraction was presented in Fig. 1.19 and de-
scribed by (1.12)—(1.13). The same F(.) core, previously used in LFCC, is
shared with MFCC implementation, as is shown in Fig. 3.2. The power(.) op-
eration of the spectrum utilises single DSP and the result of power (]—" ()) is
transfered to processor through shared BRAM. The multiplication with transfer
function of the filter bank (1.13), log(.) and discrete cosine transform C(.) cores
are implemented on the soft-core processor due to the precision requirements
for trigonometric, logarithmic and division operations (1.12a). The calculated
MEFCC are returned back through the shared BRAM to the single isolated word
features memory.

80 3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER...

3.2.3. Linear Predictive Cepstral Analysis Intellectual
Property Core

The signal-flow graph of LPC and LPCC extraction was presented in Fig. 1.20
and described by equations (1.14)—(1.17). The 12th order autocorrelation (1.14)
algorithm is implemented using 13 shift registers with analysis length p = 12,
as shown in Fig. 1.21 and Fig. 3.4. Each element of this register is accessible

Ja
120

NN
dataEﬂO‘l‘Q‘ .-

]
8b
16b
B
24b
r(0) (1) (2
]

utocorrelation

r(12)
«51 Port A | |
o MicroBlaze processor
; Xl g 1) E=r([0]; k[1]=r[1]/E; alll=k[1l];
£ = SEC 2) [YE=(1-k[i]*k[i])*E;
ks ngg , g 14
A a 3) k[l]:(r[l]*?:ulm(a[]] r[i-j1))/E; 3
PortB: 4) Caljl=aljl-kl[il*ali-j]; o
o i1=ali Lot s SRS i— 4 i) . O
5) (cli] alil+sum(3*clil*ali-1/1); -
i

Fig. 3.4. Implementation of autocorrelation, Levinson-Durbin and linear
predictive cepstral coefficients calculation algorithms

in parallel by 13 DSPs slices. The multiplication result is accumulated until the
last byte No. 256 reaches the shift register. Autocorrelation coefficients r (i) are
stored in dual port BRAM buffer via port A. This memory is used to exchange
the data between hardware and software parts of the system. For the soft-core
processor the autocorrelation coefficients are accessible via port B. At the first
iteration of Levinson-Durbin algorithm the values of energy coefficient E, first
reflection coefficient k(1) and first LPC are initialized. For each ith iteration
energy coefficient F is updated and used as divisor for calculation of reflection
coefficient k(7). The steps 2—4 are repeated 12 times giving the 12th order
LPC. At step 5 the LPCC are calculated from LPC features. The processor
calculates both types of coefficients and returns them to BRAM buffer to store
in the dictionary and further word recognition using DTW IP core.

3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER... 81

3.3. Word Recognition Implementations

In order to recognize the spoken words in a real-time the IP cores for speech
features comparison are implemented. A new accelerated pattern matching
technique to speed up the word recognition process using constrained dynamic
time warping is proposed. An original the double random seed matching algo-
rithm is developed and programmed in FPGA IP core.

3.3.1. Dynamic Time Warping Intellectual Property Core

A dynamic time warping algorithm is used to find the correspondence in two
data series by matching two features vectors. The actual output is the estimate
of dissimilarity between two signals. The DTW is based on filling the error
matrix with differences between two signals. The DTW algorithm is sequential
by nature (see Fig. 3.5).

C 1. Start >

<

‘ 2. Compute first element e(zq, yo) ‘
<

‘ 3. Compute first line e({x1, ..., z127},Yo) ‘
<L

‘ 4. Compute first column e(zo, {y1,. .., y127}) ‘
L

‘ 5. Compute e(z;,y;) Vi€ [1,127] ‘
<

6. Search the back-path with min error sum
emin (k) from e(z127, y127) to e(zo,yo)

4

‘ 7. Repeat 26 steps for all £ < K words ‘
<

‘ 8. Find argmin (emin(O), ey emin(K)) ‘
&

(9Ed)

Fig. 3.5. Implemented dynamic time warping algorithm

Step 2 in the DTW algorithm is to compute the first matrix element (0, 0)
that is equal to the Euclidean distance between first cepstrum values of both
series. In steps 3, 4 the errors in the first row e(0, [1,127]) and first column

82 3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER...

(127,127)
NN

Features from dictionary

]
[ZT e

[

I
Constantly shifted features

My

vy

—
=

(=]
=

Fig. 3.6. Illustration of 128 x 128 element size error matrix filling

e([1,127],0) are computed. The rest of the area is filled moving from left to
right and from bottom to top. Backward search for the path with the minimum
error starts when the error matrix is filled. Steps 2—6 are repeated for all K
words in the dictionary. Every second matrix element includes the error value
of the previous element, thus the error matrix cannot be filled by several pro-
cesses in parallel. The chosen way to accelerate the matrix calculation is a
pipelined preparation of values a;—a4 (Fig. 3.6).

In step 5 the error matrix is filled using a sliding 2x2 size window. El-
ement a4 is calculated as the sum of the current Euclidean distance e(x;, y;)
with the minimal distance at neighbouring points:

as = e(x4,y;) + min(a, az, az). (3.2)

Here z;, y; are the row and column indices at ¢-th iteration. Initially
e(xi,y;) = e(1,1), while a3 = €(0,1), ap = €(0,0) and a3 = ¢(1,0). In
the next iteration the window is shifted to left by one element, thus:

next next
a; = a4, ag = as. (3.3)

Only element a3 must be constantly read from the memory at address
addr(aj™). As the BRAM is one-dimensional, the address mapping from
2D into 1D is implemented by the index decoder described by:

addr(aj™) = z; + 128(y; — 1), (3.4)

here addr is the addressing function.
The Euclidean distance is calculated in parallel with the calculation of the
minimum neighbour value, as shown in Fig. 3.7. There is no need to separately

3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER... 83

compute and fill the Euclidean distance matrix, because of pipelined imple-
mentation. The error matrix memory is implemented on the dual port BRAM
memory. In one clock cycle this memory is accessed twice: while reading
new a3 and writing calculated a4 value. One DTW calculation (including a
backward search) needs 16 640 clock cycles to make one comparison.

C;_iicl

‘ Features from dictionary }

C;vord

‘ One word features |

Error matrix
128x128 x20b

Fig. 3.7. Implementation of Euclidean distance and error matrix filling

The block diagram in Fig. 3.7 presents fast Euclidean distance estimation
using 11 additions, 12 subtractions, 12 multipliers and one square root core.
The square root core has pipelined implementation. The calculation of Eu-
clidean distance e(x;, y;) is done per one clock cycle. The difference between
vectors is estimated by:

12 9
(i i) = | D (e2() — () (3.5)
j=1
here e(z;, y;) — Euclidean distance between two vectors c¢di and ¢ord; ¢ord () —
jth feature index of ith feature vector in one word feature memory; ci(5) —
Jth feature index of ¢th feature vector stored in dictionary.

To ensure synchronous filling of error matrix the data from dictionary, one
word buffer and error matrix are read out in parallel. Because the BRAM
memory has one clock latency for data read, therefore the valid address must
be prepared before accessing the data. Therefore the address counter is imple-
mented as separate process independent of the error calculation process. These
two address and error estimation processes run synchronous. The advantage of
hardware implementation is the pipelined calculation of error matrix. At each

84 3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER...

rising edge of clock new error e(z;, y;) value is calculated and stored in error
matrix memory immediately.

LT R
\‘\‘\\\\\\\‘s‘/

Features from dictionary 00 Cong)t%ntly shifted features

Fig. 3.8. The surface of the dynamic time warping error matrix with
constrained area outlined

In step 6 the use of border constraints additionally accelerates the DTW,
algorithm up to 2.6 times without a negative influence on the recognition ac-
curacy. Only 38 % of the total matrix area is used (see Fig. 3.8). The error
values near the corners are always higher than in the central part of the matrix.
Therefore, the back path never comes upwards and 62 % of the matrix area can
be ignored. The minimal value of the error path is iteratively calculated using
the same 2 x 2 size sliding window by:

next

€min = €min T min(ab a2, a3)‘ (3.6)

Initially emin = €(127,127), a1 = e(126,127), az = e(126,126) and
ag = e(127,126). At the next rising edge of clock the sliding window is
shifted to the element with the lowest error at address described by:

(x4,y;) = addr (min(al, as, ag)). (3.7)

That corresponds to the following updates:

al™ = e(x; — 1,:), 3.8)
ay™ =e(x; —1,y; — 1),
age’“ =e(x;,y; — 1).

3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER... 85

The minimal error path epi, is computed until (x;,y;) arrives at (0,0)
location. The steps 2—6 are repeated K times, where K is the number of words
in context dictionary. And finally, in step 7 the calculated argument of the
minimal error ep;y (k) shows the index of recognized word.

A single DTW, core is able to compare maximum 90 word features in
11.61 ms (at 7800 words/s) satisfying real-time requirements. To check a part
of context dictionary larger than 90 words, there is proposed accelerated pat-
tern matching below.

3.3.2. Accelerated Pattern Matching Intellectual Property
Core

The idea of pattern match search acceleration is based on the assumption that
the difference between pattern to be recognised and the reference, given in
dictionary is close to the difference of reference, selected for matching and ref-
erence that should be found. In case this pattern matching technique is used for
isolated Lithuanian word recognition, the matching error between the pattern
extracted for word “traukti” and randomly selected reference “augti” should be
close to the matching error between reference word “augti" and reference word
“traukti", stored in the dictionary.

In order to apply given idea, the differences between references inside dic-
tionary should be estimated. The differences are estimated using DTW based

x10% ‘ ‘
a I Rcference No. 6
Reference No. 12
6.5 [
6
k=
£ 5.5 :
(8]
5 =
4 J}
0 20 40 60 80 100

Reference number

Fig. 3.9. Reference-to-reference error distribution, calculated for two
references

86 3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER...

5% 0t
I Reference No. 6
4.8 Reference No. 12 i
4.6 il

4.4

€min

4.2
4

48 47 51 44 8349 5973 4075 94 1 3843 97 48 87 81 8626 78 99 19 56

Reference number
Fig. 3.10. Comparison of the 12 neighbouring reference number
distribution for two references

algorithm. The estimation results are added to each word as a (N — 1) x2 size
matrix M;, where N is the number of references stored in dictionary. This is
a connection of two unique vectors: one with calculated reference-to-reference
matching errors for each r;, where ¢ = 1,2,..., N and another — constructed
from reference indices, corresponding to calculated matching errors.

The sorting of calculated reference-to-reference matching errors in ascend-
ing order indicates references, which has similar distance (calculated using
DTW based algorithm) to analysed reference r;. Fig. 3.9 shows the compari-
son of reference-to-reference distance estimation results for two references.

As it is seen in Fig. 3.9 for 6'" reference we may find several references in
database that are more similar to this reference than others — the error increases
with noticed nonlinearity (Fig. 3.10). These references are potential causes of
pattern recognition failures. In order to reduce the risk of pattern recognition
failure, the DTW matching is calculated between pattern p and a set of refer-
ences, situated in the reference-to-reference matching vector neighborhood.

An example of reference-to-reference error matrix for 100 references is
shown in Fig. 3.11. As it is seen in the figure, the reference-to-reference error
matrix is symmetrical. Taking into account this feature we may reduce the
amount of additional data to store in the dictionary. However, in that case the
sorting of the values will require additional algorithm to be applied.

The pattern recognition algorithm is presented in Algorithm 3.1.

Algorithm 3.1 (The double random seed matching algorithm)

Require: Load feature vectors.
1: A. Random selection of initial reference r;, here 7 is the index of reference in
non-sorted dictionary set C'.
2: B. Compute the DTW matching error ey, ., for pattern p and initial reference r;.
3: while Indicator of match M = 0 do
4: 1. Select nreferences r, = {rj41,7;42,...,7j4n}, forj = i, having reference-

3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER... 87

to-reference matching error e, higher than estimated e, -, .

Tec,
5. forj=1:ndo
6: Compute the DTW matching error ey ., 4. -
7. end for
8: 2. Select m references ry = {rj_1,7;-2,...,7j—m}, for j = i, having intra-

dictionary matching error e, ... lower than estimated e, ;..
9: forindxr =1:mdo

10: Compute the DTW matching error ey ., .-
11: end for
12: 3. Find the minimum matching error:
€min = min{ep,rj,m YT —mt1 s €Dy };
13: if ein = €, then
14: r; s set as a matched reference to pattern p. M = 1.
15: else
16: A new initial reference is selected r; at point with minimal error ep,iy,.
17: end if

18: end while

19: C. Selection of the second reference 7.

20: D. Compute the DTW matching error e, .

21: while Indicator of match M = 0 do

22: 1. Select n references ry, = {rj41,7j4+2,...,7j4+n}, for j = a, having intra-
dictionary matching error e, ... higher than estimated ey, ., .

23: forj=1:ndo

24: Compute the DTW matching error ey, -
25: end for
26: 2. Select m references ry = {r;_1,7j_2,...,7j—m}, for j = a, having intra-

dictionary matching error e, ... lower than estimated ey, ., .
27 forj=1:mdo

28: Compute the DTW matching errorep ;...
29: end for
30: 3. Find the minimum matching error:
€min = min{ep . €pri i o}
31: if ein = €, then
32: T4 18 set as a matched reference to pattern p. M = 1.
33: else
34: A new initial reference is selected r, at point with minimal error ey, .
35: endif

36: end while
37: E. Select pattern match with lower error: min{r;,r,}.

Taking into account that reference stored in the dictionary has (W/2) xO
coefficients (here W is the width of the signal analysis window used for pa-
rameter estimation; O is the analysis order), adding additional matrix M to
each reference will increase the dictionary by (/N — 1) x2 values. It can be
estimated by using the following equation:

88 3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER...

x10%
100
r; 90 8
—>
80 7
70
g i 6
g 60
Z 5
g 50
5 4
S 40
Q
o 3
30
rqe 20 2
—>
10 1
0

0 10A20 30 40 50 60 70 8OA 90 100
Ta Reference Number T

Fig. 3.11. Illustration of reference-to-reference error matrix

I 2 x (N —1)% x 100

- Nx(W/2)x0 "’
here L is the additional percentage amount of data to be loaded to memory;
N is the number of references. For example, the dictionary consisting of 100

words, near 13 % of the data amount will be additionally load together with
references in dictionary.

(3.9)

3.4. lterative Voice Response Interface

Along with the implemented features extraction and comparison [P cores on
FPGA, we are developed iterative voice response algorithm on the integrated
ARM processor for human communication with the LSR. Through the iterative
voice response interface (Fig. 3.12) the person is able to control devices hands-
free and by voice only. It contains three operational states selected by voice or
push-button. In a training state users can choose device type, give the name for
commands and select device control type. To improve the recognition accuracy
the recognizer asks to pronounce each new name of the command twice. Dur-
ing the training recognizer saves pronounced word features and a voice record.

3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER... 89

[Operation state selection by voice or push-button]

\—El. Training for a new device]

Recognizer offers a specific device and way to control it

User pronounces name of device and its commands twice

User choses control type: ZigBee, infrared or wired connection

%2. Modification of existing device command J

Enumeration of current commands already stored in dictionary

Addition of a new command if free space is available

Rewriting of current command or device elimination from dictionary

%3. Device control by voice]

Recognizer constantly listening for device or command name

Execution when device or command was recognized and not cancelled

Stand by. Waiting for activation word

Fig. 3.12. The behavior tree of the iterative voice response algorithm

The command elimination or editing is performed under the modification state.
User can check the list of already saved commands by asking the recognizer
for enumeration of word stored in dictionary. In the third state a specific com-
mand is transmitted to the destination device, when the pronounced words are
recognized as the names of device and its control command. The recognizer
goes to the stand by mode if the words are not pronounced longer than 30s.
And it wakes up by pronouncing an activation command.

The information about current state and proper command recognition is
guided by RGB light diode in conjunction with sound response. For user con-
venience the state selection is also available by button on the front panel of the
recognizer. Next two buttons are dedicated for volume control and switching
between two voice sources — speaker or headphone.

The algorithm (Fig. 3.12) implemented on ARM communicates with the
feature extraction and comparison [P cores through the control lines and shared
memory. The speech signal, word features and new infrared commands are
transfered from FPGA to ARM during the training state with the aim to store
it on the flash memory. The written software on the ARM controls which part
of the context dictionary must be load to a dictionary memory on FPGA de-
pending on the actually controlled device. A pronounced and correctly recog-
nized command can be cancelled by voice in 2 s by pronouncing word “reject”

90

3. IMPLEMENTATION OF LITHUANIAN SPEECH RECOGNIZER...

(“atSaukti” in Lithuanian) if user decides to reject the further execution. Af-
ter rejection identification the previuosly recognized command is not executed
and recognizer is listening for next command. The results of isolated word
recognition speed and accuracy are presented in the next chapter.

The technical details of created isolated word L.SR are following:

ZynQ-7000 chip with Artix-7 FPGA and Dual Core ARM Cortex A9.
FPGA clock frequency 50 MHz, ARM — 667 MHz.

Programmatically selectable 12th order speech analysis methods: LPC,
LPCC, LFCC and MFCC.

Signal quantization: 8-16b.

Signal sampling rate up to 44.1 kHz.

Word matching speed 7800 word/s.

Speech recognition rate up to 97 %.

Device control by: IR, ZigBee, UART, USB.
FPGA slice logic utilization 27 %.

Power consumption 3.6 W.

1GB of DDR3 SDRAM.

3.5. Conclusions of the 3rd Chapter

L.

A first working prototype of Lithuanian speech recognizer in FPGA for
disabled persons is created. A new accelerated pattern matching algo-
rithm uses constrained dynamic time warping and enables to recognize
words 2.6 times quicker without the loose of recognition accuracy.

The optimized FPGA intellectual property (IP) cores are developed
and experimentally verified in Lithuanian speech recognizer. Hard-
ware optimized single isolated word matching (DTW,) is executed in
128 ps achieving 7800 word/s comparison speed.

The developed accelerated pattern matching algorithm requires addi-
tional up to 13 % of dictionary storage space in order to save reference-
to-reference matching values for 100 word dictionary, computed using
DTW algorithm.

The implemented feature extraction and comparison [P cores, used the
speech recognition system, are accelerated for device control in a real-
time.

Experimental Verification of
Developed Intellectual Property
Cores

In the following results on the performance experiments of numerous LLMLP
IP core implementations are presented. In Section 4.1 the influence of con-
strained bit width on the accuracy of LLLN with its activation function is ex-
perimentally verified changing synapse bandwidth, number of bits dedicated
for each signal, memory size and gain of the activation function. The selection
of optimal training scheme for LLN is investigated with respect to the synapse
order, number of inputs and analysing logic resource utilisation and latency.
The efficiency of proposed technique for LLMLP generation (cf. Section 2.2)
is compared with a commercial tool considering on improvement of sampling
frequency and equivalent resources utilization. The qualitative LLMLP im-
plementation evaluation is investigated through Pareto optimal frontiers (cf.
Section 2.1).

In Section 4.2 the experiments of isolated word recognition accuracy and
speed for different speakers, signal to noise ratios, features extraction and ac-
celerated comparison methods are presented. The results of word recognition
speed and accuracy are compared with initial soft-core based recogniser im-
plementation. The performance of developed IP cores for Lithuanian speech
recognizer (cf. Chapter 3) is experimentally verified taking into account exe-
cution speed and FPGA resource utilization.

The research results are published in author publications (Sledevi¢, Nava-
kauskas 2016, SledeviC et al. 2013, Sledevic¢ et al. 2013, Sledevic, StasSionis
2013, Sledevi¢, Navakauskas 2015, Sledevi¢, Navakauskas 2014). The main

91

92 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

results are announced in international: “Electronics” (Palanga, 2015, 2013),
AIEEE (Riga, 2015), AIEEE (Vilnius, 2014), EMS (Manchester, 2013), EU-
ROCON (Zagreb, 2013), ICCCCE (Istanbul, 2013); and national “Science —
Future of Lithuania” (Vilnius, 2016-2014) scientific conferences.

4.1. Investigation of Lattice-Ladder Multilayer
Perceptron and its Implementation Technique

The experimental verification begins from accuracy investigation of basic build-
ing block of LLMLP. The aim of this investigation was to get insights on the
selected neuron model fixed-point architecture (necessary to use word length)
and its complexity (required number of LUT and DSP slices and BRAM size)
by the evaluation of the reproduced by lattice-ladder neuron accuracy of band-
width and central frequency as also as output signal normalized mean error.
Next, the experiments on neuron activation function was performed. The aim
of this investigation was to get insights on the distortions of the selected neu-
ron model output by the evaluation of transfer function RMS error and neuron
output signal mean and maximum errors while changing the gain and memory
size of the activation function.

Afterwards, optimization of the latency and DSP slice usage for the LLN
and its simple gradient training algorithm implementation on FPGA is inves-
tigated. Four alternative regressor lattices to be used in LLN training were
considered and experimentally evaluated. The experiments of LLLN implemen-
tation technique were performed by varying the number of synapses and the
order of LLF. Using the resource and latency criteria the optimized LLN IP
core implemented by our technique is compared with the same LLN created
in commercial tool Xilinx Vivado HLS. The LLMLP is investigated through
Pareto optimal frontiers changing the number of layers, neurons and synapse
order.

4.1.1. Word Length Selection

We are interested in comparatively narrow band single (L = 1, N O =1,
&(s) = Digent(s)) lattice-ladder neuron (LLN) implementation. Thus dur-
ing the investigation the bandwidth of synapse was changed in a preselected
range. The reference bandwidth f,, can be normalized taking into account the
sampling frequency f; and then expressed in percentages by f, = ||fyl| =
(2fv/ fs) - 100 %. For the experiments the frequencies f; = 11,025Hz and
range of fi, € [2,1380] Hz is selected, that yields normalized bandwidth range
fb € [0.04, 25] %.

4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL... 93

The normalized white noise signal is used as an input sjy(n) = w(n).
The neuron training circuit is considered to be correct if all ©; and v; weights
represented in fixed-point arithmetics converge to the corresponding truncated
parameters from the reference design. Therefore, the magnitude responses for
the LLN with and without regressor lattice are the same.

The 18 b and 25 b precision is investigated because of FPGA constrains —
one and two DSP slices are required to multiply corresponding word length
signals. The 10b and 12 b precision is taken as the possible alternative imple-
mentation for low accuracy LLN.

