

 University of Groningen

An efficient implementation of the head-corner parser
van Noord, G

Published in:
Computational Linguistics

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1997

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
van Noord, G. (1997). An efficient implementation of the head-corner parser. Computational Linguistics,
23(3), 425-456.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 22-08-2022

https://research.rug.nl/en/publications/f3a2171a-8a23-4191-8ce4-d3faa3ea815c

An Efficient Implementation of the

Head-Corner Parser

G e r t j a n v a n N o o r d "

Rijksuniversiteit Groningen

This paper describes an efficient and robust implementation of a bidirectional, head-driven parser

for constraint-based grammars. This parser is developed for the OVIS system: a Dutch spoken

dialogue system in which information about public transport can be obtained by telephone.

After a review of the motivation for head-driven parsing strategies, and head-corner parsing

in particular, a nondeterministic version of the head-corner parser is presented. A memorization

technique is applied to obtain a fast parser. A goal-weakening technique is introduced, which

greatly improves average case efficiency, both in terms of speed and space requirements.

I argue in favor of such a memorization strategy with goal-weakening in comparison with

ordinary chart parsers because such a strategy can be applied selectively and therefore enormously

reduces the space requirements of the parser, while no practical loss in time-efficiency is observed.

On the contrary, experiments are described in which head-corner and left-corner parsers imple-

mented with selective memorization and goal weakening outperform "standard" chart parsers.

The experiments include the grammar of the OV/S system and the Alvey NL Tools grammar.

Head-corner parsing is a mix of bottom-up and top-down processing. Certain approaches to

robust parsing require purely bottom-up processing. Therefore, it seems that head-corner parsing

is unsuitable for such robust parsing techniques. However, it is shown how underspecification

(which arises very naturally in a logic programming environment) can be used in the head-corner

parser to allow such robust parsing techniques. A particular robust parsing model, implemented

in OVIS, is described.

1. Motivation

In this paper I discuss in full detail the implementation of the head-corner parser.

But first I describe the motivations for this approach. I will start with considerations

that lead to the choice of a head-driven parser; I will then argue for Prolog as an

appropriate language for the implementation of the head-corner parser.

1.1 Head-driven Processing

Lexicalist grammar formalisms, such as Head-driven Phrase Structure Grammar

(HPSG), have two characteristic properties: (1) lexical elements and phrases are as-

sociated with categories that have considerable internal structure, and (2) instead of

construction-specific rules, a small set of generic rule schemata is used. Consequently,

the set of constituent structures defined by a grammar cannot be read off the rule

set directly, but is defined by the interaction of the rule schemata and the lexical cate-

gories. Applying standard parsing algorithms to such grammars is unsatisfactory for a

number of reasons. Earley parsing is intractable in general, as the rule set is simply too

general. For some grammars, naive top-down prediction may even fail to terminate.

Alfa-informatica & BCN. E-mail: vannoord@let.rug.nl

(~ 1997 Association for Computational Linguistics

Computational Linguistics Volume 23, Number 3

Shieber (1985) therefore proposes a modified version of the Earley parser, using re-

stricted top-down prediction. While this modification often leads to better termination

properties of the parsing method, in practice it easily leads to a complete trivialization

of the top-down prediction step, thus leading to inferior performance.

Bottom-up parsing is far more attractive for lexicalist formalisms, as it is driven

by the syntactic information associated with lexical elements, but certain inadequacies

remain. Most importantly, the selection of rules to be considered for application may

not be very efficient. Consider, for instance, the following Definite Clause Grammar

(DCG) rule:

s([] ,Sem) --> Arg, vp([Arg] ,Sem). (1)

A parser in which application of a rule is driven by the left-most daughter, as it is for

instance in a standard bottom-up active chart parser, will consider the application of

this rule each time an arbitrary constituent Arg is derived. For a bottom-up active chart

parser, for instance, this may lead to the introduction of large numbers of active items.

Most of these items will be useless. For instance, if a determiner is derived, there is no

need to invoke the rule, as there are simply no VP's selecting a determiner as subject.