Bandwidth and central frequency relative errors ey, €. by (2.15) as well as
output signal normalized MAE &, by (2.16) were estimated for each specific
reference bandwidth f;, LL neuron implementation and afterwards correspond-
ing normalized relative errors €, (fp), €.(fb) additionally were calculated. Ac-
curacy results for different word length implementations are summarized in
Fig. 4.1. From Fig. 4.1a follows that the narrow band filter requires denser grid
on zero-pole plane near the unit circle. The narrower band is, the more bits are
necessary to preserve low normalized relative error €, of the bandwidth.

While enlarging the bandwidth the ¢, decreases exponentially. The LLF
with wider bandwidth reach the same €, as LLF with higher precision, i.e., 12b
LLF with band of f, = 7 % has same 0.1 % mean error as 18 b LLF with band
of f,, = 0.1 % (Fig. 4.1a). Increase of the LLF precision not evenly improves
the ¢, for all bandwidths. The reason is in constrained address width of sin @j

and cos 1O ; implemented in LUTs.

For the narrow band filter until f, = 0.5 % the central frequency mean er-
rors €. don’t depend on implementation precision and exponentially decrease
while expanding the bandwidth (Fig. 4.1b). The use of one or two DSP slices
gives the same €. below f, = 20%. The output signal mean error (see
Fig. 4.1¢) decreases exponentially for wider normalized reference bandwidth.
The replacement of DSP slice by the LUT-based multiplier can be considered
when fp > 10 %.

4.1.2. Neuron Activation Function Implementation

We are interested in compact and enough precise hyperbolic tangent activa-
tion function @y,np () for lattice-ladder neuron implementation. Therefore, the
transfer function and output signal discrepancies are measured under different
BRAM size. During experiments BRAM size is increased 2 times in each step
from 64 B to 64 kB. The gain is increased linearly from 2 to 16. Other LLN
parameters are kept unchanged. Independent on the BRAM size two bytes pre-
cision is used for each sample of the approximated hyperbolic tangent. The

94 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

._
ON
O_

3

©

S

)

S

3

._
e

Central freq. norm. error, €. [%]

Bandwidth norm. error, €, [%]

)
10
107 a
w
10° - 10° -
10" 10’ 10’ 10" 10’ 10
Normalized bandwidth, fy, [%] Normalized bandwidth, fy, [%]
a) b)
2
0 ¢y e 10b
S —+12b

—=— 18b (1 DSP)
—+ 25b (2 DSP)

C___

(=1

Output signal norm. MAE, &, [%]
OC

I

= |

10" 10’ 10’

Normalized bandwidth, f [%]
©)

Fig. 4.1. Accuracy results for the second order lattice-ladder linear neuron
and its training circuit implementations on Artix-7 FPGA using different
word length: bandwidth a), central frequency b) and output signal ¢)
normalized errors dependencies on a normalized reference bandwidth

average and maximum errors (&), and &,,,,) are obtained by uniformly sam-
pling sin(x) on 10° equally spaced points = € [—1, 1].

The average and maximum errors of the activation function output de-
pends almost linearly on the LUT size as shown in Table 4.1. In comparison
with the (Armato et al. 2011), the &,,, less than 1.5 % can be achieved using
512B LUT size or only 0.09 % of total BRAM in xc7z020 FPGA chip (Tom-
miska 2003) used here for experimental investigation. Maximum error less
than 0.4 % (Xilinx 2013c) can be achieved using 2kB of BRAM (one of 280
available BRAMs in xc7z020) utilizing only 0.36 % of total block memory in
FPGA chip. The large LUT ensures small error, e.g., 64 kB memory yields

4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL... 95

& = 0.01% and &,,, = 0.002 % (see Fig. 4.2), however utilizes 11.4 % of
available memory. Such high precision is very expensive as for single LLN,
however is useful for big neural networks with shared activation function.

Table 4.1. The hyperbolic tangent function implementation errors

BRAMsize [B] | 128 256 512 1k 2k 4k
S (Raean) [%] 1 054 027 013 0.06 0.03 0.02
E(Rugaw) [%] | 548 274 139 070 035 0.16

The maximum &, is observed at g = 3 for all tested memory sizes
(Fig. 4.2). The rising gain allows to access wider range of LUT addresses,
therefore decreases the quantization error and &,,, falls slowly.

.-..-:-lO--." -.12. 1 1%
/@/ Ga'm, g

8

Fig. 4.2. The normalized mean absolute error of the lattice-ladder neuron
output, while changing gain and block random access memory size for
approximated hyperbolic tangent function

The chirp signal with sampling frequency f; = 11,025 Hz and duration
N7 = 10s is used for the transfer function error estimation experiments. The
results of transfer function RMSE &3 (g, Reram) under two marginal gains
and three different filter bandwidths fy1 = 5512Hz, fy2 = 2756 Hz, fy3 =
200 Hz, are presented in Fig. 4.3, as a dependence on BRAM size. Decrease of
the bandwidth will reduce the gap between &5 limits. The &35 for LLN with
fo1 decreases almost linearly when memory size grows. The lower &% =
1.2x107% and upper &A%, = 1.8x 1073 limits belong to the LLN with widest
bandwidth using 2kB BRAM for activation function.

When LLN is set to pass through all frequencies f,; = 5512 Hz (Fig. 4.4),
then the error &5 decreases almost linearly increasing both gain and memory
size. The gain set to 2 yields highest error for a given memory size, because at

96 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

—v— fo1,9=16
—a— fo1,9=2 ||
fbg,g:16-
fb27g:2
.. fb3,g:16
- fo3,9=2

SIS NUUORSSOUNNURE SOUOU SRR SOUOUNRE ANUOR SOOTRR AUTOTRE SUOTTER Mo
64 128 256 512 1k 2k 4k 8k 16k 32k 64k
BRAM SiZC, RBRAM [B]

Fig. 4.3. The root mean square error of the lattice-ladder neuron transfer
function using different size look-up tables

g = 2 with the s(x) signal only 1/16 of the approximated hyperbolic tangent
can be accessed. Setting the LLLN to work in narrower frequency band fu3
increases the error &~ for activation function with higher gain and vice versa,
smaller gain (less nonlinearity in the activation function) decreases the &})k.
The increase of BRAM size more than 2 kB nonlinearly improves the error of
transfer function. Therefore, 2kB BRAM is identified as sufficient memory
size for activation function implementation as a trade-off between resources
and precision.

The LLN implemented in HLS tool was translated to the low-level model
described in VHDL for further synthesis and uploading to the FPGA. The tim-
ing analysis after circuit placement and routing shows that, in the generated
LLN circuit the hyperbolic tangent samples can be accessed with frequency
fT = 312MHz, while fT > 300 MHz is considered as a high maximum fre-
quency achievable in a practical FPGA systems (Dessouky et al. 2014; Ronak,
Fahmy 2014).

4.1.3. Lattice-Ladder Neuron Implementation

The single LLN (Fig. 4.5) is a basic building block of the LLMLP (L = 1,
N® = 1). In the following novel results on the investigation of a such neuron
with N = NO inputs and the M = M Wth order LLF synapses and together
with its training algorithm implementation in FPGA are presented. The main
aim of this investigation is to optimize the latency and DSP slice usage for
the normalized LLN and its gradient training algorithm. Four alternative re-

4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL... 97

L o 16k : 14 16
Ty 64K 6 8 10 12
i /&/ Gain g
Fig. 4.4. The root mean square error of the lattice-ladder neuron transfer
function, while changing gain and memory size for approximated

hyperbolic tangent function

gressor lattices to be used in LLN training are considered and experimentally
evaluated. The optimal resource sharing is approached by the LLLN data flow
graph partitioning into DSP slice subgraphs employing previously proposed

technique. The experiments are performed by varying the number of synapses
and the order of LLF.

The output of the LLN (Fig. 4.5) with N inputs and Mth order LLF as
its synapses is expressed by (1.3), when local flow of information in the lattice
part of filters for all ¢ inputs and all j sections is defined by (1.2).

98 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

gptanh)Sout (n)

Fig. 4.5. The lattice-ladder neuron

A single DSP slice is assigned for each LLN input and additional one
for the § estimation, thus the use of DSP blocks R}, depends only on the
number of synapses, IV:

g =N+ 1. .1)

The use of BRAM RR} + depends only on [V, too. 8 units of BRAM are
dedicated for non-linear functions and a single unit is used as a buffer for each
of 4 DSP slice inputs, thus:

RN =4(N +1)+38. 4.2)

For the comparison purposes, the use of logic resources RLUT MT and achieved
latency RJL\‘}‘ MT will be normalized to the maximal value over 4 types of inves-
tigated regressors:

LUT

NM‘I—RNM‘J'/maXRNM‘J" (4.3)
Lat Lat Lat

NM,T = RN,M,‘J’ / m%X RN,M,TJ" (4.4)

here T — set of considered LLMLP training types, T € {t3, t4, t11, ti2}.

The LUT relative utilization R}, ; and the relative latency R} , 5 are

independent on the number of inputs N, but depend on the LLF order M and
regressor type J (see results of experimental study in Fig. 4.6 and Fig. 4.7). If
LNUTMJ =1 (or R} NumT = 1), then the implementation of LLN with t,, regres-
sor is worst in a sense of LUT use (or achieved latency) over all tested types
of regressors at a certain order M of synapses. It is evident that in majority
of cases LLN implementations based on t;; regressor lattice were the worst.
Any R, 5 or Ry /5 value that is less than one shows how much the im-
plementatlon of LLN with T regressor lattice outperforms the worst case. At
M = 1the R%{; M.T and R%¥ N g values are arranged in a same order beginning
from the worst case with ;2 regressor to the best case with t3 regressor. The
LLN with t3 regressor saves 16 % of FPGA logic resources and has about 10 %

4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL... 99

0.82 i i i 1 1
0 5 10 15 20 25 30

The order M of lattice-ladder neuron

Fig. 4.6. The relative look-up table usage dependency on the order of
synapses of lattice-ladder neuron that were implemented in FPGA together
with the training scheme based on four different types of regressor lattices

0 5 10 15 20 25 30
The order M of lattice-ladder neuron
Fig. 4.7. The relative latency dependency on the order of synapses of
lattice-ladder neuron that were implemented in FPGA together with the
training scheme based on four different types of regressor lattices

100 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

less latency in comparison with t;o. When M € [2,12] the LLN with t;2 re-
gressor yields the shortest processing time. However for the t;5 regressor case
the advantage of LUT use is observer only when M € [2,5]. Beginning from
M = 13 the t3 and t4 are the two best regressors for LLN implementation.

In order to better outline found tendencies in Fig. 4.8 three cases are pre-
sented: resources qg.s, throughput gy, and both criteria optimization. Types
of regressor lattice to be used with specific order of synapses that guarantee
the best LLLN and its training implementation in FPGA are shown in color. Be-
comes clear that in major cases t3 regressor based implementation uses mini-
mum of LUT, while t4 regressor — guarantees the lowest latency. In the case of
LUT and latency optimization, t;5 regressor based implementation dominates
inarange M € [2,12] while the t3 — becomes superior in arange M € [13, 28].

Trainingg M6t EHt 4t W4

oo N TT TTTTTTTTTTITTITTITITTITIITT]
Grn (N | [[[[[[[T TTTTTTT]
CRNRCTI B

1 5 10 15 20 25 30
The order M of lattice-ladder neuron

Fig. 4.8. The best lattice-ladder neuron implementations in field
programmable gate array, when look-up tables, latency or both resources
are minimized: types of regressor lattice to be used when specific synapse
order M is needed

Fig. 4.9 shows the relative use of LUT in Artix-7 FPGA when LLN with
its training is implemented using the best (the minimum LUT usage) regressor
lattice. The LUT usage grows with the number of inputs and order of synapses
as expected. The simplest LLN (N = 1, M = 1) needs less than 1% of
available LUT, while ~ 35 % of LUT are necessary when moderate size LLLN
(N =10, M = 10) has to be implemented.

Similarly, Fig. 4.10 shows the latency in Artix-7 FPGA when LLN with its
training is implemented using the best (the minimum latency) regressor lattice.
The simplest LLN (N = 1, M = 1) implementation execution takes 90 clock
cycles, while moderate size LLN (N = 10, M = 10) implementation executes
in 300 clock cycles. Implementation latency dependence on the number of
inputs and the order of synapses can be roughly approximated by the plane
equation:

Riy =~ 22.5M 4+ 1.7N + 57.4 (4+4.2) [clock cycles]. 4.5)

4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL... 101

LUT utilization [%]

6

Paa,,
4
The number N of inputs 2 2 The order M of LLN

Fig. 4.9. The relative use of look-up tables in Artix-7 FPGA when
lattice-ladder neuron with its training is implemented using the best

regressor lattice

3004

2504

2004

1504

10

Latency [clock cycles]

10

6 S : 8
4 6

S 5 4 The order M of LLN

The number N of inputs

Fig. 4.10. The latency in Artix-7 FPGA when lattice-ladder neuron with its
training is implemented using the best regressor lattice

The timing analysis of the LLN and its training circuit after placement
and routing stage in ISE Design Suite 14.7 shows that the FPGA implemented
neuron can be clocked at 300 MHz. Therefore, the LLN with 10 inputs and
10th order synapses can process input data and learn at a million samples per
second speed.

102 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

4.1.4. Single Layer of Lattice-Ladder Multilayer Perceptron
Implementation

The LLN IP core generated by our technique is compared with the same LLN
core created in Xilinx Vivado HLS tool. For each NPE it is selected the iden-
tical 18 b precision for signal width. The neurons in both designs are imple-
mented in the way shown in Fig. 2.9 dedicating NPE for each synapse and one
additional for summation of synapse outputs and instantaneous error calcula-
tion. The both generated HDL designs of the IP cores are synthesized, mapped,
placed and routed in Xilinx ISE Design Suite 14.7. The resource and timing
reports are used to evaluate the performance of the implemented designs under
the maximal sampling frequency f, LUT equivalent resources and recalculate
the quality criteria: q’T"hr and g,

The ratio of throughput criteria q7,, / q%l;rs shows how much faster the
LLN can sample and learn the signals exploiting our design in comparison with
Vivado HLS. The ratio of the sampling frequency depends on the synapse order
M and the type of regressor lattice, as shown in Fig. 4.11. It will not depend
on number of neurons and layers, since their parallel implementation. The ratio
of gy, grows with the increasing of M and is in a range 3—11. The high ratio
is affected by the relatively low maximal clock frequency fHS of the Vivado
HLS generated cores, e.g., the synapse cores with a training type t3, t4, t11, t12
can be clocked by maximal frequencies 174 MHz, 179 MHz, 179 MHz, and
158 MHz respectively. However, synapse IP core generated by our technique

12
11+
10t
k)
£ 9
g Y
=
:C? 7+
e 6
= 6
= {3
5’ t4 i
4r = 41 |
+t12
3 T

0 2 4 6 8 1‘01‘21‘41‘61820
The order M of Lattice-Ladder Neuron
Fig. 4.11. The qry, criteria rate dependency on the order of synapses of
lattice-ladder neuron that were implemented in FPGA together with the
training scheme based on four different types of regressor lattices

4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL... 103

1.1

e o @
9 o o =
: :

HLS 43
ql:es/qRes [tlmes]

=3
=)}
T

k

0’40 2 4 6 8§ 10 12 14 16 18 20
The order M of Lattice-Ladder Neuron

4

Fig. 4.12. The ratio of resource criteria qg., dependent on the order of
synapses of lattice-ladder neuron that were implemented in FPGA together
with the training scheme based on four different types of regressor lattices

can be clocked at 320 MHz. The Vivado HLS cores also requires more clock
cycles to process signals inducing largest latency. The highest clock frequency
and lowest processing latency of our cores yields the gy, criteria improvement
up to 11 times.

The ratio of the resource criteria qx., / qgeLss shows how many times our
LLN core outperforms the Vivado HLS generated one in terms of LUT equiv-
alent resource utilization. In range of M € [2,4] our core is advantageous,
however in other M cases the Vivado HLS design uses less resources and the
utilization curve decreases with rising M, as is shown in Fig. 4.12.

The evaluation of the LLN performance through both ¢y, and qg., multi-
plied ratios shows, that our compiler generates at least 3 times more efficient
core in comparison with Vivado HLS. Due to the Vivado HLS tool can not
properly distinguish the DSP supportable subgraphs of LLN, our core com-
piler outperforms it by 3—10 times in investigated M € [1, 20] range.

4.1.5. Qualitative Lattice-Ladder Multilayer Perceptron
Implementation

The investigation of LLMLP is performed changing the number of neurons
N in each layer, synapse order M and total number of layers L. The LUT
and latency optimal type of regressor lattice was selected according to specific
synapse order and gy, (res Criteria, as it was shown in Fig. 4.8. The results of
different LLMLP configurations are described by Pareto efficient frontiers in

104 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

Fig. 4.13, Fig. 4.14, Fig. 4.15. Each connected lines of points represent Pareto
optimal choices of the possible solutions for certain LLMLP configuration.
All other points, which not belongs to Pareto frontier, are not shown here. The
bold dashed lines show resources upper bounds of the existing FPGA fami-
lies. These lines helps to select proper FPGA chip for final implementation of
LLMLP core.

X108

e[, =2
2.5H L=5 |
Ha— L =10---mcmcmed sl e m e i e e e ci e e/l e
L =20 Virtex—7

= 2 e S e S S
i Kintex—7
0.5 T LlloSoioioiiic
Artix—7
(L — _ — A
0 2 0.4 0.6 0.8 1 1.2

Fig. 4.13. Pareto frontiers of lattice-ladder multilayer perceptron
implementation with different number of layers L when M = 10, N = 10

%106

—~M=2
____________________ M=5 |
Artix=7 | = M=10
M =20
% 1 2 3
A [MHZ]

Fig. 4.14. Pareto frontiers of lattice-ladder multilayer perceptron
implementation with different orders M when L = 10, N = 10

4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL... 105

%109

—-N=2
N=5

1t Kintex-7 |
e e R U SO S i
Artix—7
HO\?Z\/./_\/\.
OJOF 02 04 06 08 1 12

i [MHZ]

Fig. 4.15. Pareto frontiers of lattice-ladder multilayer perceptron
implementation with different number of neurons N when M = 10, L = 10

All the investigated LLMLP configurations have same tendency reflected
on the Pareto frontiers, where the increase of the throughput criteria gy, gives
the increment of LUT equivalent resources R_,,r and vice versa. Thereby, it
confirms the state of Pareto efficiency, when it is impossible to make one in-
dividual quantity better without making second one worse. The density of the
points on a front is defined by the optimization process. On the left side of
Pareto front it is observed that the optimizer tends to add NPEs to the LLMLP
design with a small step forming a single layer first. Going to the right side of
the frontiers the distribution of point is sparse due to larger resource increas-
ing step, since the optimizer reproduces the layers and parallelizes forward and
backward pass circuits. The right side points on the frontiers define the maxi-
mal sampling frequency for the particular LLMLP. The further increase of the
maximal frequency is limited not by the signal latency in the LLMLP circuit,
however because of the constrained FPGA resources.

The points in Pareto frontiers, which are above the Virtex-7 bound, show
that there is impossible to implement concrete configuration LLMLP with
maximal sampling frequency on the real 7th series FPGA chips.

4.2. Investigation of Lithuanian Speech
Recognizer

The experimental verification of our created speech recognizer begins with the
comparison to the initial Lithuanian speech recognizer (LSR) devepoled by

106 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

other researchers (Tamulevicius ef al. 2010). Afterwards, the isolated word
recognition accuracy is comparative evaluated for records of different speak-
ers and four features extraction algorithms. The robustness of features extrac-
tion algorithms was tested recognizing the speech records at different signal
to noise ratios and w/o signal preprocessing using LLN. Finally, the execution
speed of developed IP cores for LSR is experimantally verified.

4.2.1. Comparison with Initial Developments

A previous FPGA implementation (Tamulevicius et al. 2010) was used as a
benchmark for the evaluation of the current implementation. Both recognizers
were tested in recognition of the Lithuanian isolated words (loaded to FPGA
sequentially as *.wav files) using the same LFCC features extraction.

The used dictionary in both implementations contains 100 unique words.
All these words are often used in daily speech: 51 nouns, 23 verbs, 8 adjec-
tives, 6 conjunctions, 5 adverbs, 4 pronouns and 3 prepositions. The dictionary
contains: 1 word with 1 syllable, 57 words with 2 syllables, 31 words with
3 syllables, 7 words with 4 syllables, and 1 word with 5 syllables.

Recognizers were tested in a speaker dependent mode. All utterances were
recorded in the office environment. 10 speakers (5 females and 5 males) par-
ticipated to record the utterances. 10 sessions of 100 words were recorded for
each speaker. Records of first 6 sessions were used in creation of the dictionary.
Recognizers were tested using records of remaining 4 sessions. The average
97.7 % recognition rate over 40 experiments is achieved for the current imple-
mentation against 92.8 % for the previous implementation (see 1 and 4 columns
in Table 4.2).

The important difference between previous and current recognizers is in
the speech sampling frequency. The current fully hard-core implementation
of the Lithuanian isolated word recognition uses a higher sampling frequency
(fs = 11.025kHz), thus gives the 4.9 % better recognition accuracy in compar-
ison with the FPGA based soft-core implementation (f; = 6 kHz). It is worth
mentioning that in the hard-core implementation only integer types of data
are used, while in the soft-core implementation — float type of data was used.
Moreover, the signal quantized in 16 b was used in the previous soft-core based
implementation. In the current implementation an incoming speech signal is
quantized in 8b. Despite the principal algorithm changes and simplifications
(particularly in FFT data depth and logarithm computation) it does not reduces
the speaker dependent recognition rate.

Recognizers under investigation use the same dictionary, thus the duration
of their recognition sub-processes can be directly compared. Only difference
between clock frequencies needs to be taken into account. The sub-process

4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL... 107

Table 4.2. Lithuanian isolated word recognition results

. Time Clock | Recognition

Recognition Stage
[ms] [MHZz] Rate [%]

Previous Implementation (f; = 6 kHz)
Feature Extraction 1370.000 100 9.3
Comparison 22.400
Current Implementation (f; = 11.025kHz)
Feature Extraction 8.520
Comparison 0.333 50 97.7
Comparison (with constr.) 0.128
Improvement [times]
Feature Extraction 160
Comparison 67 2 +5 %
Comparison (with constr.) 174

of feature extraction (from 1.5s duration signal) takes 1370 ms and 8.52 ms
in previous initial and current implementations correspondingly (see columns
1-3 of Table 4.2). The hard-core implemented LFCC features extraction is
accelerated 160 times, despite the used 1.8 times higher signal sampling fre-
quency and twice lower main clock frequency. That actually recalculates to
320 times (160x2) speed up of feature extraction process.

The right way to evaluate the comparison sub-process is to measure the
time required to calculate one DTW in both implementations. It appears that
22.407ms is required in the previous implementation and 0.333 ms in the
current implementation (without constraints) to calculate one DTW. The ad-
ditional use of border constraints reduced the DTW calculation duration to
0.128 ms, thus 348 times higher acceleration was achieved.

It is important to emphasize that the current recognizer is able to compute
approximately 7800 DTW/s at a relatively low (compared with CPU or GPU)
50 MHz clock frequency. On the other hand, only 1 s is needed to find the best
match of up to 1.5s duration signal features in the dictionary of records with
the total length of 11700s (3.2h). In order to take this advantage fully the
connection speed of approximately 17 MB/s with the external dictionary has
to be ensured.

A hard-core implementation of the Lithuanian isolated word recognition
utilizes in total 38 % of FPGA slice memory, as is shown in Fig. 4.16. It is
1.75 times less than the soft-core based algorithm implementation. There is
enough logic memory space to duplicate a few DTW units and run them in
parallel to reduce the comparison time. The amount of DSP slices is reduced
from 35 to 21 units. The total number of BRAM units is increased by 46 %,

108 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

t %

A
100]

[J Unused
20 [oth
| | ers
g;b i B DTW
Z 707
8 60 Il Cepstrum
3 .
2 50 l Used in PI
[
S 0
E o
20
10
01

CI PI CI PI CI PI CI PI
Slices LUTs BRAMs DSPs

Fig. 4.16. Comparative FPGA utilization in: previous implementation (PI)
and current implementation (CI) versions

because the context dictionary is stored in the internal FPGA memory for fast
features access. The number of LUTs is reduced by 7 % in comparison with
the previous initial LSR implementation, as shown in Fig. 4.16.

4.2.2. Recognition Accuracy Tune-Up

The dictionary contains the isolated Lithuanian words pronounced by 5 male
and 5 female speakers. 4 sessions of 100 words were recorded for each speaker
in the office environment. The first session was used for the training and the
rest 3 sessions were used for the testing. The recognition rate was tested us-
ing original records and using the same words with 30 dB and 15 dB signal to
noise ratios (SNR). The aim is to determine most suitable features extraction
algorithm among MFCC, LFCC, LPCC and LPC for speaker dependent reco-
gnizer. The averaged results over male and female speakers without filtering
IP core are given in Table 4.3. The best average recognition rate was achieved
for original records using MFCC (93.2 %) and LFCC (93.0 %) features. The
LFCC (90.8 %) and little less LPCC (89.8 %) features are more robust to noise
when SNR is 30 dB. The LPCC (83.7 %) features give better recognition accu-
racy when SNR is 15 dB. The LPC features give the worst recognition rates in
all cases, comparing with others features extraction algorithms.

The recognition accuracy highly depends on speaker gender, tone of voice,
articulation and speed of pronunciation. It is important to diagnose the rea-
sons of differences in rates while using same features extraction method. Each
entry in the Table 4.4 and Table 4.5 evaluates the recognition accuracy over
three times repeated experiments. In the male (V;) speaker case there are two
speakers (M; and My) with high recognition accuracy over all features ex-

4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL... 109

Table 4.3. Averaged isolated word recognition results

Features Original | Records with | Records with
records SNR=30dB | SNR=15dB
MFCC 93.2 86.7 79.3
LFCC 93.0 90.8 72.4
LPCC 91.5 89.8 83.7
LPC 82.5 78.6 67.1

Table 4.4. Isolated word recognition rates for male speakers [%]

Speaker | M, | Mz | M5 | Ma | M5 | Average | With LLN
MFCC

Original | 100 | 98 | 91 83 86 91.6 0
30dB 9 | 95 | 83 76 78 84.4 +2.2
15dB 87 | 92 | 77 62 66 76.8 +5.0
LFCC

Original | 99 | 97 | 91 84 89 92.0 0
30dB 9% | 94 | 79 83 91 88.6 +1.8
15dB 91 | 72 | 65 69 75 74.4 +5.1
LPCC

Original | 99 | 95 | 90 77 79 88.0 0
30dB 94 | 91 | 77 84 88 86.8 +0.8
15dB 93 | 8 | 72 79 77 81.2 +4.5
LPC

Original | 91 | 8 | 73 68 57 74.8 0
30dB 79 | 82 | 57 66 64 69.6 +1.6
15dB 82 | 64 | 48 57 56 61.4 +2.8

traction methods and different SNRs. There are speakers (M4 and Ms) with
relatively lower rates comparing with others. These two speakers have low
tone of voice, therefore the spectral information is distributed in low frequency
domain. Some errors are caused by different pronunciation of the same word
in the following sessions.

In the case of female speakers (F;) the Fo has lowest rate. In the &5 records
the low-frequency periodic noise is observed. The speaker 35 pronounces the
words faster than J7, F3 and F4. It influences the accuracy, as is shown in
Table 4.5. The average recognition rate of the female records outperforms the
rate of male records in all features extraction cases (Fig. 4.17). The confidence
interval of recognition accuracy with 0.95 probability was calculated from the
Beta distribution law approximated by y? distribution (Kruopis 1993). Other
researchers declare similar 91-96 % recognition rates in the speech recognition
systems based on software (Lileikyté, Telksnys 2011; Maskelitinas, Esposito

110 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

Table 4.5. Isolated word recognition rates for female speakers [%]

Speaker | F; | Fo | F3 | F4 | F5 | Average | With LLN
MFCC
Original | 98 | 87 | 98 | 99 | 92 94.8 0
30dB 94 82 91 | 97 | 81 89.0 +1.8
15dB 92 | 76 | 83 | 93 | 65 81.8 +4.7
LFCC
Original | 95 | 8 | 95 | 99 | 95 94.0 0
30dB 95 85 93 | 98 | %4 93.0 +0.2
15dB 67 65 72 | 81 | 67 70.4 +4.2
LPCC
Original | 97 | 8 | 98 | 99 | 92 95.0 0
30dB 97 | 8 193199 | 90 92.8 +0.6
15dB 87 74 83 | 98 | 89 86.2 +4.9
LPC
Original | 93 | 87 | 92 | 97 | 82 90.2 0
30dB 89 | 81 92 | 95 | 81 87.6 +0.8
15dB 72 | 66 | 73 | 87 | 66 72.8 +3.3
| ‘ [0 MFCC
g M ‘ | . '\O LFcC
é“ \ |l LPCC
S e 05 W LPC
| | | | |
e M | — 389 3
22 E—
W
R
ﬁzﬁﬁ M | | 81 : :
“3 ‘ﬁ% 8 |
|

Recognition rate

Fig. 4.17. The average recognition rate of isolated word pronounced by male
and female speaker using different features extraction algorithms

2012; Wijoyo 2011; Zhou et al. 2011) and hardware (Cheng et al. 2011; Pan, Li
2012; Zhang et al. 2011) implementations.

The last column in Table 4.4 and Table 4.5 shows the recognition rate
improvement using the LLN (Fig. 4.5) in filtering IP core. The experiments

4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL... 111

with misrecognised words are repeated with the aim to verify the influence of
noise filtering on recognition rate improvement. The original isolated word
records are used to train the LLN. Therefore, no rate improvement is noticed
under “Original” data row. During the training stage the synapses adapt their
pass-band to voice band of certain speaker. The experiment result of 15dB
SNR records recognition shows that the rate can be improved up to 5 % using
filtering IP core. The rate is improved up to 2 % for records with 30 dB SNR.

An experimental investigation was performed in order to evaluate the per-
formance of the proposed double random seed matching algorithm. Taking
into account that the initial reference is selected randomly the number of ex-
periments were selected equal to 20 for each algorithm parameter set used
during experimental investigation. The M; and J sets of speaker dependent
original records of isolated words are used for the dictionary formation. A 100
Lithuanian speech words were selected for experimental investigation. Each
word is recorded during four different record sessions.

The success of pattern matching depends on:

« the differences between signals;
« features selected for matching;
 pattern matching algorithm.

The performance of DTW based matching using experimental data was
performed using different feature metrics for the speech signal, such as LFCC,
LPC, LPCC, MFCC to find the best features for speaker dependent isolated
word recognition. The Mel-scale based cepstrum coefficients MFCC were se-
lected as the best feature vectors by comparing the pattern matching results be-
tween different speech recording sessions. The use of MFCC and a full search
based on DTW let us receive 99-100 % precision on isolated word recognition
for the best case My and F4 sets.

The experimental investigation of double random seed matching algorithm
should find the answer to the following questions:

« Do the selection of initial reference r; has the influence to the matching
performance?

o How the number of neighbouring reference-to-reference matches se-
lected in Algorithm 3.1 affects the number of pattern matching fail-
ures?

¢ Do the use of additional initial reference r, may reduce the number of
pattern matching failures not increasing the number or DTW compu-
tations twice?

The mean number of computations performed using one initial reference
(r;) and two (r; and ry) is shown in Fig. 4.18. The lower curve shows the

112 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

500F -~ Double search||
- - -Single search

2 4 6 8 10 12
Number of neighbouring references

Fig. 4.18. Illustration of the computational load dependence on the number
of selected neighbouring references

100 w \ ‘ ‘

80F B
707 I 1
60¢ I -
50r o 1
401 ,1 1
30r / 1
Tg I// i - Dpuble search ||

- *Slngl‘e search

Recognition accuracy [%]

00 2 4 6 8 10 12

Number of neighbouring references

Fig. 4.19. Pattern match rate dependence on the number of selected
neighbouring references

amount of DTW computations performed to make a decision accordingly to
the rule of the Algorithm 3.1, proposed in Section 3.3. The upper curve shows
the total number of DTW computations that should be performed if additional
reference r, is used for matching. It can be noticed, that the total amount of
computations rises with lower speed comparing to the situation with only one
reference (r;) selected. However we should notice also, that at least 30 % of
references should be compared to make a decision when both r; and r, are
used.

4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL... 113

The use of additional reference r, increases the precision of pattern match-
ing significantly (Fig. 4.19). Comparing the number of correctly matched ref-
erences (Fig. 4.19) and the number of computations performed (Fig. 4.18) we
see that the double increase of the number of neighbouring references, used
for matching, has a little impact to the number of correctly matched patterns.
Additional 3-4 % of matching precision may cost the increase of number of
DTW computations from 30 % to 38 %.

The matching rate should be always put in front of the computational load
of the algorithm. However for the real-time application of the algorithm, e.g.,
implementation of the algorithm in speech recognition based portable con-
troller, the high computational load may limit the size of the dictionary, that
could be applied and may consume too much power from the battery, making
the controller not portable anymore.

4.2.3. Execution Speed Determination

The time-line diagram of feature extraction and comparison stages is shown
in Fig. 4.20. The gray and white rows mark the amount of time needed for
FPGA-based and CPU-based computations respectively (Matlab was used as
software running on personal computer (PC) with 50 % usage of 3 GHz CPU).
CPU-based MFCC, LPCC and LPC extraction is more than 10 and 5 times
faster respectively. The higher calculation speed is strongly influenced by 30
times higher CPU clock frequency. The advantage of FPGA against CPU is
observed in LFCC and DTW calculations. FPGA-based LFCC runs 1.5 times
faster than CPU-based because of simplifications in logarithm and FFT core
employment. FPGA-based DTW and DTW, calculation is speed-up more than
280 times in comparison with same algorithm implemented in Matlab.

E——
MECC 3304 s

0 285 s O FPGA
O CPU
) 3349 us
LPCC
H 313ps 11610 us
Lpc 5 1G0THS The bound for
real-time
66 Us rocessin
LFCC] 102 ﬁs P £
one DTW 2 333 us 94100 pus .
one DTWC] 128 us 36320 us
B >
0 1000 5000 10000 t[ps]

Fig. 4.20. The time-line diagram of feature extraction and comparison
stages based on FPGA and CPU

114 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

In order to run recognition in real-time the feature extraction delay must
be less than 11.61 ms. All feature extraction cores satisfies the requirement for
operation in a real-time. Duration of LPCC or MFCC calculation is more than
50 times longer in comparison with LFCC calculation time. The reason is the
linear prediction implementation on soft-core processor. The autocorrelation,
LFCC and DTW modules run at 50 MHz, while the soft-core processor runs at
100 MHz clock frequencies. The delay of signal processing is very convenient
to present in a time-line, as is shown in Fig. 4.21.

Calculation of LFCC features for one word takes 66 ps. This is 174.8 times
faster than real-time recognition requires. LPCC feature extraction takes 3349 s
and it is 3.46 times faster that real-time operation requirement. Similarly, the
MECC are calculated 3.51 times faster than real-time operation requirement.
Therefore, one soft-core processor can be used for LPCC or MFCC analysis
of speech signals from 3 different data channels simultaneously. The delays
for one DTW and DTW. process are 333 us and 128 us respectively. In non
real-time mode the whole set of reference words is sequentially analyzed by
DTW (or DTW,) algorithm and it takes 33.30 ms (12.81 ms in DTW,, case).
This timespan does not enables real-time recognition because only 34 DTW (or
90 DTW,) comparisons are performed in 11.61 ms. In order to make system
more applicable and usable with larger dictionaries it is proposed to use acti-
vation word to initiate the recognition process. Recognition of this activation
word will require only one DTW comparison in real-time. After the successful
recognition of activation word the system captures pronounced utterance and
recognizes it in real-time if number of comparable words is less than 90, oth-
erwise the word will be recognized in non-real-time mode with 7800 DTW/s
speed.

3304ps
& SFTMEL LGS, DOT —— > MFCC(1, ..., 12)
1682us
Hanning window | > Cepstrum of LPC > LPCC(1,...,12)
s 1662us
il UHWHM”““w” ““““ i—t—> Autocorrelation Levinson-Durbin | - LPC(1,...,12)
; ‘H : 66Ls
| 256 samples | ‘

> FFT, ABS, LOGy, FFT —— > LFCC(1,...,12)

| Frame 0 Y Frame 2 | Frame 0 | .
\ «—> \ .
Frame 1 /K Frame 3 11610us # [us]
333us for DTW
128us for DTW,

Fig. 4.21. Time-line of features extraction and comparison

4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL... 115

The fastest version of software-based comparison process (Tamulevicius
et al. 2010) is speeded-up 134 times using DTW algorithm and 348 times us-
ing DTW, algorithm. LFCC feature extraction is speeded-up 160 times. The
average recognition rate is improved by 1 % (up to 94 %) using LFCC and by
2% (up to 95 %) using LPCC and MFCC features. Other researchers declare
similar recognition rates of 90-93 % on hardware-based speech recognizers
(Cheng et al. 2011; Choi et al. 2010; Pan et al. 2011; Veitch et al. 2010; Zhang
etal. 2011).

4.3. Conclusions of the 4th Chapter

1. The application of MFCC and LFCC is more suitable for recognition
of clean records. The LFCC and LPCC features are appropriate for
30dB environment noise. The LPCC features gives the best accuracy
at 15dB SNR comparing to other algorithms at same noise level.

2. Using filtering intellectual property (IP) core the recognition rate of
15dB and 30dB SNR records can be improved up to 5% and 2 %
respectively.

3. The double random seed matching algorithm reduces the computa-
tional load of the classical dynamic time warping (DTW) based speech
recognition algorithm by 62—-70 % keeping the 90-97 % rate of cor-
rectly recognised words.

4. Comparing with a previous soft-core recognizer the current hardware
based implementation accelerates features extraction up to 320 times.
The DTW with border constraints is speeded up 348 times.

5. For the investigated neuron with the bandwidth wider than 10 % of
normalized reference bandwidth even 10 b word length representation
is appropriate as its output signal mean error is less than 1 %.

6. The use of t;; regressor lattice must be avoided. For look-up table
(LUT) critical lattice-ladder neuron (LLN) implementations regressor
lattice t3 has to be used when M > 6. For latency critical LLN im-
plementations two regressor lattices are superior: t1o (M € [2,12)), t3
(M < 13). For LUT and latency critical LLN implementations (with
a few exceptions M = {1, 8}) the same regressor lattices are superior:
tio (M € [2,12]) and t3 (M € [13,28]).

7. Block RAM size of 2kB is sufficient to achieve tolerable less than
0.4 % maximum error of the approximated activation function output
with small RMS error £4% = 1.8x1073 of the lattice-ladder neuron
transfer function.

116 4. EXPERIMENTAL VERIFICATION OF DEVELOPED INTELLECTUAL...

8. The corresponding lattice-ladder multilayer perceptron (LLMLP) com-
piler generates at least 3 times more efficient LLMLP core in compar-
ison with Vivado HLS tool.

9. The Pareto efficient frontiers allows to properly select concrete FPGA
chip according to required amount of resources, maximal data sam-
pling frequency and LLMLP structure.

General Conclusions

The problem of efficient and straightforward implementation of operating in
a real-time electronic intelligent systems on FPGA was solved. The following
significant results for scientific field of Electrical and Electronic engineering
are obtained:

1. The technique for lattice-ladder multilayer perceptron (LLMLP) effi-
cient implementation in FPGA is created and experimentally affirmed:

1.1. The corresponding LLMLP compiler generates at least 3 times
more efficient core in comparison with Vivado HLS tool.

1.2. The developed neuron processing element based on FPGA DSP
slice structure guarantees less than 1 % output signal mean abso-
lute error, ey = 1.8x1073 root mean square error of the lattice-
ladder neuron transfer function and is speed optimal with only
7 clock cycle latency.

1.3. The elucidated experimental evidence grounded knowledge on the
quickest training algorithms of LLMLP and the best lattice regres-
sors T € {ts, t4,t11, t12} use for look-up table (LUT) and latency
critical implementations is incorporated in the technique.

2. Pareto frontiers estimation for the LLMLP specialized criteria of cir-
cuitry synthesis is proposed:

2.1. An optimal choice of FPGA chip according to given requirements
for LLMLP structure, sampling frequency and other resources is

done.
117

118

GENERAL CONCLUSIONS

2.2.

Two implementation strategies: throughput or resource optimiza-
tion, are developed.

3. The optimized FPGA intellectual property (IP) cores are developed
and experimentally verified in Lithuanian speech recognizer:

3.1.

3.2.

3.3.

The use of the lattice-ladder neuron LLN IP core improves the
recognition rate at least by 4 % for 15dB SNR records.

The application of MFCC and LFCC IP cores is suitable for recog-
nition of clean records. Moreover the LFCC and LPCC IP cores
are appropriate for use at 30 dB SNR, while only the LPCC deliv-
ers the best accuracy at 15dB SNR.

Hardware optimized single isolated word matching (DTW,) IP core
executes in 128 us achieving 7800 word/s comparison speed.

4. A first working prototype of Lithuanian speech recognizer in FPGA for
disabled persons is created and tested:

4.1.

4.2.

A new accelerated pattern matching algorithm uses constrained
dynamic time warping and enables to recognize words 2.6 times
quicker without the loose of recognition accuracy at 97 %.

The use of a new double random seed matching algorithm addi-
tionally can speed up the recognition up to 2.6 times with a disad-
vantage of recognition accuracy reduction till 90 %.

References

Ai, O. C.; Hariharan, M.; Yaacob, S.; Chee, L. S. 2012. Classification of Speech Dys-
fluencies with MFCC and LPCC Features, Expert Systems with Applications 39(2):
2157-2165. [see 37 p.]

Alberto de Albuquerque Silva, C.; Duarte Doria Neto, A.; Alberto Nicolau Oliveira,
J.; Dantas Melo, J.; Simonetti Barbalho, D.; Medeiros Avelino, A. 2015. Definition of
an architecture to configure artificial neural networks topologies using partial recon-
figuraton in FPGA, Latin America Transactions, IEEE (Revista IEEE America Latina)
13(7): 2094-2100. [see 29 p.]

Alecsa, B.; Cirstea, M.; Onea, A. 2012. Simulink modeling and design of an effi-
cient hardware-constrained FPGA-based PMSM speed controller, /[EEE Transactions
on Industrial Informatics 8: 554-562. ISSN 1551-3203. [see 10 p.]

Altera 2013. Chip Editor [interactive] [14 March 2014]. Prieiga per inter-
neta: <http://www.altera.com/literature/hb/gts/gts_gii52006.pdf>.
[see 32 p.]

Altera 2014. FFT IP Core User Guide [interactive] [25 August 2015].
Prieiga per internety: <https://www.altera.com/content/dam/altera—www/
global/en_US/pdfs/literature/ug/ug_£fft.pdf>. [see 38 p.]

Amin, H.; Curtis, K.; Hayes-Gill, B. 1997. Piecewise linear approximation applied to
nonlinear function of a neural network, Circuits, Devices and Systems, IEE Proceed-
ings - 144(6): 313-317. ISSN 1350-2409. [see 33 p.]

Amin, H.; Curtis, K.; Hayes Gill, B. 1999. Two-ring systolic array network for artificial

119

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_fft.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_fft.pdf

120 REFERENCES

neural networks, Circuits, Devices and Systems, IEE Proceedings - 146(5): 225-230.
ISSN 1350-2409. [see 31 p.]

Amudha, V.; Venkataramani, B.; Manikandan, J. 2008. FPGA implementation of
isolated digit recognition system using modified back propagation algorithm, in Proc.
ICED’08, 1-6. [see 36, 41 p.]

Anguita, D.; Carlino, L.; Ghio, A.; Ridella, S. 2011. A FPGA core generator for
embedded classification systems, Journal of Circuits, Systems, and Computers 20(2):
263-282. ISSN 0218-1266. [see 28 p.]

Anguita, D.; Ghio, A.; Pischiutta, S.; Ridella, S. 2008. A support vector machine with
integer parameters, Neurocomputing 72(173): 480 — 489. ISSN 0925-2312. [see 28 p.]

Arias-Garcia, J.; Braga, A.; Llanos, C. H.; Ayala-Rincon, M.; Pezzuol Jacobi, R.;
Foltran, A. 2013. FPGA HIL simulation of a linear system block for strongly cou-
pled system applications, in Industrial Technology (ICIT), 2013 IEEE International
Conference on, 1017-1022. ISBN 978-1-4673-4567-5. [see 10 p.]

Armato, A.; Fanucci, L.; Scilingo, E. P.; De Rossi, D. 2011. Low-error digital hard-
ware implementation of artificial neuron activation functions and their derivative, Mi-
croprocessors and Microsystems 35(6): 557-567. [see 29, 30, 67, 94 p.]

Arminas, V.; Tamulevicius, G.; Navakauskas, D.; Ivanovas, E. 2010. Acceleration of
feature extraction for FPGA-based speech recognition, in Photonics Applications in
Astronomy, Communications, Industry, and High-Energy Physics Experiments 2010,
International Society for Optics and Photonics, 511-516. [see 35 p.]

Atri, M.; Sayadi, F.; Elhamzi, W.; Tourki, R. 2012. Efficient Hardware/Software
Implementation of LPC Algorithm in Speech Coding Applications, Journal of Signal
and Information Processing 3(9): 122-129. [see 37, 40 p.]

Back, A. D.; Tsoi, A. C. 1993. A simplified gradient algorithm for iir synapse multi-
layer perceptrons, Neural Computation 5(3): 456-462. [see 16 p.]

Bahoura, M. 2014. FPGA implementation of high-speed neural network for power am-
plifier behavioral modeling, Analog Integrated Circuits and Signal Processing 79(3):
507-527. [see 29, 30 p.]

Bahoura, M.; Ezzaidi, H. 2013. Hardware implementation of mfcc feature extraction
for respiratory sounds analysis, in 8th Workshop on Systems, Signal Processing and
their Applications, 226-229. [see 38, 39 p.]

Beiu, V. 1998. How to build vlsi-efficient neural chips, in Proceedings of the Interna-
tional ICSC Symposium on Engineering of Intelligent Systems, 66-75. [see 33 p.]

Bosque, G.; del Campo, I.; Echanobe, J. 2014. Fuzzy systems, neural networks and
neuro-fuzzy systems: A vision on their hardware implementation and platforms over
two decades, Engineering Applications of Artificial Intelligence 32(1): 283-331. ISSN
0952-1976. [see 16 p.]

Broersen, P. M. 1994. A comparison of transfer function estimators, in Instrumentation

REFERENCES 121

and Measurement Technology Conference, 1994. IMTC/94. Conference Proceedings.
10th Anniversary. Advanced Technologies in I & M., 1994 IEEE, 1EEE, 1377—
1380. [see 68 p.]

Buyukkurt, B.; Najjar, W. A. 2008. Compiler generated systolic arrays for wavefront
algorithm acceleration on FPGAs, in Proc. FPL’08, 655-658. [see 42 p.]

Cadence 2013. C-to-Silicon Compiler High-Level Synthesis [interactive] [10 Decem-
ber 2013]. Prieiga per interneta: <http://www.cadence.com/rl/Resources/
datasheets/C2Silicon_ds.pdf>. [see 14 p-]

del Campo, L.; Finker, R.; Echanobe, J.; Basterretxea, K. 2013. Controlled accuracy
approximation of sigmoid function for efficient FPGA-based implementation of arti-
ficial neurons, Electronics Letters 49(25): 1598-1600. [see 29, 30 p.]

Carrillo, S.; Harkin, J.; Mcdaid, L.; Pande, S.; Cawley, S.; Mcginley, B.; Morgan, F.
2012. Advancing interconnect density for spiking neural network hardware implemen-

tations using traffic-aware adaptive network-on-chip routers, Neural Netw. 33: 42-57.
ISSN 0893-6080. [see 20 p.]

A look at trends from Consumer Electronics Show [interactive]. 2016. Green Tech
Media [14 January 2016]. Prieiga per interneta: <http://www.greentechmedia.
com/>. [see 3 p.]

Chakravarty, A. 2014. Speech recognition toolkit for the Arduino [interactive]
[20 April 2014]. Prieiga per interneta: <http://http://arjol29.github.io/
uSpeech/>. [see 35 p.]

Chan, K. Y.; Nordholm, S.; Yiu, K. F. C.; Togneri, R. 2013. Speech enhancement
strategy for speech recognition microcontroller under noisy environments, Neurocom-
puting 118(1): 279-288. ISSN 0925-2312. [see 15 p.]

Chen, D.; Cong, J.; Pan, P. 2006. FPGA design automation: A survey, Foundations
and Trends in Electronic Design Automation 1(3): 195-330. [see 10 p.]

Cheng, O.; Abdulla, W.; Salcic, Z. 2011. Hardware—software codesign of automatic
speech recognition system for embedded real-time applications, Industrial Electron-
ics, IEEE Transactions on 58(3): 850-859. [see 39, 110, 115 p.]

Choi, J.; You, K.; Sun, W. 2010. An FPGA implementation of speech recognition
with weighted finite state transducers, in Acoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference on, IEEE, 1602—-1605. [see 34, 35,
115 p.]

Chung, J.-G.; Parhi, K. 1996. Pipelined Lattice and Wave Digital Recursive Filters:
The International Series in Engineering and Computer Science. Springer. [see 18 p.]

Chung, J.-G.; Parhi, K. 2012. Pipelined lattice and wave digital recursive filters.
Springer Science & Business Media. [see 22 p.]

Chung, J.-H.; Yoon, H.; Maeng, S. R. 1992. A systolic array exploiting the inher-
ent parallelisms of artificial neural networks, Microprocess. Microprogram. 33(3):

http://www.cadence.com/rl/Resources/datasheets/C2Silicon_ds.pdf
http://www.cadence.com/rl/Resources/datasheets/C2Silicon_ds.pdf
http://www.greentechmedia.com/
http://www.greentechmedia.com/
http://http://arjo129.github.io/uSpeech/
http://http://arjo129.github.io/uSpeech/

122 REFERENCES

145-159. ISSN 0165-6074. Prieiga per interneta: <http://dx.doi.org/10.1016/
0165-6074 (92) 90017-2>. [see 31 p.]

Clayton, C. 2008. Digital duct tape with FPGA editor, XCell 66: 54-57. [see 32 p.]

Cong, J.; Jiang, W. 2008. Pattern-based behavior synthesis for FPGA resource re-
duction, in Proceedings of the 16th international ACM/SIGDA symposium on Field
programmable gate arrays, 107-116. [see 15, 54 p.]

Cong, J.; Liu, B.; Neuendorffer, S.; Noguera, J.; Vissers, K.; Zhang, Z. 2011. High-
level synthesis for fpgas: From prototyping to deployment, Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on 30(4): 473—491. ISSN 0278-
0070. [see 15 p.]

Cornu, T.; Ienne, P. 1994. Performance of digital neuro-computers, in Microelectron-
ics for Neural Networks and Fuzzy Systems, 1994., Proceedings of the Fourth Interna-
tional Conference on, 87-93. [see 33 p.]

Czajkowski, T. S. 2008. Physical synthesis toolkit for area and power optimization on
FPGAs: Dissertation. University of Toronto. University of Toronto. 134 p. ISBN
978-0-494-57976-3. [see 10 p.]

Darabkh, K. A.; Khalifeh, A. F.; Bathech, B. A.; Sabah, S. W. 2012. Efficient DTW-
Based Speech Recognition System for Isolated Words of Arabic Language, World
Academy of Science, Engineering and Technology 77: 85-88. [see 37 p.]

Dessouky, G.; Klaiber, M. J.; Bailey, D. G.; Simon, S. 2014. Adaptive dynamic on-
chip memory management for FPGA-based reconfigurable architectures, in Field Pro-
grammable Logic and Applications (FPL), 2014 24th International Conference on,
IEEE, 1-8. [see 96 p.]

Ding, H.; Trajcevski, G.; Scheuermann, P.; Wang, X.; Keogh, E. 2008. Querying and
mining of time series data: Experimental comparison of representations and distance
measures, in Proc. VLDB’08, 1542—1552. [see 41 p.]

Dinu, A.; Cirstea, M.; Cirstea, S. 2010. Direct neural-network hardware-
implementation algorithm, Industrial Electronics, IEEE Transactions on 57(5): 1845—
1848. ISSN 0278-0046. [see 28 p.]

Er, M. J.; Li, Z.; Cai, H.; Chen, Q. 2005. Adaptive noise cancellation using enhanced
dynamic fuzzy neural networks, Fuzzy Systems, IEEE Transactions on 13(3): 331-342.
[see 16 p.]

Farjo, J.; Aoun, M.; Kassem, A.; Hamouche, M.; et al. 2012. Speaker identification on
compactrio, in Electrotechnical Conference (MELECON), 2012 16th IEEE Mediter-
ranean, IEEE, 399-403. [see 39 p.]

Ferreira, P.; Ribeiro, P.; Antunes, A.; Dias, F. M. 2007. A high bit resolution FPGA
implementation of a fnn with a new algorithm for the activation function, Neurocom-
puting 71(1): 71-77. [see 19, 29, 30 p.]

Finker, R.; del Campo, I.; Echanobe, J.; Doctor, F. 2013. Multilevel adaptive neural

http://dx.doi.org/10.1016/0165-6074(92)90017-2
http://dx.doi.org/10.1016/0165-6074(92)90017-2

REFERENCES 123

network architecture for implementing single-chip intelligent agents on FPGAs, in
Neural Networks (IJCNN), The 2013 International Joint Conference on, 1-9. ISSN
2161-4393. [see 18 p.]

Firdauzi, A.; Wirianto, K.; Arijal, M.; Adiono, T. 2013. Design and implementation
of real time noise cancellation system based on spectral subtraction method, Procedia
Technology 11(1): 1003-1010. ISSN 2212-0173. [see 16 p.]

Fook, C. Y.; Hariharan, M.; Yaacob, S.; Ah, A. 2012. Malay speech recognition in nor-
mal and noise condition, in IEEE 8th International Colloquium on Signal Processing
and its Applications (CSPA 2012), 409-412. [see 37 p.]

Gavat, I.; Militaru, D. M.; Dumitru, C. O. 2008. Knowledge resources in automatic
speech recognition and understanding for Romanian language, InTech Speech Recog-
nition Technologies and Applications 1: 241-260. [see 41 p.]

Gomperts, A.; Ukil, A.; Zurfluh, F. 2011. Development and implementation of param-
eterized FPGA-based general purpose neural networks for online applications, Indus-
trial Informatics, IEEE Transactions on 7(1): 78-89. [see 29, 30 p.]

Gray, A. H.; Markel, J. D. 1975. A Normalized Digital Filter Structure, IEEE Trans-
action on Acoustics, Speech, and Signal Processing 23(3): 268-277. [see 22 p.]

Hadei, S. A.; Lotfizad, M. 2011. A family of adaptive filter algorithms in noise can-
cellation for speech enhancement, International Journal of Computer and Electrical
Engineering 2(2). [see 16 p.]

Hammerstrom, D. 1990. A vlsi architecture for high-performance, low-cost, on-chip
learning, in Neural Networks, 1990., 1990 IJCNN International Joint Conference on,
vol. 2, 537-544. [see 31, 33 p.]

Harkin, J.; Morgan, F.; McDaid, L.; Hall, S.; McGinley, B.; Cawley, S. 2009. A
reconfigurable and biologically inspired paradigm for computation using network-on-
chip and spiking neural networks, Int. J. Reconfig. Comput. 2009: 1-13. ISSN 1687-
7195. [see 20 p.]

Himavathi, S.; Anitha, D.; Muthuramalingam, A. 2007. Feedforward neural network
implementation in FPGA using layer multiplexing for effective resource utilization,
Neural Networks, IEEE Transactions on 18(3): 880-888. [see 29 p.]

Hirsimaki, T.; Kurimo, M. 2004. Decoder issues in unlimited Finnish speech recogni-
tion, in Proc. NORSIG 04, 320-323. [see 34, 41 p.]

Holt, J.; Hwang, J.-N. 1993. Finite precision error analysis of neural network hardware
implementations, Computers, IEEE Transactions on 42(3): 281-290. ISSN 0018-
9340. [see 17, 33 p.]

Hussain, S. M. A.; Rashid, A. B. M. 2012. Optimization of VLSI architectures for
DTW, in Proc. ICECE’12, 737-740. [see 41 p.]

Ivanovas, E. 2012. Development and implementation of means for word duration sig-
nal processing: Doctoral Dissertation. Vilnius Gediminas Technical University. Vil-

124 REFERENCES

nius: Technika. [see 35 p.]

Johnston, S.; Prasad, G.; Maguire, L.; McGinnity, M. 2005. Comparative investigation
into classical and spiking neuron implementations on FPGAs, in Proceedings of the
15th International Conference on Artificial Neural Networks: Biological Inspirations
- Volume Part I: ICANN’05, 269-274. [see 20 p.]

KazanaviCius, E.; Venteris, R. 2000. Architectures for ultrasonic delay time estimation
tasks, Ultragarsas" Ultrasound" 34(1): 23-27. [see 15 p.]

van Keulen, E.; Colak, S.; Withagen, H.; Hegt, H. 1994. Neural network hardware per-
formance criteria, in Neural Networks, 1994. IEEE World Congress on Computational
Intelligence., 1994 IEEE International Conference on, vol. 3, 1955-1958. [see 33 p.]

Kim, C.-M.; Park, H.-M.; Kim, T.; Choi, Y.-K.; Lee, S.-Y. 2003. FPGA implementa-
tion of ica algorithm for blind signal separation and adaptive noise canceling, Neural
Networks, IEEE Transactions on 14(5): 1038-1046. [see 16 p.]

Kim, D.; Kim, H.; Kim, H.; Han, G.; Chung, D. 2005. A simd neural network
processor for image processing, in Proceedings of the Second International Confer-
ence on Advances in Neural Networks - Volume Part II: ISNN’05, Berlin, Heidelberg:
Springer-Verlag, 665-672. ISBN 3-540-25913-9. [see 31 p.]

Kruopis, J. 1993. Matematiné statistika: vadovelis. Vilnius: Mokslas. 416 p.
[see 109 p.]

Kuon, I.; Rose, J. 2007. Measuring the gap between FPGAs and ASICs, Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on 26(2): 203—
215. ISSN 0278-0070. [see 10 p.]

Laird, J.; Szymanski, R.; Ryan, C.; Gonzalez-Alvarez, 1. 2013. A Labview based
FPGA data acquisition with integrated stage and beam transport control, Nuclear In-
struments and Methods in Physics Research Section B: Beam Interactions with Mate-
rials and Atoms 7(2): 1-5. ISSN 0168-583X. [see 10 p.]

Lavin, C.; Nelson, B.; Hutchings, B. 2013. Impact of hard macro size on FPGA clock
rate and place/route time, in Field Programmable Logic and Applications (FPL), 2013
23rd International Conference on, IEEE, 1-6. [see 11 p.]

Lileikyte, R.; Telksnys, L. 2011. Quality Estimation Methodology of Speech Recog-
nition Features, Electronics and Electrical Engineering 110: 113—116. [see 34, 36, 37,
109 p.]

Liu, H.; Bergmann, N. W. 2010. An FPGA softcore based implementation of a bird
call recognition system for sensor networks, in Design and Architectures for Signal
and Image Processing (DASIP), 2010 Conference on, IEEE, 1-6. [see 39 p.]

Lotri¢, U.; Buli¢, P. 2012. Applicability of approximate multipliers in hardware neural
networks, Neurocomputing 96: 57-65. [see 29, 30 p.]

Lotri¢, U.; Buli¢, P. 2011. Logarithmic multiplier in hardware implementation of
neural networks, in Proceedings of the 10th international conference on Adaptive and

REFERENCES 125

natural computing algorithms - Volume Part I, 158-168. ISBN 978-3-642-20281-0.
[see 19 p.]

MA16 — Programmable VLSI Array Processor for Neural Networks and Matrix-
Based Signal Processing [interactive]. 1993. Siemens AG [October]. Prieiga per
interneta: <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.52.8192&rep=replstype=pdf>. [see 31 p.]

Manikandan, J.; Venkataramani, B. 2011. Design of a real time automatic speech
recognition system using modified one against all svm classifier, Microprocessors and
Microsystems 35(6): 568-578. [see 39 p.]

Martin¢i¢-Ipsié, S.; Pobar, M.; Ipsi¢, 1. 2011. Croatian large vocabulary automatic
speech recognition, AUTOMATIKA 52(2): 147-157. [see 34, 37 p.]

Maskelitnas, R.; Esposito, A. 2012. Multilingual Italian-Lithuanian Small Vocab-
ulary Speech Recognition via Selection of Phonetic Transcriptions, Electronics and
Electrical Engineering 121: 85-88. [see 34, 36, 110 p.]

MathWorks 2013. HDL Coder [interactive] [1 December 2013]. Prieiga per interneta:
<http://www.mathworks.se/products/hdl-coder/>. [see 14 p.]

Mauduit, N.; Duranton, M.; Gobert, J.; Sirat, J.-A. 1992. Lneuro 1.0: a piece of hard-
ware lego for building neural network systems, Neural Networks, IEEE Transactions
on 3(3): 414-422. ISSN 1045-9227. [see 31 p.]

MD]I220 Neuro Bit Slice [interactive]. 1990. Micro Devices [March]. Prieiga per in-
terneta: <http://www.datasheetarchive.com/MD-1220-datasheet.html>.
[see 31 p.]

Means, R.; Lisenbee, L. 1991. Extensible linear floating point simd neurocomputer
array processor, in Neural Networks, 1991., IICNN-91-Seattle International Joint Con-
ference on, vol. i, 587-592. [see 31 p.]

Mebher, P. K. 2010. An optimized lookup-table for the evaluation of sigmoid function
for artificial neural networks, in VLSI System on Chip Conference (VLSI-SoC), 2010
18th IEEE/IFIP, IEEE, 91-95. [see 30 p.]

Misra, J.; Saha, 1. 2010. Artificial neural networks in hardware: A survey of two
decades of progress, Neurocomput. 74(1-3): 239-255. ISSN 0925-2312. [see 11, 16,
18, 31, 32, 33,49, 52 p.]

Moussa, M.; Areibi, S.; Nichols, K. 2006. On the Arithmetic Precision for Implement-
ing Back-Propagation Networks on FPGA: A Case Study: FPGA Implementations of
Neural Networks. Springer. [see 17 p.]

Muthuramalingam, A.; Himavathi, S.; Srinivasan, E. 2008. Neural network imple-
mentation using FPGA: issues and application, International journal of information
technology 4(2): 86-92. [see 17, 19 p.]

Nambiar, V. P.; Khalil-Hani, M.; Sahnoun, R.; Marsono, M. 2014. Hardware imple-
mentation of evolvable block-based neural networks utilizing a cost efficient sigmoid-

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.8192&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.8192&rep=rep1&type=pdf
http://www.mathworks.se/products/hdl-coder/
http://www.datasheetarchive.com/MD-1220-datasheet.html

126 REFERENCES

like activation function, Neurocomputing 140: 228-241. [see 29, 30 p.]

Navakauskas, D. 1999. Artificial Neural Networks for the Restoration of Noise Dis-
torted Songs Audio Records: Doctoral Dissertation. Vilnius Gediminas Technical
University. Vilnius: Technika. 158 p. [see 16 p.]

Navakauskas, D. 2003. Quick training algorithm for extra reduced size lattice-ladder
multilayer perceptrons, Informatica, Lith. Acad. Sci. 14(2): 223-236. [see 16, 23 p.]

Disability level assessment [interactive]. 2016. Disability and Working Capacity As-
sessment Office [22 March 2016]. Prieiga per interneta: <http://www.ndnt.1t>.
[see 2 p.]

Nedjah, N.; da Silva, R.; Mourelle, L.; da Silva, M. 2009. Dynamic mac-
based architecture of artificial neural networks suitable for hardware implemen-
tation on {FPGAs}, Neurocomputing 72(10-12): 2171-2179. ISSN 0925-2312.
Prieiga per interneta: <http://www.sciencedirect.com/science/article/
pii/S50925231209000411>. [see 32 p.]

NLX-420 Datasheet [interactive]. 1992. NeuralLogix [June]. Prieiga per in-
terneta: <http://www.datasheetarchive.com/NLX-420-datasheet .html>.
[see 31 p.]

Noory, B.; Groza, V. 2003. A reconfigurable approach to hardware implementation of
neural networks, in Electrical and Computer Engineering, 2003. IEEE CCECE 2003.
Canadian Conference on, vol. 3, 1861-1864. ISSN 0840-7789. [see 33 p.]

Omondi, A. R.; Rajapakse, J. C.; Bajger, M. 2006. FPGA Neurocomputers: FPGA
Implementations of Neural Networks. Springer. [see 19 p.]

Oniga, S.; Tisan, A.; Mic, D.; Buchman, A.; Vida-Ratiu, A. 2008. Optimizing FPGA
implementation of feed-forward neural networks, in Optimization of Electrical and
Electronic Equipment, 2008. OPTIM 2008. 11th International Conference on, 31-36.
[see 28 p.]

Onoo, A.; Hikawa, H.; Miyoshi, S.; Maeda, Y. 2009. On automatic generation of vhdl
code for self-organizing map, in Neural Networks, 2009. IJCNN 2009. International
Joint Conference on, 2366-2373. ISSN 1098-7576. [see 28 p.]

Pan, S.-T.; Lai, C.-C.; Tsai, B.-Y. 2011. The implementation of speech recognition
systems on FPGA-based embedded systems with soc architecture, Int. Journal of In-
novative Computing, Information and Control 7(11): 6161-6175. [see 35, 115 p.]

Pan, S.-T; Li, X.-Y. 2012. An FPGA-based embedded robust speech recognition sys-
tem designed by combining empirical mode decomposition and a genetic algorithm,
Instrumentation and Measurement, IEEE Transactions on 61(9): 2560-2572. [see 39,
42,110 p.]

Parhi, K. 2013. Hierarchical folding and synthesis of iterative data flow graphs, Cir-
cuits and Systems II: Express Briefs, IEEE Transactions on 60(9): 597-601. ISSN
1549-7747. [see 22 p.]

http://www.ndnt.lt
http://www.sciencedirect.com/science/article/pii/S0925231209000411
http://www.sciencedirect.com/science/article/pii/S0925231209000411
http://www.datasheetarchive.com/NLX-420-datasheet.html

REFERENCES 127

Prochazka, V.; Pollak, P.; Zdansky, J.; Nouza, J. 2011. Performance of Czech speech
recognition with language models created from public resources, Radioengineering
20: 1002-1008. [see 34, 41 p.]

Pyz, G.; Simonyte, V.; Slivinskas, V. 2012. Lithuanian speech synthesis by computer
using additive synthesis, Elektronika ir Elektrotechnika 18(8): 77-80. [see 34 p.]

Regalia, P. A. 1995. Adaptive IIR Filtering in Signal Processing and Control. New
York: Marcel Dekker. [see 21, 23, 65 p.]

Ronak, B.; Fahmy, S. A. 2012. Evaluating the efficiency of dsp block synthesis infer-
ence from flow graphs, in Field Programmable Logic and Applications (FPL), 2012
22nd International Conference on, IEEE, 727-730. [see 15 p.]

Ronak, B.; Fahmy, S. A. 2014. Efficient mapping of mathematical expressions into dsp
blocks, in Field Programmable Logic and Applications (FPL), 2014 24th International
Conference on, IEEE, 1-4. [see 11, 15, 52, 54, 96 p.]

Rosado-Munoz, A.; Gomez-Chova, L.; Gomez-Chova, L.; Francés, J. V. 2008. An ip
core and gui for implementing multilayer perceptron with a fuzzy activation function

on configurable logic devices, Journal of Universal Computer Science 14(10): 1678—
1694. [see 28 p.]

Sarkar, G.; Saha, G. 2010. Real time implementation of speaker identification system
with frame picking algorithm, Procedia Computer Science 2: 173—180. [see 38, 39 p.]

Sart, D.; Mueen, A.; Najjar, W.; Niennattrakul, V. 2010. Accelerating dynamic time
warping subsequence search with GPUs and FPGAs, in Proc. ICDM’ 10, 1001-1006.
[see 35, 36, 41,42 p.]

Savich, A.; Moussa, M.; Areibi, S. 2012. A scalable pipelined architecture for real-

time computation of mlp-bp neural networks, Microprocessors and Microsystems
36(2): 138-150. [see 68 p.]

Savich, A. W.; Moussa, M.; Areibi, S. 2007. The impact of arithmetic representation
on implementing mlp-bp on fpgas: A study, Neural Networks, IEEE Transactions on
18(1): 240-252. [see 29 p.]

Schmadecke, 1.; Blume, H. 2013. Hardware-accelerator design for energy-efficient
acoustic feature extraction, in Consumer Electronics (GCCE), 2013 IEEE 2nd Global
Conference on, IEEE, 135-139. [see 39 p.]

Sensory 2012. Natural Language Processor [interactive] [3 May 2012]. Prieiga per in-
terneta: <http://www.sensoryinc.com/products/NLP-5x.html>. [see 35 p.]

Social reports [interactive]. 2015. Republic of Lithuania Ministry of Social Security
and Labour [22 March 2016]. Prieiga per interneta: <http://www.socmin.lt>.
[see 2 p.]

Sojka, P.; Kopecek, 1.; Pala, K. (eds.) 2004. Large Vocabulary Continuous Speech
Recognition for Estonian Using Morphemes and Classes: Lecture Notes in Computer
Science. Berlin, Germany: Springer. [see 34, 41 p.]

http://www.sensoryinc.com/products/NLP-5x.html
http://www.socmin.lt

128 REFERENCES

Spectrum, 1. 2014. Technology, Engineering, and Science News [interactive] [20 Jan-
uary 2014]. Prieiga per interneta: <http://spectrum.ieee.org>. [see | p.]

StaSionis, L.; Serackis, A. 2011. Selection of an optimal adaptive filter for speech
signal noise cancellation using c6455 dsp, Elektronika ir Elektrotechnika 115(9): 101—
104. [see 35 p.]

Staworko, M.; Rawski, M. 2010. FPGA implementation of feature extraction algo-
rithm for speaker verification, in Mixed Design of Integrated Circuits and Systems
(MIXDES), 2010 Proceedings of the 17th International Conference, IEEE, 557-561.
[see 37, 39 p.]

Tamulevicius, G. 2008a. Vilnius Gedinimas Technical University. Prieiga per
interneta: <http://www.mii.lt/files/mii_dis_08_tamulevicius.pdf>.
[see 36 p.]

Tamulevicius, G. 2008b. Isolated word recognition systems implementation: Doctoral
Dissertation. Vilnius Gediminas Technical University. Vilnius: Technika. [see 40,

41 p.]

Tamulevicius, G.; Arminas, V.; Ivanovas, E.; Navakauskas, D. 2010. Hardware accel-
erated FPGA implementation of Lithuanian isolated word recognition system, Elec-
tronics and Electrical Engineering 99: 57-62. [see 35, 37, 41, 106, 115 p.]

Thilagam, S.; Karthigaikumar, P. 2015. Implementation of adaptive noise canceller
using FPGA for real-time applications, in Electronics and Communication Systems
(ICECS), 2015 2nd International Conference on, 1711-1714. [see 16 p.]

Tisan, A.; Cirstea, M. 2012. {SOM} neural network design: A new simulink library
based approach targeting FPGA implementation, Mathematics and Computers in Sim-
ulation 91(1): 134—149. ISSN 0378-4754. [see 28 p.]

Tommiska, M. 2003. Efficient digital implementation of the sigmoid function for
reprogrammable logic, in Computers and Digital Techniques, IEE Proceedings-, vol.
150, IET, 403-411. [see 29, 30, 94 p.]

Ursutiu, D.; Samoila, C.; Dabacan, M. 2013. Cross platform methods in digital elec-
tronics engineering education, in Remote Engineering and Virtual Instrumentation
(REV), 2013 10th International Conference on, 1-4. [see 10 p.]

Vaitkus, V.; Zylius, G.; Maskeliunas, R. 2014. Electrical spare parts demand forecast-
ing, Elektronika ir Elektrotechnika 20(10): 7-10. [see 29 p.]

Van Beeck, K.; Heylen, F.; Meel, J.; Goedemé, T. 2010. Comparative study of model-
based hardware design tools, Campus De Nayer, Association KU Leuven, Jan De Nay-
erlaan 5: 2860. [see 14 p.]

Vandenbout, D. 2013. FPGAs!? Now What?: Learning FPGA Design with the XuLA
Board. XESS Corporation. [see 11 p.]

Ceidaite, G.; Telksnys, L. 2010. Analysis of Factors Influencing Accuracy of Speech
Recognition, Electronics and Electrical Engineering 105(9): 69-72. [see 36, 41 p.]

http://spectrum.ieee.org
http://www.mii.lt/files/mii_dis_08_tamulevicius.pdf

REFERENCES 129

Veitch, R.; Aubert, L.-M.; Woods, R.; Fischaber, S. 2010. Acceleration of hmm-based
speech recognition system by parallel FPGA gaussian calculation, in Programmable
Logic Conference (SPL), 2010 VI Southern, IEEE, 197-200. [see 34, 35, 39, 115 p.]

Veitch, R.; Aubert, L. M.; Woods, R.; Fischaber, S. 2011. FPGA implementation of a
pipelined Gaussian calculation for HMM-based large vocabulary speech recognition,
International Journal of Reconfigurable Computing 2011: 1-10. [see 36 p.]

Vu, N.-V.; Whittington, J.; Ye, H.; Devlin, J. 2010. Implementation of the mfcc front-
end for low-cost speech recognition systems, in Circuits and Systems (ISCAS), Pro-
ceedings of 2010 IEEE International Symposium on, IEEE, 2334-2337. [see 37, 39 p.]

Wang, J.-C.; Wang, J.-F.; Weng, Y.-S. 2002. Chip design of mfcc extraction for speech
recognition, INTEGRATION, the VLSI journal 32(1): 111-131. [see 38 p.]

Wijoyo, T. S. 2011. Speech Recognition Using Linear Predictive Coding and Artificial
Neural Network for Controlling Movement of Mobile Robot, in International Confer-
ence on Information and Electronics Engineering IPCSIT, vol. 6, 179-183. [see 37,
110 p.]

Wu, F.; Chen, S.; Leung, H. 2006. Data hiding for speech bandwidth extension and
its hardware implementation, in Multimedia and Expo, 2006 IEEE International Con-
ference on, IEEE, 1277-1280. [see 39 p.]

Xilinx 2007. StateCAD Manual Reference [interactive] [1 December 2013]. Prieiga
per interneta: <http://www.xilinx.com/itp/xilinx10/help/iseguide/
mergedProjects/state/whnijs.htm>. [see 14 p.]

Xilinx 2012a. 7 Series FPGAs Configurable Logic Block User Guide [interactive]
[20 April 2013]. Prieiga per interneta: <http://www.xilinx.com/support/
documentation/user_guides/ug474_7Series_CLB.pdf>. [see 12 p.]

Xilinx 2012b. AccelDSP Synthesis Tool [interactive] [20 January 2014]. Prieiga per
interneta: <http://www.xilinx.com/tools/acceldsp.htm>. [see 14 p.]

Xilinx 2013a. FPGA Editor [interactive] [14 March 2014]. Prieiga per interneta:
<http://www.xilinx.com/support/documentation/sw_manuals/help/
iseguide/mergedProjects/fpga_editor/fpga_editor.htm>. [see 32 p.]

Xilinx 2013b. System Generator for DSP [interactive] [1 December 2013]. Prieiga per
interneta: <http://www.xilinx.com/tools/sysgen.htm>. [see 14 p.]

Xilinx 2013c. Zyng-7000 All Programmable Software on Chip [interactive] [2
November 2013]. Prieiga per interneta: <http://www.xilinx.com/products/
silicon-devices/soc/zyng—-7000/>. [see 30, 94 p.]

Xilinx 2013d. Zyng-7000 Technical Reference Manual All Programmable SoC
[interactive] [20 April 2013]. Prieiga per interneta: <http://www.xilinx.
com/support/documentation/user_guides/ug585-Zyng-7000-TRM.pdf>.
[see 13 p.]

Xilinx 2014a. 7 Series DSP48E1 Slice User Guide [interactive] [10 November 2014].

http://www.xilinx.com/itp/xilinx10/help/iseguide/mergedProjects/state/whnjs.htm
http://www.xilinx.com/itp/xilinx10/help/iseguide/mergedProjects/state/whnjs.htm
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/tools/acceldsp.htm
http://www.xilinx.com/support/documentation/sw_manuals/help/iseguide/mergedProjects/fpga_editor/fpga_editor.htm
http://www.xilinx.com/support/documentation/sw_manuals/help/iseguide/mergedProjects/fpga_editor/fpga_editor.htm
http://www.xilinx.com/tools/sysgen.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

130 REFERENCES

Prieiga per interneta: <http://www.xilinx.com/support/documentation/
user_guides/ug479_7Series_DSP48E1l.pdf>. [see 26, 29, 50 p.]

Xilinx 2014b. Vivado Design Suite Partial Reconfiguration [inter-
active] [30 August 2015]. Prieiga per interneta: <http://www.
xilinx.com/support/documentation/sw_manuals/xilinx2014_4/
ug909-vivado-partial-reconfiguration.pdf>. [see 18 p.]

Xilinx 2015a. Fast Fourier Transform v9.0 [interactive] [25 August 2015].
Prieiga per interneta: <http://www.xilinx.com/support/documentation/
ip_documentation/xfft/v9_0/pgl09-x£fft.pdf>. [see 38 p.]

Xilinx 2015b. Vivado Design Suite High-Level Synthesis [interactive] [1 April 2015].
Prieiga per interneta: <http://www.xilinx.com/support/documentation/
sw_manuals/xi1inx2015_1/ug902-vivado-high-level-synthesis.pdf>.

[see 14 p.]

Xu, J.; et al. 2005. Migrate levinson-durbin based linear predictive coding algorithm
into fpgas, in 2005 12th IEEE International Conference on Electronics, Circuits and
Systems, 1-4. [see 37, 41 p.]

Yamamoto, K.; Oba, Y.; Rikuhashi, Z.; Hikawa, H. 2011. Automatic generation of
hardware self-organizing map for FPGA implementation, in Intelligent Signal Pro-
cessing and Communications Systems (ISPACS), 2011 International Symposium on,
1-6. [see 28 p.]

YANO 2015. Research institute, market solution provider [interactive] [14 March
2015]. Prieiga per interneta: <http://yanoresearch.com>. [see | p.]

Yiu, K. F. C.; Li, Z.; Low, S. Y.; Nordholm, S. 2014. FPGA multi-filter system for
speech enhancement via multi-criteria optimization, Applied Soft Computing 21(1):
533-541. ISSN 1568-4946. [see 15 p.]

Yujin, Y.; Peihua, Z.; Qun, Z. 2010. Research of speaker recognition based on com-
bination of LPCC and MFCC, in IEEE International Conference on Intelligent Com-
puting and Intelligent Systems (ICIS 2010), vol. 3, 765-767. [see 37 p.]

Zamanlooy, B.; Mirhassani, M. 2014. Efficient vlsi implementation of neural networks
with hyperbolic tangent activation function, Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on 22(1): 39—-48. [see 29, 30 p.]

Zhang, G.; Yin, J.; Liu, Q.; Yang, C. 2011. A real-time speech recognition system
based on the implementation of FPGA, in Cross Strait Quad-Regional Radio Sci-
ence and Wireless Technology Conference (CSQRWC), 2011, vol. 2, IEEE, 1375-1378.
[see 35, 39,42, 110, 115 p.]

Zhang, Y.; Adl, K.; Glass, J. 2012. Fast spoken query detection using lower-bound
dynamic time warping on graphical processing units, in Proc. ICASSP’12, 5173-5176.
[see 35, 36, 41,42 p.]

Zhou, X.; Garcia-Romero, D.; Duraiswami, R.; Espy-Wilson, C.; Shamma, S. 2011.

http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug909-vivado-partial-reconfiguration.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug909-vivado-partial-reconfiguration.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug909-vivado-partial-reconfiguration.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_0/pg109-xfft.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_0/pg109-xfft.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug902-vivado-high-level-synthesis.pdf
http://yanoresearch.com

REFERENCES 131

Linear versus Mel Frequency Cepstral Coefficients for Speaker Recognition, in Au-
tomatic Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on,
559-564. [see 37, 110 p.]

Zvironas, A.; Kazanavicius, E. 2006. Implementation of correlation analysis task in
the multichannel structure, Information Technology And Control 35(3). [see 15 p.]

List of Scientific Publications by
the Author on the Topic of the
Dissertation

Papers in the Reviewed Scientific Journals

Sledevic, T.; Navakauskas, D. 2016. FPGA Implementation of Range Addressable Ac-
tivation Function for Lattice-Ladder Neuron, Elektronika ir elektrotechnika 22(2): 92—
95. ISSN 1392-1215. DOI:10.5755/j01.eie.22.2.14598. IF = 0.561 (2014).

Tamulevicius, G.; Serackis, A.; Sledevi¢, T.; Navakauskas, D. 2015. Vocabulary Dis-
tance Matrix Analysis — based Reference Template Update Technique, Proceedings of
the Romanian academy, Series A 16(1): 103—109. ISSN 1454-9069. IF = 1.115 (2014).
Available from Internet: <http://www.acad.ro/sectii2002/proceedings/
doc2015-1/14-Tamulevicius.pdf>.

Serackis, A.; Tamulevicius, G.; Sledevic, T.; Stasionis, L.; Navakauskas, D. 2014.
Self-Organizing Feature Map Preprocessed Vocabulary Renewal Algorithm for the
Isolated Word Recognition System, Elektronika ir elektrotechnika 20(6): 114—117.
ISSN 1392-1215. DOI:10.5755/j01.eee.20.6.7280. IF = 0.561.

Tamulevicius, G.; Serackis, A.; Sledevi¢, T.; Navakauskas, D. 2014. Bidirectional
Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted
by Transient Noise Pulses, International Journal of Computer, Electrical, Automation,
Control and Information Engineering 8(4): 710-714. ISSN 2010-376X. Available from
Internet: <http://scholar.waset.org/1999.4/9998049>,

Sledevi¢, T.; Navakauskas, D.; Tamulevic¢ius, G.; 2013. Upgrading FPGA Implemen-
tation of Isolated Word Recognition System for a Real-Time Operation, Elektronika ir
elektrotechnika 19(10): 123—-128. ISSN 1392-1215. DOI: 10.5755/j01.eee.19.10.5907.
IF = 0.445.

133

http://dx.doi.org/10.5755/j01.eie.22.2.14598
http://www.acad.ro/sectii2002/proceedings/doc2015-1/14-Tamulevicius.pdf
http://www.acad.ro/sectii2002/proceedings/doc2015-1/14-Tamulevicius.pdf
http://dx.doi.org/10.5755/j01.eee.20.6.7280
http://scholar.waset.org/1999.4/9998049
http://dx.doi.org/10.5755/j01.eee.19.10.5907

134 LIST OF SCIENTIFIC PUBLICATIONS BY THE AUTHOR...

Sledevic, T.; Serackis, A.; Tamulevicius, G.; Navakauskas, D. 2013. Evaluation
of Features Extraction Algorithms for a Real-Time Isolated Word Recognition Sys-
tem, International Journal of Electrical, Computer, Energetic, Electronic and Com-
munication Engineering 7(12): 302-307. ISSN 2010-376X. Available from Inter-
net: <http://scholar.waset.org/1999.5/9996651>.

Sledevic, T.; Stasionis, L. 2013. FPGA-Based Implementation of Lithuanian Isolated
Word Recognition Algorithm, Mokslas — Lietuvos ateitis 5(2): 101-104. ISSN 2029-
2252. DOI: 10.3846/mla.2013.18.

Stasionis, L.; Sledevié, T. 2013. Energy Detector Implementaton in FPGA for Estima-
tion of Word Boundaries, Mokslas — Lietuvos ateitis 5(2): 105-108. ISSN 2029-2252.
DOI: 10.3846/mla.2013.19.

Other Papers

Sledevic, T; Navakauskas, D. 2015. Towards Optimal FPGA Implementation of Lattice-
Ladder Neuron and Its Training Circuit, in Proceedings of IEEE 3rd Workshop on
advances in information, electronic and electrical engineering, 1-4. ISBN: 978-1-
5090-1201-5. DOLI: 10.1109/AIEEE.2015.7367311.

Sledevi¢, T; Navakauskas, D. 2014. The Lattice-Ladder Neuron and its Training Cir-
cuit Implementation in FPGA, in Proceedings of IEEE 2nd Workshop on advances
in information, electronic and electrical engineering, 1-4. ISBN 978-1-4799-7122-0.
DOI: 10.1109/AIEEE.2014.7020327.

Serackis, A.; Sledevi¢, T.; Tamulevicius, G.; Navakauskas, D. 2013. Word Recog-
nition Acceleration by Double Random Seed Matching in Perceptual Cepstrum Error
Space, in Proceedings of IEEE European Modelling Symposium, 274-279. ISBN 978-
1-4799-2577-3. DOI: 10.1109/EMS.2013.50.

Sledevic, T; Navakauskas, D. 2013. FPGA based Fast Lithuanian Isolated Word Recog-
nition System, in Proceedings of IEEE EUROCON Conference, 1630-1636. ISBN 978-
1-4673-2230-0. DOI: 10.1109/EUROCON.2013.6625195.

http://scholar.waset.org/1999.5/9996651
http://dx.doi.org/10.3846/mla.2013.18
http://dx.doi.org/10.3846/mla.2013.19
http://dx.doi.org/10.1109/AIEEE.2015.7367311
http://dx.doi.org/10.1109/AIEEE.2014.7020327
http://dx.doi.org/10.1109/EMS.2013.50
http://dx.doi.org/10.1109/EUROCON.2013.6625195

Santrauka lietuviy kalba

lvadas

Problemos formulavimas

Spartus mobiliyjy, multimedijos, 3D ir virtualizavimo technologiju vystymasis yra
Siuolaikinés elektronikos pasaulinés raidos pamatas. Siais 2016 m. prognozuojamas
iSmaniyjy telefony pardavimy augimas 16,8 % ir tikimasi, kad plansetiniy kompiu-
teriy pardavimai pasieks 458 mln. vienety apimtis, o tai, pagal YANO tyrimy centro
duomenis, lems iSmaniyjy technologijy pasaulinj isivyravima.

Plintant iSmaniosioms technologijoms bei mobiliyjy irenginiy ir juy paslaugy ap-
imtims vis aktualesné tampa elektronikos irenginiy efektyvaus igyvendinimo proble-
ma. Sistemos jgyvendinimo efektyvumas yra priestaringy reikalavimy derinys. Augan-
Cios skaiCiavimy apimtys, spartéjantys duomeny mainai, o tuo paciu didéjantis energi-
jos suvartojimas vercia ne tik optimizuoti duomeny apdorojimo algoritmus, ta¢iau taip
pat svarbu tampa juos greitai igyvendinti specializuotoje aparatiiroje. Lauku progra-
muojamy loginiy matricy (LPLM) technologijos taikymas leidZia sumazinti elektroni-
nés sistemos kiirimo ir derinimo trukme, o matricos strukttros déka — galimas smarkus
skai¢iavimy pagreitinimas taikant lygiagretinimo ir konvejerizavimo principus. Butent
todél, disertacijoje sprendZiama realiuoju laiku veikianciy elektroniniy intelektualiy-
ju sistemy efektyvaus igyvendinimo lauku programuojama logine matrica problema.
Darbe iskeliama ir jrodoma pagrindiné hipotezé — pasirinktos elektroninés intelektua-
liosios sistemos klasés biidingujuy struktiiriniy poZymiy pagrindu galima suformuluoti
specializuotg sistemos grandyny sintezés kriterijy ir $iai sistemai igyvendinti skirta
metoda, kuriy taikymas optimizuoty visos sistemos igyvendinimg lauku programuo-
jama logine matrica.

135

136 SANTRAUKA LIETUVIU KALBA

Darbo aktualumas

Per paskutinius pora mety Google, Nuance paskelbé apie balsu valdomo televizoriaus
kiirima, pasidlyti balsu valdomi GPS navigatoriai, o balso technologijos, pagal Con-
sumer Electronics Show 2016, vél vertinamos kaip vienos perspektyviausiy s3sajos
formy. Atsiradusi galimybé pagaminti valdymo balsu irenginius leidZia sukurti naujas
paslaugas ne tik pramogai, bet ir socialinéms uZduotims spresti. Viena i§ potencialiy
kalbos technologijy taikymo sriiy yra Zmonés su fizine negalia. Neigalumo ir dar-
bingumo nustatymo tarnybos duomenimis 2015 m. Lietuvoje nuolatinés slaugos po-
reikis pripaZintas 17731 asmeniui, o 16694 asmenims nustatytas nuolatinés pagalbos
poreikis. Galimybe veiksmus inicijuoti balsu padidinty Zmogaus su fizine negalia sa-
varankiskuma, pagerinty jo gyvenimo kokybe bei leisty sumazinti slaugos personalo
poreiki.

Didéjant apdorojamy duomeny skaiciui ir tam, kad Snekos atpaZinimas vykty rea-
livoju laiku, yra bitina didinti $nekos atpaZintuve igyvendinty algoritmy greitaveika.
Siai uzduodiai i§spresti lauku programuojama logine matrica jgyvendinami skai&ia-
vimus spartinantys intelektinés nuosavybés (IN) moduliai. Vis populiaréjantis lauku
programuojamy loginiy matricy technologijos taikymas gladi algoritmy iSlygiagreti-
nimo galimybéje, todél irenginiai, gristi lauku programuojamomis loginémis matrico-
mis, dirba efektyviau (vertinant pagal vartojama energija ir sparta) lyginant su Siuolai-
kiniais procesoriais, net jei LPLM taktinis daZnis yra 10-300 MHz diapazone.

Tyrimy objektas

Tyrimo objektas yra specializuoti lauku programuojamos loginés matricos intelektinés
nuosavybés (LPLM IN) moduliai veikiantys realiuoju laiku. Disertacijoje tiriami Sie,
su tiriamuoju objektu susij¢, dalykai: igyvendinimo kriterijai ir metodas.

Darbo tikslas

Darbo tikslas — optimizuoti pynuciy-kopétéliy daugiasluoksnio perceptrono jgyvendi-
nimo lauku programuojama logine matrica procesg ir jo rezultatus pritaikyti nejgalie-
siems skirtame lietuviskos $nekos atpaZintuve.

Darbo uzdaviniai

Siekiant iSspresti nurodyta problema ir pasiekti tiksla suformuluojami Sie pagrindiniai
disertacijoje sprendziami uzdaviniai:

1. Pagristi igyvendinimui ir tyrimams atrinkty pynuciy-kopétéliy daugiasluoks-
nio perceptrono (PKDP) klasés ir jos elektroninés intelektualiosios testavimo
aplinkos — nejgaliesiems skirto priklausomo nuo kalbétojo lietuviskos Snekos
atpazintuvo, pasirinkima.

2. Sukurti specializuotais grandyny sintezés kriterijais paremta pynuciy-kopéte-
liy daugiasluoksnio perceptrono klasés igyvendinimo lauku programuojama
logine matrica metoda.

3. Sukurti optimizuotus lauku programuojamos loginés matricos intelektinés
nuosavybés modulius ir taikant lietuviy Snekos atpaZintuve eksperimentiskai
patvirtinti jy efektyvuma.

SANTRAUKA LIETUVIU KALBA 137

Tyrimy metodika

Darbe taikomos skaitmeninio signalo apdorojimo, spektrinés ir kepstrinés analizés,
priklausomo nuo kalbétojo ZodZiy atpazinimo, dirbtiniy neurony tinkly, optimizavi-
mo, stasistinés analizés bei grafy teorijos. Pritaikyti ir igyvendinti tiesinés progno-
z¢s, mely dazniy skalés, dinaminio laiko skalés kraipymo, pynuciy-kopétéliy daugias-
luoksnio perceptrono skai¢iavimo ir mokymo, grafy padengimo, pografiy paieskos ir
instrukcijy planavimo metodai.

Eksperimentams taikomi lietuviy $nekos pavieniy ZodZiy irasy garsynai. Kom-
piuterinis modeliavimas atlickamas Matlab ir ModelSim programiniais paketais. Pa-
vieniy ZodZiy atpazinimo sistemos tikslumo ir greitaveikos testams ir lyginimams su
ankstesnigja versija taikomas specializuotas bandymy modulis ML402 su Virtex-4 Sei-
mos LPLM lustu. Galutinis $nekos atpaZintuvas jgyvendinamas ZynQ-7000 luste su
integruotu Artix-7 Seimos LPLM ir dviejy branduoliy ARM Cortex A9 procesoriumi.
IN moduliai igyvendinti taikant sukurta originaly kompiliatoriy ir Xilinx ISE Design
Suite 14.7 bei Vivado HLS 2015.4 programing iranga.

Darbo mokslinis naujumas

1. Sukurtas naujas pynuciy-kopétéliy daugiasluoksniy perceptrony igyvendini-
mo metodas, ivertinantis lauku programuojamos loginés matricos specifika ir
generuojantis efektyvesni, lyginant su bendrosios paskirties komerciniu jran-
kiu, intelektinés nuosavybés modulj.

2. Pasiilytas pynuciy-kopétéliy daugiasluoksniy perceptrony grandyny sinte-
z¢s specializuoty kriterijy Pareto fronty skaiiavimo budas leidZiantis opti-
maliai parinkti lauku programuojamos loginés matricos tipa pagal uZsiduo-
tus pynuciy-kopételiy daugiasluoksniy perceptrony strukturos, diskretizavi-
mo daZnio ir lauku programuojamos loginés matricos resursy reikalavimus.

3. Sukurti nauji algoritmai: spartesnis Zodziy sutapdinimo ir dvigubo atsitikti-
nio iniciavimo rezultaty sutapdinimo, spartinantys ZodZiy atpaZinimo procesa
lauku programuojamoje loginéje matricoje igyvendintame lietuviy Snekos at-
pazintuvo prototipe.

4. Pasitlyta triukSmo Salinimui taikyti pynuciy-kopétéliy neurona, kuris pageri-
na ZodZiy atpaZinimo tiksluma.

Darbo rezultaty praktiné reikSmeé

Pasiiilyto metodo pagrindu sukurtas kompiliatorius efektyviam PKDP IN moduliy igy-
vendinimui LPLM. Siiilloma specializuoty PKDP grandyny sintezés kriterijus vertinti
Pareto frontais, kurie leidZia optimaliai parinkti LPLM lusta pagal PKDP struktaros,
diskretizavimo daznio ir LPLM resursy reikalavimus.

Snekos atpaZintuvo prototipas jgyvendintas taikant naujos kartos ZynQ-7000 lus-
ta geba realiu laiku atpaZinti lietuviSka $Sneka duodamus nurodymus, formuoti specifi-
kuotus kontrolinius signalus ir gali biiti naudojamas Zmoniy su fizine negalia specia-
lizuoty funkciniy irenginiy valdymui balsu. Kiekvienam valdomam irenginiui galima
formuoti individualy komandy sarasa, taip padidinant valdymo balsu efektyvuma. Ma-
keta, be didesniy aparatiniy pakeitimy, galima pritaikyti ir kitokiy signaly atpaZinimui.

138 SANTRAUKA LIETUVIU KALBA

Siuo pozitiriu maketas neturi analogy Lietuvoje ir yra vienas i§ nedaugelio pasaulyje.
ZodZiy atpaZinimo sistema buvo tiriama ir taikoma vykdant:

« Lietuvos mokslo tarybos remiama mokslininky grupiy technologinés plétros
projekta ,,Nejgaliesiems skirto valdymo lietuviSka Sneka jrenginio maketo k-
rimas ir patikra® (Nr. MIP-092/2012, 2012-2014);

« kvalifikacinj mokslo darbg ,,Skaitmeninio signaly apdorojimo realaus laiko
sistemoms tyrimas* (Nr. TMT 335, 2013-2017).

Ginamieji teiginiai
1. Taikant siiloma pynuciy-kopétéliy daugiasluoksniy perceptrony igyvendini-
mo lauku programuojama logine matrica metoda sukurti intelektinés nuosa-

vybés moduliai yra ne maZiau kaip 3 kartus efektyvesni uZ modulius gene-
ruojamus komerciniu jrankiu Vivado HLS.

2. Specializuoty pynuciy-kopétéliy daugiasluoksniy perceptrony grandyny sin-
tezés kriterijy vertinimas Pareto frontais leidZia optimaliai parinkti lauku prog-
ramuojamos loginés matricos lusta pagal pynuciy-kopétéliy daugiasluoksniy
perceptrony struktiiros, diskretizavimo daZnio ir lauku programuojamos logi-
nés matricos resursy reikalavimus.

3. Optimizuoti intelektinés nuosavybés moduliai taikomi lietuviy Snekos atpa-
Zintuve yra tinkami pavieniams ZodZiams atpaZinti realiuoju laiku, pasiekiant
7800 ZodZiy/s sutapdinimo greiti.

4. Pynuciy-kopételiy neurono intelektinés nuosavybés modulio taikymas pir-
miniame kalbos apdorojime 4 % padidina ZodZiy atpaZinimo tiksluma esant
15 dB signalas triuk§mas santykiui.

Darbo rezultaty aprobavimas

Darbo rezultatai paskelbti 12-oje moksliniy straipsniy:

« keturios publikacijos atspausdintos Zurnaluose, itrauktuose i Thomson Re-
uters Web of Science sarasg ir turinCiuose citavimo indeksg (Sledevi¢, Nava-
kauskas 2016, Tamulevicius et al. 2015, Serackis et al. 2014, Sledevic et al.
2013);

« dvi publikacijos atspausdintos recenzuojamame mokslo Zurnale, cituojama-
me Index Copernicus duomeny bazéje (Sledevic, StaSionis 2013, StaSionis,
Sledevic¢ 2013);

« dvi publikacijos atspausdintos recenzuojamuose mokslo Zurnaluose, jtrauk-
tuose { SCImago duomeny bazeg (Tamulevicius et al. 2014, Sledevi¢ et al.
2013);

« keturios publikacijos atspausdintos kituose mokslo leidiniuose: dvi — tarp-
tautiniy konferencijy straipsniy rinkiniuose, cituojamuose ISI Proceedings
duomeny bazéje (Serackis et al. 2013, Sledevi¢, Navakauskas 2013) ir dvi —
tarptautiniy konferencijy straipsniy rinkiniuose, cituojamuose IEEEXPLO-
RE (INSPEC) duomeny bazéje (Sledevi¢, Navakauskas 2015, Sledevic, Na-
vakauskas 2014).

SANTRAUKA LIETUVIU KALBA 139

Pagrindiniai disertacijos rezultatai paskelbti 17-oje moksliniy konferenciju:

2012 tarptautinéje konferencijoje ,,13th Biennial Baltic Electronics Conferen-
ce” Estijoje, Taline;

2013 tarptautingje konferencijoje ,,International Conference on Communica-
tion, Control and Computer Engineering* Turkijoje, Stambule;

2013 tarptautinéje konferencijoje ,,7th European Modelling Symposium** Di-
dziojoje Britanijoje, Mancesteryje;

2013 tarptautinéje konferencijoje ,,International Conference on Computer as
a Tool (EUROCON)“ Kroatijoje, Zagrebe;

2014 tarptautingje konferencijoje ,,16th International Conference on Image,
Signal and Vision Computing*‘ Pranciizijoje, ParyZiuje;

2014 respublikinéje konferencijoje ,,Multidisciplinary Research in Natural and
Technology Sciences* Lietuvoje, Vilniuje;

2014 tarptautingje konferencijoje ,,3rd Workshop on Bio-Inspired Signal and
Image Processing® Lietuvoje, Vilniuje;

2014 tarptautinéje konferencijoje ,,6th International Workshop on Data Ana-
lysis Methods for Software Systems* Lietuvoje, Druskininkuose;

2014 tarptautinéje konferencijoje ,,2nd Workshop on Advances in Informa-
tion, Electronic and Electrical Engineering* Lietuvoje, Vilniuje;

2013-2015 tarptautinése konferencijose ,,Electronics* Lietuvoje, Palangoje;

2015 tarptautinéje konferencijoje ,,3rd Workshop on Advances in Informa-
tion, Electronic and Electrical Engineering* Latvijoje, Rigoje;

2013-2016 respublikinése konferencijose ,,Science — Future of Lithuania®
Lietuvoje, Vilniuje.

Lietuviy $nekos pavieniy ZodZiy atpaZintuvo pristatymas konferencijoje ,,Multi-
disciplinary Research in Natural and Technology Sciences* buvo pripaZintas vienu i§
geriausiy ir jvertintas Lietuvos moksly akademijos diplomu bei Infobalt skatinamaja
stipendija.

Disertacijos struktura

Disertacijg sudaro jvadas, keturi skyriai, bendrosios i§vados, 3 priedai, literatiiros sa-
raSas su atskirai pateiktomis autoriaus publikacijomis. Pateikiami sarasai simboliy,
santrumpy, raktazodZiy ir terminy saraSas. Darbo apimtis yra 156 puslapiai, kuriuo-
se yra pateikta: 87 formulés, 73 paveikslai, 12 lenteliy, 6 algoritmai ir 1 pavyzdys.
Disertacijoje remtasi 152 kity autoriy literatdros $altiniais.

140 SANTRAUKA LIETUVIU KALBA

1. Elektroniniy sistemy jgyvendinimo lauku
programuojamomis loginémis matricomis
apzvalga

Per pastaruosius du deSimtmecius LPLM taikymas vis populiaré¢ja inZinieriy ir moks-
lininky bendruomenéje dél galimybés spartinti tradicinius centriniu procesoriniu jren-
giniu (angl. Central Processing Unit — CPU) gristus algoritmus. Grandyny jgyvendi-
nimui budingi bendri visoms LPLM etapai: grandyno apraSymas taikant auksto lygio
sintezés (angl. High Level Synthesis — HLS) koda, kodo pakeitimas { registry perdavi-
mo lygmeni (angl. Register Transfer Level — RTL), RTL grandyno sintez¢, grandyno
atvaizdavimas LPLM palaikomais struktiiriniais blokais, bloky tarpusavyje sujungi-
mas, sudaryto grandyno laikiné analize, bylos generavimas ikélimui { LPLM. Algo-
ritmy greitam jgyvendinimui taikomi HLS jrankiai: Simulink, LabView, Vivado HLS.
Pastarieji naudoja daugiau LPLM resursy grandyno sudarymui bei maZina jos greita-
veika lyginant su jgyvendinimu R7TL lygmenyje, kuriame jmanoma valdyti kiekviena
specifini LPLM bloka bei nustatynéti sujungimus tarp ju, taikant aparatiirg aprasancias
kalbas (angl. Hardware Description Language — HDL), tokias kaip VHDL ar Veri-
log. ISskiriami trys pagrindiniai konfigliruojami LPLM blokai: skaitmeninis signaly
apdorojimas (angl. Digital Signal Processing — DSP), blokiné adresuojama atmin-
tis (angl. Block RAM — BRAM), perzvalgos lentelé (angl. Look-Up Table — LUT).
Duomeny mainams tarp i§vardinty bloky yra taikomi programuojami sujungimai.

Dél periodinés struktiiros ir paskirstyty aritmetiniy resursy LPLM struktiira tinka
dirbtiniy neurony tinklams (DNT) jgyvendinti. Konfigiiruojami LPLM blokai leidZia
iSlygiagretinti DNT struktiira pagal sluoksnius ar neuronus ir jiems taikyti grandininj
signalo apdorojima. DNT efektyviam igyvendinimui LPLM yra sprendZiamas daugia-
kriterinis optimizavimo uZdavinys, kai konkreciai LPLM struktiirai turi biiti pasirink-
ti: LPLM aprasymo lygmuo, perkonfigliravimo galimybe, testavimo biidas, tikslumas,
skaiCiavimy greitaveika ir LPLM tipas su tam tikru resursy skai¢iumi. Tod¢l batina
iSgryninti LPLM efektyvaus igyvendinimo kriterijus. Pagrindinés DNT sudaromosios
dalys yra sinapsés, kurios yra pritaikomos tinklo mokymo metu. Sinapses pakeitus
begalinés impulsinés reakcijos filtrais gaunami dinaminiai DNT, kuriems priskiria-
mi pynuciy-kopételiy daugiasluoksniy perceptrony (PKDP) tinklai. Pynuciy-kopétéliy
filtrai yra stabilds i§ prigimties ir PKDP yra tinkami kalbos signalo apdorojimui su i$-
vestomis mokymo struktiromis, taciau iki Siol néra tirtas jy igyvendinimas LPLM,
greitaveika ir reikalingi LPLM resursai.

Sioje disertacijoje nagrin¢jamos keturios perspektyviausios rekursinés pynutés
taikytinos pynuciy gradienty skai¢iavime ir PKDP mokyme. Yra pareikta reikalingy
aritmetiniy operatoriy skaiciaus suvestiné PKDP jgyvendinimui LPLM. PKDP struk-
tirai sudétingéjant didéja skaiciavimy apimtys, todél lygiagreciam tinklo igyvendini-
mui nepakanka LPLM resursy. Todél priklausomai nuo tinklo struktiiros yra bitinas
LPLM resursy dalijimasis tarp sluoksniy, neurony ar sinapsiu. Siuos apribojimus bi-
tina jvertinti kuriant PKDP efektyvaus igyvendinimo kriterijus ir metoda. LPLM igy-
vendintas grandynas per vieng takta ivykdo aritmetines operacijas su fiksuoto kablelio
skaiciais. Todel skaiCiy plociui daZniausiai skiriama nuo 12b iki 32b, o netiesinei
aktyvavimo funkcijai nuo 6b iki 32b, priklausomai nuo norimo tikslumo. Didesnis

SANTRAUKA LIETUVIU KALBA 141

tikslumas veda prie spartesnio riboty resursy sunaudojimo ir mazesnio tinklo sukri-
mo konkrec¢iame LPLM. Todél turi biiti ieSkomas kompromisas tarp greitaveikos, tink-
lo dydZzio ir LPLM tipo. Egzistuojantys specializuoti DNT integriniai grandynai turi
ribotg tiksluma, i€jimuy/iséjimy bei neurony skaiciy, todél vis dazniau DNT jgyvendi-
nimui pagal pageidaujamus efektyvumo kriterijus yra taikomi LPLM lustai, kurie turi
nuo keliy $imty iki keliy tikstanciy DSP bloky su konfigiruojamomis instrukcijomis,
paskirstytus BRAM ir LUT resursus.

Sudétingy konfigiiracijy DNT igyvendinimui LPLM yra sitlomi neurony mo-
deliai, kuriy jgyvendinimy kopijos yra nuo keliy iki keliy Simty karty atkartojamos
LPLM priklausomai nuo siektino islygiagretumo lygio. Dél riboty LPLM istekliy,
mokslininky sitilomi metodai DNT jgyvendinimui taip pat naudoja aritmetiniy, logi-
niy bei atminties resursy dalijimasj tarp sluoksniy, neurony ar sinapsiy. Ta¢iau pagrin-
dinis skirtumas tarp $ioje disertacijoje siilomo ir Zinomy metody DNT igyvendinimui
LPLM yra tas, kad egzistuojantys metodai nenaudoja dinaminio DSP persikonfigtira-
vimo savybés ir skiria visa DSP bloka sinapsei ar neuronui. Net jeigu persikonfigiira-
vimo savybé yra pritaikoma, bet néra bendrinama visam kuriamam tinklui, tai riboja
sintezuojamos grandinés dydj ir yra suvarZomos galimybés igyvendinti siektinos su-
détingos konfigiiracijos PKDP.

Disertacijoje tiriami PKDP — tai dirbtiniy neurony tinklai, kuriais galima mode-
livoti dinaminj procesa atpazistant nestacionarius signalus laike. PKDP tyrimams Sne-
kos atpazintuvas yra tinkama testavimo aplinka dél galimybés optimizuotus PKDP IN
modulius taikyti: kalbos filtravime, poZymiy i§skyrime ar sprendimo priémime. Po-
Zymiams kalbos signale iSskirti taikomi tiesinés prognozés koeficientai (angl. Linear
Predictive Coefficients — LPC), tiesinés prognozés kepstriniai koeficientai (angl. Li-
near Predictive Cepstral Coefficients — LPCC), tiesinio spektro kepstriniai koefi-
cientai (angl. Linear Frequency Cepstral Coefficients — LFCC) ir mely daZniy skalés
kepstriniai koeficientai (angl. Mel Frequency Cepstral Coefficients — MFCC). Pa-
vieniams ZodZiams klasifikuoti naudojamas dinaminio laiko skalés kraipymo (DLSK)
metodas dél greito skai¢iavimo taikant grandininio apdorojimo principa ir fiksuoto
kablelio aritmetika LPLM luste. Sukurty $nekos atpazintuvo ir PKDP IN moduliy
efektyvumas turi buti eksperimentiSkai patvirtintas.

2. Efektyvaus jgyvendinimo kriterijai ir metodas

Apzvalga atskleide, kad dideliam PKDP jgyvendinimui nepakanka LPLM resursy,
todél sitloma kurti konfigiiruojamus neurono apdorojimo elementus (angl. Neuron
Processing Element — NPE) su maziausiu galimu skai¢iavimo vélinimu ir didziau-
siu taktiniu dazniu bei dalintis NPE resursais, kai tinklo, sluoksnio, neurono ar si-
napsés neimanoma dubliuoti siekiant lygiagretaus veikimo. PKDP optimizavimas yra
daugiakriterinis uZdavinys. Igyvendinto PKDP kokyb¢ apsprendZzia tinklo efektyvu-
mo kriterijai: signalo apdorojimo greitaveika gy, tinklo sudétingumas ¢c,,,. LPLM
efektyvumui vertinti priskiriami Sie kriterijai: resursai qg,, tikslumas q,.., naudoja-
ma energija qp,,, ir kaina qp;... PKDP kokyb¢ isreiSkiama per aibe¢ minéty kriterijy.
Kadangi PKDP pagal iSvardintus kriterijus negali biiti optimizuojamas vienu metu dél

142 SANTRAUKA LIETUVIU KALBA

prieStaravimy tarp ju, todél sitiloma atsizvelgti | svarbius kriterijus i§ vartotojy keicia-
my parametry perspektyvos. Laikoma, kad svarbu yra modifikuoti PKDP struktiira,
pasirinkti norima LPLM lusta, uZsiduoti tinklo greitaveiky ir iSreiksti kriterijus (qy,,
res) Per Pareto kokybe:

Opareto £ Inax(thr’ qRes)’ Sh
AThr = fT/TNPE, (S2)
1

= , S3

TR = Rion + 196 X Rogy + 576 X Rug 3
dia fT — didziausias galimas susintezuoto PKDP grandyno taktinis daznis, Typs — Sig-
nalo apdorojimo trukmé matuojama taktiniais impulsais, R, — perzvalgos lenteliy
skaicius, Rpg — DSP skaiCius, Rgzay — BRAM skaicius. Koeficientai 196 ir 576 taiko-
mi Ry it Rypay 18reiksti ekvivalenciais LUT resursais.

Pareto frontas parodys konkreCiam sudétingumo tinklui biiting LPLM resursy
skaiciy (ir LPLM lusta) prie uZsiduodamos greitaveikos. Optimizavimas pagal moky-
mo tipo ir tikslumo g kriterijus vykdomas prie$ optimizavima pagal Qpyrero (S1 pav.).
Optimalus mokymo tipas priklauso nuo sinapseés eilés, 0 q,.. yra nustatomas lyginant
fiksuoto ir slankaus kablelio PKDP jgyvendinimus. (pyyer i qprice 1aikomi antros svar-
bos kriterijais, kurie glaudZiai susieti su gge, nes didéjant LPLM resursams didéja
kaina ir energijos vartojimas.

Pagrindinis skirtumas tarp siilomy efektyvaus PKDP igyvendinimo kriterijy ir
analogiSky kriteriju DNT igyvendinimo efektyvumui vertinti yra tas, kad siilomas ko-
kybes kriterijus kartu jvertina prieStaringus greitaveikos ir naudojamy iStekliy reika-
lavimus. Kai tuo tarpu igyvendinimas pagal dauguma analogisky kriterijy taiko vieno
kriterijaus optimizavima. Sitlomas metodas PKDP igyvendinimui LPLM yra i$skir-
tinis tuo, kad jis PKDP tinkla apibiidinanCiame grafe ieSko ir optimizuoja pynutéms-
kopétéléms bei jy mokymams budingas struktiiras.

Pasiilytos dvi efektyvios pagal Pareto fronta optimizavimo strategijos taikytinos
pilnam PKDP jgyvendinimui LPLM naudojant ribota NPE skai¢iy. Pirmuoju atveju
uzsiduodami resursai ir PKDP konfigtiracija. Pradedama nuo didZiausio resursy su-
naudojimo siekiant didZiausios greitaveikos (maZiausio vélinimo tarp duomeny pada-
vimo i i¢jimo sluoksni ir ju gavimo paskutiniojo sluoksnio i$¢jime). Nuosekliai re-
dukuojant sluoksniy, neurony ir véliausiai sinapsiy lygiagretuma yra mazinamas bti-
ny resursy skaicius. Tai vykdoma tol, kol PKDP netelpa i LPLM lusta kaskart perskai-
¢iuojant PKDP duomeny apdorojimo vélinimg. Optimizavimas kartojamas vis kitai
PKDP konfigiiracijai ir naujai uzsiduotiems resursams ar LPLM tipui. Antruoju atve-
ju uzsiduodamas maksimalus signalo apdorojimo vélinimas bei PKDP konfigiiracija.
Optimizatorius nuosekliai prideda naujus NPE jvedant sinapsiy, neurony ir véliausiai
sluoksniy lygiagretuma, kol vélinimo salyga nebus tenkinama. Optimizavimas karto-
jamas vis kitai PKDP konfigliracijai ir naujai uZsiduotam vélinimo apribojimui.

PKDP igyvendinimui taikomas grafy teorija gristas metodas, kurio pagrindiniai
etapai pateikti S1 paveiksle. PKDP generuoti taikomi i¢jimo parametrai: mokymo ti-
pas 7, sinapsiy eilé M, neurony skaicius NN ir sluoksniy skaic¢ius L. PKDP apibtidi-
namas per aibg lygciu, kur kiekviena lygtis turi vieng operatoriy ir du operandus. IS
lygciy sudaromas kryptinis grafas, kuriame kiekviena vir§tng atitinkantis operatorius

SANTRAUKA LIETUVIU KALBA 143

turi dvi jeinancias briaunas Zymincias operandus. Grafe ieSkoma visy ijmanomy pogra-
fiy i§sidestymy (su 1-3 virStinémis), kurias palaiko perkonfigliruojamas DSP blokas.
Grafas nuosekliai padengiamas pografiais, pografiy dydZio mazéjimo tvarka iki kol
nebus pilnai padengtas. Tikslas yra kuo maZesniu pografiy skai¢iumi ir kuo didesniais
pografiai padengti visa grafa minimizuojant vélinima, nes DSP pografio apdorojimo
greitis vienodas visiems pografiy dydZiams. Yra panaudota DSP savybé apdoroti se-
kanti pografi per vieng takto cikla, kai esamo pografio i$¢jimas yra sekancio pografio
i¢jimu. Norint nustatyti kokiu laiko momentu koks pografis turi buti pradétas vykdy-
ti, padengtam grafui taikomas kritinio kelio metodas, kuris taip pat parodo maZiausia
galima vélinima, su kuriuo grafas gali biiti apdorotas. Pografiy pradZios ir pabaigos
laikai iSdéstomi Ganto diagramoje. Jei keli pografiai turi vienoda pradZzios laika, tai
vieno i$ ju vykdymo pradZia nukeliama i laisva laiko Zyme, kad DSP galéty pradeti
vykdyti viena pografj per cikla taikant grandininij apdorojima. Pasiiillyta NPE strukti-
ra (S2 pav.) optimizuojama greitam grandininiam apdorojimui, ivedant trigerius tarp
atminciy ir DSP bloky ir eksperimentiskai matuojant apdorojimo trukme. Nustatyta,
kad NPE veikia greiciausiai su vienu papildomu trigeriu tarp iéjimo buferiy ir DSP,
kuris didina LPLM taktini dazni bei mazina signalo sklidimo vélinima tarp dviejy
trigeriy kritiniame kelyje. Iskaitant 4 trigerius DSP bloke, 2 integruotus trigerius jéji-
mo buferiy jvestyje ir iSvestyje gautas optimalus 7 takty vélinimas vienai instrukcijai
apdoroti. Paskutiniame kompiliatoriaus etape generuojamos instrukcijos apdorojimo
elementui bei HDL byla registry perdavimo lygmenyje apibidinanti pasitlyta NPE

M,N,L M, T
v v

‘ PKDP lyg¢iy generavimas PKDP
v mokymai

‘ Kryptinio grafo sudarymas ‘

Pografiy sutapdinimas ‘
v min R

3

g

é pggrla)f}) ai Grafo padengiinas pografiais ‘

g

%‘ < ‘ Kritinio kcllio paieska ‘

)

g ‘ Instrukcijy planavimas ribotiems iStekliams ‘ min 7
3

Z

‘ NPE optimizavimas konvejeriniam veikimui ‘

‘ Tikslumo g, . optimizavimas ‘

‘ Pareto gy, qges Optimizavimas ‘

‘ HDL kodo generavimas ‘

v
NPE instrukcijos ir HDL bylos

Sluoksnio optimizavimas

S1 pav. Sitilomas pynuciy-kopétéliy daugiasluoksnio perceptrony tinklo
igyvendinimo metodas

144 SANTRAUKA LIETUVIU KALBA

Ivesties |Indekso generatorius Instrukcijos

parinkimas Tnstrukcijy Syna Operacijos parinkimas
Dvieju jungciu RAM .| Adreso keitiklis
Ivestis D buferis I$vestis
A buferis L s
Dviejy jungciy ROM
B buferis o -] = ol
; = | © ©)
C buferis S | = 2 |72
s | .=) o}
+ 0 o S

S2 pav. Neurono apdorojimo elementas gristas vienu skaitmeniniu signaly
apdorojimo bloku

strukttra. Sudarant N iéjimy neurong sinapséms skiriama N NPE, jos veikia lygiagre-
&iai, papildomas (N +1)-asis NPE naudojamas sinapsiy sumos ir klaidos skai¢iavimui
neuronui besimokant.

Bity skaiCius duomenims nustatomas matuojant klaida tarp fiksuoto ir slankaus
kablelio neurony igyvendinimy taikant atitinkamai Vivado HLS ir Matlab irankius.
Keiciama sinapsiy pralaidumo juostg ir matuojamos sinapsiy pralaidumo juostos, cent-
rinio daZnio ir neurono i$¢jimo klaidos. Netiesinei aktyvavimo funkcijai igyvendinti
taikoma blokiné atmintis. Aproksimuotos hiperbolinio tangento funkcijos i§¢jimo tiks-
lumui vertinti taikomi vidutinés, maksimalios bei vidutinés kvadratinés klaidos jver-
¢iai keiCiant stiprinimo koeficienta ir atminties dydj.

3. Lietuviy Snekos atpazintuvo jgyvendinimas
lauku programuojama logine matrica

Eksperimentiniam PKDP efektyvumui patvirtinti yra igyvendinti Snekos atpaZintuvo
optimizuoti IN moduliai. AtpaZintuvas, igyvendintas viename LPLM luste, geba rea-
liu laiku atpaZinti | mikrofong iStartas komandas. Greitam $nekos irasy atpaZinimo
tikslumui patikrinti atpaZintuvas gali nuskaitinéti iraSy duomeny bazg i§ SD korte-
1és. Dauguma pagrindiniy IN moduliy, kurie reikalauja greitaveikos, yra igyvendinti
aparatiirg aprasancia kalba VHDL (balti blokai S3 pav.). Tikslumo reikalaujantys IN
moduliai perkelti | programini procesoriy MicroBlaze. AtpaZinimo eigos valdymui ir
bendravimui su vartotoju taikomas ARM procesorius. IN moduliy igyvendinty LPLM,
MicroBlaze ir ARM procesoriuose taktinis daznis atitinkamai 50 MHz, 100 MHz ir
667 MHz. Kalbos signalas diskretizuojamas 11,025 kHz daZniu, kvantuojamas 256 ly-
giais.

Pirminio apdorojimo IN modulyje triuk§mo filtravimui taikomi optimizuoti PKDP
IN moduliai. Nufiltruotas $nekos signalas dalinamas i 23,22 ms trukmeés kadrus po
256 imtis, kurioms pritaikomas Hanningo filtro IN modulis, krasty efektui kadruose
Salinti. Tam, kad atpaZintuvas veikty realiu laiku ir dél pusiau persidengianciy kadruy,
poZymiai turi bati iSskiriami ir palyginami per 11,61 ms. LFCC pozZymiy i§skyrimo

SANTRAUKA LIETUVIU KALBA 145

r Garso valdiklis J rSD kortelés valdiklis J MicroBlaze procesorius
| Lpce | | mrcc |

777777 176 8b
\m z ‘ Filtravimas | ‘ Autoregresija ‘
2 E |
=R} i 8b ! i 32b
=8 . B I ;
&~ S Dalinimas | kadrus | ‘ ARM procesorius ‘ ‘l BRAM ”
| | >
| ‘ L = T | 32 [12b
! L sb '8b 24b / MUX
\ Hanningo filtras | . —
\ Autokoreliacija }—T
[
2x17b
12b
5b T
(+) H F(.) ‘I Vieno ZodZio poZymiai ”
_
J % 12x12b
— 28b 12x12b -
% AtpaZinimas }<—{ DLSK }‘—{ | Zodynas | ‘
T 12b 28b
‘ Paspartintas sutapdinimas | Sutapdinimo atmintis ”

rValdiklis J ‘I Atmintis ” ‘Skaiéiavirnas‘

S3 pav. Pavieniy Zodziy atpazinimo sistemos blokiné diagrama

IN moduli sudaro du greitosios Furjé transformacijos IN moduliai (i§ Xilinx inte-
lektiniy moduliy bibliotekos), absoliutinés vertés ir logaritmo IN moduliai. MFCC,
LPC ir LPCC metody jgyvendinimas isskirstytas tarp LPLM ir MicroBlaze proceso-
riaus. Snekos signalo autokoreliacijos koeficienty ir spektro skai¢iavimo IN moduliai
igyvendinti LPLM dél greitaveikos reikalavimo ir juy rezultatas perduodamas i Mic-
roBlaze duomeny apdorojimui su slankaus kablelio skaiCiaus tikslumu. MicroBlaze
yra igyvendinti: rekursinis Levinsono-Durbino, mely daZniy skalés filtravimo ir dis-
kreciosios kosinusinés transformacijos algoritmai. Keturi jgyvendinti kalbos analizés
metodai skai¢iuoja 12 pozymiy kiekvienam kadrui.

Pozymiams palyginti taikomas dinaminio laiko skalés kraipymo (DLSK) meto-
das. Zodyno poZymiai saugomi vidinéje LPLM BRAM atmintyje. Pavienio ZodZio
trukmé — iki 1,5s. Optimizuotas DLSK IN modulis palygina vieng Zodj per 16640
taktiniy impulsy. DLSK yra papildomai paspartintas 2,6 karto taikant apribojimus su-
tapdinimo klaidy matricos skai¢iavime (toliau vadinamas DLSK,). Naudojant viena
DLSK. IN modulj vienas zZodis palyginamas per 128 us pasiekiant 7800 ZodZiw/s ly-
ginimo greitj. ZodZiy poZymiy palyginimui pagreitinti pasiiilytas dvigubo atsitiktinio

146 SANTRAUKA LIETUVIU KALBA

inicijavimo rezultaty sutapdinimo algoritmas, kuris kartu su DLSK naudoja papildo-
ma atmintj saugoti suriiSiuotus zodZius tarpusavio klaidos mazéjimo tvarka. Pagreiti-
nimas gristas tuo, kad iStarto ZodZio poZymiai lyginami ne su visu Zodynu, bet su tais
70dZio poZymiais, tarp kuriy klaida yra panasi. Sis biidas sumaZina paieskos trukme
62-70 %, taciau reikalauja papildomai 13 % atminties bei sumazina iki 90 % ZodZiy
atpaZinimo tiksluma.

ARM procesorius taikomas ZodZiy atpaZinimo procesui valdyti ir vartotojo sasa-
jai igyvendinti. AtpaZintuvas turi tris pagrindines biisenas: mokymo, modifikavimo ir
valdymo. Mokymo metu atpaZintuvas balsu siiilo vartotojui pasirinkti valdoma iren-
ginj ir suteikti pavadinimus komandoms, kuriy poZymiai ir garsiai iraSai iSsaugomi.
Komandy $alinimas, redagavimas, papildymas nauja, viso saraSo perklausimas bei at-
pazintuvo atstatymas jvykdomi modifikavimo biisenoje. Valdymo biisenoje laukiama
jrenginio pavadinimo bei komandos pavadinimo. Teisingai atpaZintos komandos at-
veju iSsiunciamas signalas valdomam jrenginiui per infraraudonyjy spinduliy, belaidi
(ZigBee) ar laidini ry$i. AtpaZintuvas pereina | laukimo baisena, jei 30s nebuvo i$-
tartas joks Zodis ir atsibunda, kai detektuojamas aktyvavimo Zodis. 2 s po komandos
iStarimo galima ja atSaukti pasakant atSaukimui priskirta komanda. Signalizacija apie
esamg biivi ir komandos atpaZinimo teisinguma vartotojui pateikiama garso ir §viesos
pavidalu. Tiek komandy mokymo, tiek Snekos atpaZinimo metu atpaZintuvo bendravi-
mas su vartotoju vyksta balsu. Komandy atpaZinimo tikslumui pagerinti yra taikomas
kontekstinis Zodynas — atskiras komandy rinkinys kiekvienam valdomam specializuo-
tam funkciniam irenginiui (neigaliyjy lova, keltuvus ar rySio su slauga sistema) bei
kitiems buities prietaisams.

4. |gyvendinty intelektiniy moduliy
eksperimentiné patikra

Atlikti pynuciy-kopétéliy neurono IN moduliy skai¢iavimo tikslumo eksperimentai.
Fiksuoto ir slankaus kablelio tikslumo neurony igyvendinimai lyginami tarpusavyje.
Yra kei¢iama sinapsiy pralaidumo juosta, duomeny bity skaicius bei skai¢iuojmos
sinapsiy pralaidumo juostos, centrinio daznio ir neurono i$é¢jimo klaidos. Nustatyta,
kad 18 b tikslumas yra pakankamas norint pasiekti 0,1 % pralaidumo juostos santyking
klaida, kai juostos plotis sudaro 0,1 % nuo testuojamo spektro.

Netiesiné aktyvavimo funkcija igyvendinta BRAM. Jos tikslumui patikrinti kei-
¢iamas atminties dydis, stiprinimo koeficientas ir neurono pralaidumo juostos plotis
matuojant viduting &,,, maksimalig &, klaida neurono i$¢jime bei perdavimo funk-

MA?
cijos viduting kvadrating klaida &,r. 2kB atminties dydis laikomas pakankamu &,
esant 0,35 % bei &% maZiau uz 1,8x1073.

Pagal resursy qg,, ir greitaveikos g, kriterijus tiriamas pynuciy-kopétéliy neu-
ronas kei¢iant jo mokymo tipa (regresing pynutg) T € {t3,t4, t11, ti12}, sinapsiy ei-
le M ir iéjimy skai¢iy. NPE, DSP ir BRAM skaicius tiesiSkai priklauso nuo iéji-
my skaiCiaus (Sledevi¢, Navakauskas 2015). Pagal qg., gy, it abu kriterijus kiekvie-
nai pynuciy-kopételiy sinapsés eilei pateikiamas geriausias i$ keturiy mokymo tipy
(S4 pav.). Neurono su vienu i¢jimu (N = 1) ir pirmos eilés sinapse (M = 1) igy-

SANTRAUKA LIETUVIU KALBA 147

Mokymo tipas: Wtz [t [t Wt

CINSONIN I O

G Y [[[[[[[[T

e &0y, HEE O T o o v e oy 11

1 5 10 15 20 25 30
Pynuciy-kopétéliy sinapses eile, M

S4 pav. Geriausi pynuciy-kopételiy neurono jgyvendinimai pagal resursy,
greitaveikos arba abu kriterijus: regresiniy pynuciy tipai, kurie turi bati taikomi
esant konkreciai sinapsés eilei M

vendinimas Artix-7 LPLM sunaudoja maZiau negu 1 % loginiy resursy. Toks neuronas
apsimokina per 90 taktiniy impulsy. Atitinkamai 35 % loginiy resursy skiriama neu-
ronui su N = 10, M = 10, kurio mokymo vélinimas 300 taktiniy impulsy. Tokio
neurono mokymo trukme galima aproksimuoti funkcija:

t~225M + 1,7N + 57,4 (+4,2) [taktiniai impulsai]. (S4)

Taikant siiloma metoda pasiektas 300 MHz LPLM jgyvendinto neurono grandy-
no maksimalus taktinis daZnis. Greitaveikos ir resursy kriterijy palyginimui neuronai
su mokymo tipais 7T ir kei¢iama sinapsiy eile M yra jgyvendinti taikant komercini
jrankij Vivado HLS. Igyvendintiems sinapsiy grandynams su mokymo tipais ts, t4, t;1,
12 yra gauti atitinkamai 174 MHz, 179 MHz, 179 MHz ir 158 MHz didZiausi taktiniai
dazniai. Lyginant su sitilomu metodu Vivado HLS jgyvendinti neuronai ilgiau apsimo-
kina, nes reikalaujama daugiau taktiniy impulsy. Dél didesnio schemos taktinio daznio
ir maZesnio vélinimo sitilomas metodas pagal greitaveikos kriterijy pranoksta Vivado
HLS iki 11 karty, kai yra taikomas santykinai spar¢iausias mokymo tipas t12 (S5 pav.,
a). Lyginant resursy panaudojimo kriterijus siilomas metodas yra geresnis tik sinap-
seés eiles rézivose M € [2, 4] (S5 pav., b). Vertinant neurony igyvendinimo pranasuma
pagal abu kriterijus qp,, ir qge, gautas maziausiai 3 karty pynuciy-kopétéliy neurono
PKN kokybés pagerinimas sinapsiy eilés tyrimo réziuose M € [1,20].

PKDP igyvendinimas LPLM tiriamas keiCiant sluoksniy L, neurony NN skaiCiy
ir sinapsiy eile M. Tyrime jau naudojamas optimalus mokytojo tipas pagal ¢y, ir
Ores Kkriterijus. Pareto efektyvioji kokybeé pagal qry,,. ir qge, skirtingy konfigiiracijy
PKDP pateikta Pareto fronty pavidalu (S6 pav.). Kiekviena kreivé jungia taSkus Zy-
mincius Pareto optimaly konkrecios konfigiiracijos PKDP igyvendinima LPLM. Visi
kiti galimi sprendimai, kurie nepriklauso Pareto frontui, néra pateikiami. Abscisiy aSy-
je iSreikStas greitaveikos kriterijus q,, parodantis didZiausia PKDP mokymosi grei-
ti. BruksSniné linija parodo egzistuojanc¢iy LPLM Seimy iStekliy ribas, pagal kurias
pasirenkamas tinkamas LPLM lustas konkre¢iam PKDP IN modulio igyvendinimui.
Sprendimai, kurie yra uz Virtex-7 ribos, parodo, kad didZiausios greitaveikos PKDP
igyvendinimas virsija septintos serijos LPLM galimybes.

Tiriami IN moduliy taikomy pavieniy ZodZiy atpazintuve tikslumas bei greitavei-
ka. Pozymiy Snekos signale iSskyrimo IN moduliy tikslumo tyrimui taikomi 10-ties
kalbétojy (5 vyrai, 5 moterys) 100 ZodZiy jraSai po keturias sesijas. Pirmoji sesija tai-
koma atpaZintuvo apmokymui, likusios sesijos — testavimui. 30 dB ir 15 dB signalas
triuk$mas santykio jrasai yra gauti originalius iraSus paveikus baltu triuk§mu. DidZiau-

148 SANTRAUKA LIETUVIU KALBA

sias 93,2 % vidutinis originaliy jrasy atpaZinimo tikslumas gautas taikant MFCC IN
modulj, 30 dB jrasams — 90,8 % taikant LFCC IN modulj ir 15 dB jrasams — 83,7 %
taikant LPCC. Skliaustuose (S1 lentel¢je) pateiktas ZodZiy atpaZinimo tikslumo pa-
gerinimas, kai pirminiame $nekos apdorojimo etape taikomas pynuciy-kopétéliy neu-
ronas triuk§mui $alinti klaidingai atpaZintuose iraSuose. PKN mokymui taikomi ori-
ginaliis jrasai be triuk§mo. Pasiektas geriausias vidutinis 4,9 % atpaZinimo tikslumo
pagerinimas 15 dB signalas triuk§mas santykio iraSams ir 2,0 % pagerinimas — 30 dB
signalas triuk§mas santykio iraSams, kai poZymiams iSskirti taikomas MFCC IN.

Taikant pasiiilyta dvigubo atsitiktinio inicijavimo rezultaty sutapdinimo algorit-
ma, MFCC IN moduli poZymiams i$skirti bei M;, Fy kalbétojy iraSus, kuriy atpazi-
nimo tikslumas be pagreitinimo yra 99-100 % ribose, paieskos trukm¢ galima suma-
Zinti 62-70 % aukojant kelis ZodZiy atpaZinimo tikslumo procentus, taciau testuojamy
kalbétoju ZodZiy atpazZinimo tikslumas vis tiek iSliecka 90-97 % ribose. LPLM igy-
vendinty poZymiy i§skyrimo ir palyginimo IN moduliy greitaveika palyginta su Mat-
lab terpéje igyvendintomis atpaZintuvo funkcijomis. Taikomas 3 GHz CPU su 50 %
naudojamu procesoriumi. I$ laikinés diagramos (S7 pav.) matoma, kad visi LPLM
igyvendinti IN moduliai tenkina realaus laiko salyga ir paskai¢iuojami grei¢iau negu
per 11610 us, kai $nekos signalo imtys yra surenkamos i kadra. LFCC skai¢iuojami
174 kartus, o LPCC ir MFCC - 3,5 karto grei¢iau negu to reikalauja veikimo rea-

12 1,1
1r il
= 10f -
3 3
£ 9 §0,9
2 2
= gl =08
2} «®,
=& =&
= Tf = 0,7F
~ ol ~
xE x£0,6
i=2 57 1 o
tg
4t - t11)) 0.5
£ S S S .. ' | S S S S S S
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Pynuciy-kopeteliy sinapses eile M Pynuciy-kopetéliy sinapses eile M
a) b)

S5 pav. Greitaveikos a) ir resursy b) kriterijy santykis, kai kei¢iamos M -tosios eilés
pynuéiy-kopétéliy neuronas jgyvendintas taikant siiloma metoda ir Vivado HLS
irankj esant keturiems skirtingiems mokymo budams

S1 lentelé. Vidutinis pavieniy ZodZiy atpaZinimo tikslumas

« . . | Originalus Irasai su Irasai su
PoZymiai Lo
irasai SNR=30dB | SNR=15dB
MFCC 93,2 86,7 (4+2,0) 79,3 (+4,9)
LFCC 93,0 90,8 (+1,0 72,4 (+4,7

(+1,0) (+4,7)
LPCC 91,5 89,8 (+0,7) | 83,7 (+4,7)
LPC 82,5 78,6 (+1,2) | 67,1 (+3,1)

SANTRAUKA LIETUVIU KALBA 149

x108 ‘ ‘ ‘ ‘ ‘ %108
1L =2
2517 L=5 1
[R~ Virend 77

2
L5
- N N SRS R S S
b 1 [Kintex—7

0,5 !:[_________________________________
Artix=7
0 i i i i . i 0}_.-—007‘74‘77\77\4'/\/\‘
0 0,2 0,4 0,6 0,8 1 1,2 0 0,2 0,4 0,6 0,8 1 1,2
drne [MHZ] e [MHz]
a) b)

S6 pav. Pareto fronto priklausomybé nuo resursy ir spartos kriterijy konkre¢iam
PKDP jgyvendinimui, kai a) M = 10, N = 10 ir kei¢iamas sluoksniy skaiéius L
arba kai b) L = 10, M = 10 ir kei¢iamas neurony skaicius N

livoju laiku salyga. DLSK, per 11610 s spéja palyginti iStarta Zodi su 90 irasy saugo-
my Zodyne. Dél santykinai 30 karty didesnio CPU taktinio daznio MFCC, LPCC ir
LPC poZzymiai paskai¢iuojami atitinkamai 10 ir 5 kartus grei¢iau negu LPLM igyven-
dintame 100 MHz MicroBlaze procesoriaus IN modulyje. LPLM pranaSumas pastebi-
mas LFCC ir DLSK IN moduliy igyvendinimuose. Lyginant su Matlab igyvendinimu
LFCC yra paspartintas 1,5 kartus, o DLSK ir DLSK, — daugiau negu 280 karty.

) 3304
MFCcCE 585 f1s O LPLM
0 CPU
3349 us
|9 Jolo] E— ‘
H 313us 11610 ps
LpC I 198THS Veikimo
realiuoju laiku
DLSK 333 us 94100 ps .
DLSK.P 128 us 36320 us ‘ =
+ + + + + + + + + + + 2 ».
0 1000 5000 10000 ¢ [ps]

S7 pav. LPLM ir CPU jgyvendinty intelektinés nuosavybés moduliy poZymiams
i$skirti ir palyginti laikiné diagrama

AtpaZintuvo greitaveika ir tikslumas palyginti su kity autoriy pilnai programiniu
igyvendinimu gristu LPLM programiniu procesoriumi MicroBlaze. Eksperimentai at-
likti su vienodais Zodynais: (5 vyrai, 5 moterys) 10 sesiju po 100 ZodZiy, 4 sesijos —
apmokymui, 6 sesijos — testavimui. AtsiZvelgiant i skirtingus diskretizavimo ir taktinj
daznius LFCC IN modulio greitaveika paspartinta 320 karty, DLSK, IN modulio —
348 kartus. Dél didesnio Snekos signalo diskretizavimo daZnio ZodZiy atpaZinimo tiks-
lumas padidéjo 4,9 % iki 97,7 %.

150

SANTRAUKA LIETUVIU KALBA

Bendrosios iSvados

Disertacijoje pasitlyti sprendimai pynuciy-kopétéliy daugiasluoksnio perceptrony in-
telektinés nuosavybés (PKDP IN) moduliams igyvendinti lauku programuojama logi-
ne matrica (LPLM) ir iStirtas moduliy efektyvumas juos taikant nejgaliesiems skirta-
me lietuviy Snekos atpaZintuve. Gauti Sie elektros ir elektronikos inZinerijos mokslo
krypciai svarbs rezultatai:

1. Sukurtas ir eksperimenti$kai patvirtintas efektyvus metodas PKDP jgyven-
dinti LPLM:

L1

1.2.

1.3.

Sukurtas PKDP kompiliatorius generuoja daugiau nei 3 kartus efektyves-
nj IN modulj lyginant su komerciniu Vivado HLS irankiu.

Sukurtas neurono apdorojimo elementas, gristas LPLM DSP bloko struk-
tiira, yra optimizuotas greitaveikai, jis vélina tik 7 taktiniais impulsais,
garantuojant mazesng¢ nei 1 % viduting absoliucia i§éjimo signalo klai-
da ir 1,8x1073 $aknies vidutiné kvadrating pynuciy-kopétéliy neurono
perdavimo funkcijos klaida.

Eksperimentiniais tyrimais iS§gautos Zinios apie greiciausius PKDP mo-
kymo algoritmus ir jy geriausias regresines pynutes T € {t3, t4, t11,t12}
pritaikytos minimizuojant perzvalgos lenteliy skaiciy ir vélinima.

2. Igyvendinimams vertinti pasiiilytas PKDP grandyny sintezés specializuoty
kriterijy Pareto fronty skai¢iavimo budas:

2.1.

2.2.

Atrinktas LPLM lustas yra optimalus pagal reikalavimus PKDP strukta-
rai, diskretizavimo daZnj ir kitus resursus.

Igyvendintos dvi optimizavimo strategijos: greitaveikai ir resursams.

3. Neigaliesiems skirtame lietuviy Snekos atpazZintuve igyvendinti ir eksperi-
mentiSkai patikrinti optimizuoti LPLM IN moduliai:

3.1

3.2.

3.3.

Pynuciy-kopétéliy neurono IN modulio taikymas 4 % padidina atpaZini-
mo tiksluma esant 15 dB signalas triuk§mas santykiui.

Zodziams jrasuose be triuk§mo atpazinti tinka MFCC ir LECC IN mo-
duliai.

LFCC ir LPCC IN moduliai taikytini esant 30 dB signalo ir triuk§mo
santykiui, o esant 15 dB — LPCC IN modulis uZztikrina didZiausia atpaZi-
nimo tiksluma.

4. Sukurtas ir patikrintas pirmasis nejgaliesiems skirto valdymo lietuviska Sne-
ka irenginio, gristo LPLM, prototipas:

4.1.

4.2.

Naujas spartesnis ZodZiy sutapdinimo algoritmas naudoja apribotg dina-
minj laiko skalés kraipyma ir atpaZista ZodZius 2,6 karto greiciau, nepra-
rasdamas 97 % siekiancio atpazinimo tikslumo.

Pasitlytas dvigubo atsitiktinio iniciavimo rezultaty sutapdinimo algorit-
mas papildomai iki 2,6 karto paspartina atpazZinimo procesa, taciau su-
mazina iki 90 % Zodziy atpazinimo tiksluma.

A

algorithm
depth firstsearch53
gradient descent training 23,92, 96
greedy ... 54
Levinson-Durbin 40, 80, 114
Viterbi 41

word recognition . 35, 76, 77, 105, 106, 111
analysis

cepstrall 37-39, 78-80

spectral ... 37,78
ANN. .viii, 3,9, 16-21, 27-29, 31-33, 41, 43,

49, 52

approximation..........................30
ARM ... 5, 88-90
ASAP .o 59
ASIC. ... 10, 35
autocorrelation. 39, 80, 113
B
backpropagation through time............ 23

BRAM. .. ix, 13, 30, 31, 47, 64, 66, 68, 78-80,
82, 83, 92-96, 98, 107

Cc

chip familly
Artix-7 5, 18, 49, 90, 94, 100, 101, 137, 147

Subject Index

Cortex A9....................5,90, 137
MicroBlaze 149
ML402..........coiii 137
Virtex-4 4, 35, 137
Virtex-7 ... 147
ZynQ-7000............. 4,5, 18, 90, 137

circuit .. 10, 22, 24, 31, 32, 39, 60, 63, 69, 92,
96, 101, 104

company
Google. ... 3,136
Nuancecovvviiinnnnn.... 3, 136

Xilinx . 4, 13, 14, 17, 28, 29, 47, 63, 64, 78,
92,102, 137, 145

condition 15, 21, 24, 68, 69, 71, 76
confidence interval 109
constrained scheduling 51, 56, 58, 59
CPM... ..o 56,57
critical path . 12, 22, 29, 33, 46, 49, 56, 58, 59
D

DFG..........cccviiiiiien.....50-53,56

dictionary .. 35, 41, 76, 77, 80-83, 85-87, 89,
106, 107, 111, 113

directed graph 50-52, 58

DSP....... viii, ix, 11-15, 18-20, 26-30, 40,
42, 47, 49-53, 55, 56, 58-61, 63, 73,
78-80, 92, 93, 96-98, 103, 107, 117

151

152 SUBJECT INDEX
DTW...... 41, 42, 75, 78-81, 83-86, 90, 107, |
111-115, 118 IR .. 16
implementation
E criteria.......... 33, 46, 48, 100, 102-104
efficient implementation. . . 32, 46, 48-50, 73, parallel .. 16, 19, 25, 33, 35, 41, 42, 62, 68,
103 71, 80-82, 102
pipeline . . 35, 49, 51, 55, 58, 61, 62, 71, 81,
F 83
features quality 33, 46, 48
classification 41, 42, 81, 106, 108, 109 strategy . .45, 46, 48, 53, 59, 63, 68, 71, 73,
extraction....... 34,78, 105, 108, 110, 113 117
selection...................... 78,85, 86 instruction
VECLOT . + oo oo 77, 83, 85, 86, 111 modification 55, 60, 61
FET ... 106, 113 scheduling 13, 50, 56, 58, 59, 63, 73
filtercoovvnnn. 14, 16, 17, 21, 22,39 investigation 61, 63, 92, 94, 96, 103, 104, 106,
band-passoiiiiiiil. 21,63 111
band-stop.iie e 67 TP v, 3-6, 14, 17, 28, 38,
stability 21-23 43,73, 75,76, 78, 80, 81, 83-92, 102,
FIR ..o 14, 16 106, 108, 110, 111, 115, 118
FPGA v, ix, 1, 3-6, 820, IP module
26-33, 35, 36, 38, 39, 41-43, 46-52, autocorrelation............... 39, 80, 114
56, 63, 68-71, 73, 75-78, 81, 88-94, autoregression. 39, 80, 114
96, 98—-108, 113, 116-118 DTW .. 41, 77,78, 81, 83, 85, 86, 107, 111,
clock frequency . 22, 29, 33, 46, 48, 61, 73, 113115
90, 102, 106, 107, 113 FFT..................... 78,79, 113, 114
FPGA resource framing....................oo.L. 76,79
BRAM. . .11, 12, 30, 47, 63, 66, 77, 78, 80, infrared................. 89, 90
82,93, 95, 98, 107 iterative voice response 88
DSP. .11, 12, 29, 47, 49, 53, 58, 60, 78, 80, LFCC ... 37,77,78, 90, 106, 108, 113-115
93, 96, 97, 107 logarithm................ 78,79, 113, 114
LUT ... 11, 12, 30, 47, 51, 93, 98, 100, 107 LPC......... 39, 78, 80, 90, 108, 113-115
LUT equivalent 104 LPCC........39,78, 80,90, 108, 113-115
SHCE. .o 11, 12 MFCC. . .38, 77-79, 90, 108, 109, 113-115
function MicroBlaze 35,77, 80, 144, 145
activation........... 29, 51, 60, 66, 93, 95 neuron processing element. .46, 51, 60—63,
Hanning............ 76, 114 71, 102, 104
trigonometric 51, 60, 64 synchronization 58,76, 83
window 39, 76, 78, 82, 84, 87, 114 UART. ... 90
voice activity detector 89
G windowing................ 39, 76-78, 114
graph........................ 50, 51, 53, 55 Zigbeeot 89, 90
COVETING. . oevveenennennn. 51, 54, 56, 59
isomorphism. 53 L
matching 51, 53,54 latency..12, 14, 19, 28-30, 32, 45-47, 49, 50,
111117411 V- 51, 54, 56 54, 56, 58, 61, 64, 68-73, 78, 83, 98,
100, 102, 103, 115
H LFCC.. viii, 36-38, 78, 79, 90, 106-108, 111,
HDL....... 10, 14, 17, 18, 32, 50, 59-61, 102 113-115, 118
hidden Markov model................ 34,41 LL .o 16, 68

LLF. .17, 18, 21-24, 26, 49, 61, 92, 93, 96, 97

SUBJECT INDEX

LLMLP . v, ix, 3-6, 11, 12, 16, 22, 24-27, 42,
43, 45-53, 55, 56, 61, 63, 68-73, 75,
77,91, 92, 96, 98, 103-105, 116, 117

LLN .ix, 21, 49, 62, 64, 66-68, 91-93, 95-98,
100-103, 106, 110, 111, 115, 118

LPC . viii, 36, 37, 39-41, 78, 80, 90, 108, 111,
113

LPCC viii, 36, 37, 39-41, 78, 80, 90, 108, 111,
113-115, 118

LSR....ovveennnn.. 75, 88, 90, 105, 106, 108

LUT. 11, 13, 18, 29-31, 33, 38, 39, 47, 52, 64,
66, 67, 92-95, 98, 100, 102, 103, 105,
108, 115, 117

M
MAC ... 28, 29, 39
MAEccciiiiii.. viii, 65, 67, 93
MECC...... viii, 36-39, 78, 79, 90, 108, 111,
113-115, 118
MLP..................... 16, 19, 22, 28, 29
MME. viii, 67
model 19, 34, 39, 41
multilayer perceptron .. 16, 23, 25, 63, 68, 71,
104
N
NOISE.....covvvvnn... 15, 35, 75, 92, 108-110
NPE......... 45, 46, 60-63, 71, 72, 102, 105
0]
optimization strategy 63, 68, 71
order recursioneiiia.... 23
P
PAR.................. 11, 28, 32, 33, 46, 61
parameters. .21, 23, 25, 28, 63, 64, 67, 71, 87,
92,93, 111
Pareto frontier. . .45, 48, 73, 92, 103, 104, 115
pattern matching......... 81, 85, 86, 111, 112
power spectral density 67
Precision.........ovviuiiuiiiiiienenn 19
fixed-point13, 14, 16, 28, 39, 41, 47, 49, 63,
65, 66,92
floating-point 14, 16, 41, 47, 49, 63, 66, 77,
78, 106
programming language
Co 10, 15, 28, 42
Gt oo 15, 28
CH o 28
Matlab.....................o ... 28

153
RTL ... 28
SystemC ...l 10, 15
Verilog. ..ot 10, 18
VHDL......... vii, 10, 18, 28, 42, 96, 144
PWL ... 29, 30
Q
quality criteria 32,45, 46, 102
R
RAM.......... 11-13, 30, 33, 47, 61, 73, 115

real-time .. 35-39, 42, 76, 77, 81, 85, 113, 114

reconfigurable block. . .. 18, 29, 31, 49, 52, 55

regressor lattice. 24, 25, 49, 51, 56, 61, 62, 98,
100, 102, 103, 115

RMSE...........ooiii . viii, 95
ROMo i, 13, 18, 60
RTL.................. 10-12, 14, 29
S
Schurrecursion....................... .. 21
software
AccelDSP 14, 15
C-to-Silicon...................... 14, 15
CatapultC..........c.oooiintt, 14, 15
HDLCoder...................... 14, 15
HLS ..o 96
ISE Design Suite 4, 14, 101, 102, 137
LabView................. 10, 15, 39, 140

Matlab. .4, 10, 14, 28, 63, 64, 67, 113, 137,
144, 148, 149

ModelSim....................... 4, 137
RapidSmith......................... 11
Simulink 10, 14, 19, 28, 39, 140
StateCADoll 14, 15
Synphony ...l 14, 15
System Generator............... 14, 63
Verilog. ... 140
VHDL. ..o 140

Vivado HLS. .4, 5, 14, 15, 64, 67, 92, 102,
103, 116, 117, 137, 138, 140, 144, 147,

148, 150
XSG 14, 15
speech recognition. . . .34, 41, 76, 81, 105, 113
speech records 76, 88, 105, 107-109, 111
structure. 10, 12, 16—-19, 21, 28, 32, 48, 50, 63,
68,71
subgraph 50, 53-55, 59, 60, 96, 103
elimination 54

support vector machine.................. 28

154

SUBJECT INDEX

synapse . 13, 19, 21, 22, 29, 31, 32, 46, 47, 49,
55, 56, 61-63, 66, 68, 71, 92, 96, 98,
100-103, 110

systolic array.....................31,40,4]
T
threshold............................... 19
transfer function 67, 95, 96
U
userinterface........................... 88
\'}
vector35, 37-39, 41, 42, 57, 63,77, 81, 83, 85,
86, 111
VLSL ..o 31
y4

zero-poleplane............ 93

Annexes’

Annex A. Created Intellectual Property Cores

Annex B. The Co-authors’ Agreement to Present
Publications Material in the Dissertation

Annex C. The Copies of Scientific Publications by
the Author on the Topic of the
Dissertation

“The annexes are supplied in the enclosed compact disc

155

Tomyslav SLEDEVIC

AN EFFICIENT IMPLEMENTATION OF LATTICE-LADDER MULTILAYER
PERCEPTRONS IN FIELD PROGRAMMABLE GATE ARRAYS

Doctoral Dissertation

Technological Sciences,
Electrical and Electronic Engineering (01T)

PYNUCIU-KOPETELIU DAUGIASLUOKSNIU PERCEPTRONU EFEKTYVUS
IGYVENDINIMAS LAUKU PROGRAMUOJAMOMIS LOGINEMIS MATRICOMIS

Daktaro disertacija

Technologijos mokslai,
elektros ir elektronikos inZinerija (01T)

2016 05 06. 14,25 sp. 1. Tirazas 20 egz.

Vilniaus Gedimino technikos universiteto leidykla ,,Technika®,
Saulétekio al. 11, LT-10223 Vilnius,

http://leidykla.vgtu.lt

Spausdino B] UAB ,,Baltijos kopija“,

Kareiviy g. 13B, LT-09109 Vilnius

http://leidykla.vgtu.lt

	Introduction
	Problem Formulation
	Relevance of the Thesis
	The Object of the Research
	The Aim of the Thesis
	The Objectives of the Thesis
	Research Methodology
	Scientific Novelty of the Thesis
	Practical Value of the Research Findings
	The Defended Statements
	Approval of the Research Findings
	Structure of the Dissertation
	Acknowledgements

	1 Review of Electronic Systems Implementation in Field Programmable Gate Arrays
	1.1 Computer-Aided Design for Implementation in Field Programmable Gate Array
	1.1.1 Specifics of Field Programmable Gate Array Architectures
	1.1.2 High Level Tools for Hardware Description LanguageGeneration

	1.2 Implementation of Artificial Neural Networks in Field Programmable Gate Array
	1.2.1 Specifics of Artificial Neural Networks
	1.2.2 Artificial Neuron Structures
	1.2.3 Dynamic Neuron
	1.2.4 Training of Dynamic Neuron
	1.2.5 Indirect (High Level) Approach
	1.2.6 Direct (Low Level) Approach
	1.2.7 Artificial Neural Network Chips
	1.2.8 Efficiency Criteria of Neural Network Hardware

	1.3 Implementation of Speech Recognition in Field Programmable Gate Array
	1.3.1 Linear Frequency Cepstral Analysis
	1.3.2 Mel-Frequency Cepstral Analysis
	1.3.3 Linear Predictive and Linear Predictive Cepstral Analysis
	1.3.4 Features Classification

	1.4 Conclusions of the 1st Chapter and Formulation of the Thesis Objectives

	2 Efficient Implementation of Lattice-Ladder Multilayer Perceptron
	2.1 Implementation Quality
	2.2 Introduction to Implementation Technique
	2.3 Neuron Processing Element Optimization
	2.3.1 The Data Flow Graphs Generation
	2.3.2 Subgraph Matching
	2.3.3 Graph Covering and Merging
	2.3.4 Critical Path Search
	2.3.5 Resource Constrained Scheduling
	2.3.6 Design Description

	2.4 Neuron Layers Optimization
	2.4.1 Accuracy Optimization
	2.4.2 Throughput Optimized Implementation Strategy
	2.4.3 Resource Optimized Implementation Strategy

	2.5 Conclusions of the 2nd Chapter

	3 Implementation of Lithuanian Speech Recognizer in Field Programmable Gate Array
	3.1 Speech Recognition System Overview
	3.2 Features Extraction Implementations
	3.2.1 Linear Frequency Cepstral Analysis Intellectual Property Core
	3.2.2 Mel-Frequency Cepstral Analysis Intellectual Property Core
	3.2.3 Linear Predictive Cepstral Analysis Intellectual Property Core

	3.3 Word Recognition Implementations
	3.3.1 Dynamic Time Warping Intellectual Property Core
	3.3.2 Accelerated Pattern Matching Intellectual Property Core

	3.4 Iterative Voice Response Interface
	3.5 Conclusions of the 3rd Chapter

	4 Experimental Verification of Developed Intellectual Property Cores
	4.1 Investigation of Lattice-Ladder Multilayer Perceptron and itsImplementation Technique
	4.1.1 Word Length Selection
	4.1.2 Neuron Activation Function Implementation
	4.1.3 Lattice-Ladder Neuron Implementation
	4.1.4 Single Layer of Lattice-Ladder Multilayer PerceptronImplementation
	4.1.5 Qualitative Lattice-Ladder Multilayer PerceptronImplementation

	4.2 Investigation of Lithuanian Speech Recognizer
	4.2.1 Comparison with Initial Developments
	4.2.2 Recognition Accuracy Tune-Up
	4.2.3 Execution Speed Determination

	4.3 Conclusions of the 4th Chapter

	General Conclusions
	List of Scientific Publications by the Author on the Topic of the Dissertation
	Summary in Lithuanian
	SUBJECT INDEX
	 Annexes