Parsers in which the application of a rule is driven by the right-most daughter, such

as shift-reduce and inactive bottom-up chart parsers, encounter a similar problem for

rules such as:

vp(As,Sem) --> vp([ArgIAs],Sem), Arg. (2)

Each time an arbitrary constituent Arg is derived, the parser will consider applying

this rule, and a search for a matching VP-constituent will be carried out. Again, in

many cases (if Arg is instantiated as a determiner or preposition, for instance) this

search is doomed to fail, as a VP subcategorizing for a category Arg may simply not

be derivable by the grammar. The problem may seem less acute than that posed by

uninstantiated left-most daughters for an active chart parser, as only a search of the

chart is carried out and no additional items are added to it. Note, however, that the

amount of search required may grow exponentially, if more than one uninstantiated

daughter is present:

vp(As) --> vp([AI,A21As]), AI, A2. (3)

or if the number of daughters is not specified by the rule:

vp([AO]) --> vp([AO An]), A1 An. (4)

as appears to be the case for some of the rule-schemata used in HPSG.

Several authors have suggested parsing algorithms that may be more suitable for

lexicalist grammars. Kay (1989) discusses the concept of head-driven parsing. The

key idea is that the linguistic concept head can be used to obtain parsing algorithms

that are better suited for typical natural language grammars. Most linguistic theories

assume that among the daughters introduced by a rule there is one daughter that can

be identified as the head of that rule. There are several criteria for deciding which

daughter is the head, two of which seem relevant for parsing. First of all, the head of

a rule determines to a large extent what other daughters may or must be present, as

the head selects the other daughters. Second, the syntactic category and morphological

properties of the mother node are, in the default case, identical to the category and

morphological properties of the head daughter. These two properties suggest that it

may be possible to design a parsing strategy in which one first identifies a potential

head of a rule, before starting to parse the nonhead daughters. By starting with the

426

van Noord Efficient Head-Corner Parsing

head, important information about the remaining daughters is obtained. Furthermore,

since the head is to a large extent identical to the mother category, effective top-down

identification of a potential head should be possible.

In Kay (1989) two different head-driven parsers are presented. First, a head-driven

shift-reduce parser is presented, which differs from a standard shift-reduce parser

in that it considers the application of a rule (i.e., a reduce step) only if a category

matching the head of the rule has been found. Furthermore, it may shift onto the

parse-stack elements that are similar to the active items (or "dotted rules") of active

chart parsers. By using the head of a rule to determine whether a rule is applicable, the

head-driven shift-reduce parser avoids the disadvantages of parsers in which either

the left-most or right-most daughter is used to drive the selection of rules. Kay also

presents a head-corner parser. The striking property of this parser is that it does

not parse a phrase from left to right, but instead operates bidirectionally. It starts by

locating a potential head of the phrase and then proceeds by parsing the daughters

to the left and the right of the head. Again, this strategy avoids the disadvantages

of parsers in which rule selection is uniformly driven by either the left-most or right-

most daughter. Furthermore, by selecting potential heads on the basis of a head-corner

table (comparable to the left-corner table of a left-corner parser) it may use top-down

filtering to minimize the search-space. This head-corner parser generalizes the left-

corner parser. Kay's presentation is reminiscent of the left-corner parser as presented

by Pereira and Shieber (1987), which itself is a version without memorization of the

BUP parser (Matsumoto et al. 1983).

Head-corner parsing has also been considered elsewhere. In Satta and Stock (1989),

Sikkel and op den Akker (1992, 1993), and Sikkel (1993), chart-based head-corner

parsing for context-free grammar is considered. It is shown that, in spite of the fact

that bidirectional parsing seemingly leads to more overhead than left-to-right parsing,

the worst-case complexity of a head-corner parser does not exceed that of an Earley

parser. Some further variations are discussed in Nederhof and Satta (1994).

In van Noord (1991, 1993) I argue that head-corner parsing is especially useful

for parsing with nonconcatenative grammar formalisms. In Lavelli and Satta (1991)

and van Noord (1994) head-driven parsing strategies for Lexicalized Tree Adjoining

Grammars are presented.

The head-corner parser is closely related to the semantic-head-driven generation

algorithm (see Shieber et al. [1990] and references cited there), especially in its purely

bottom-up incarnation.

1.2 Selective Memorization

The head-corner parser is in many respects different from traditional chart parsers. An

important difference follows from the fact that in the head-corner parser only larger

chunks of computation are memorized. Backtracking still plays an important role for

the implementation of search.

This may come as a surprise at first. Common wisdom is that although small

grammars may be successfully treated with a backtracking parser, larger grammars

for natural languages always require the use of a data structure such as a chart or a

table of items to make sure that each computation is only performed once. In the case

of constraint-based grammars, however, the cost associated with maintaining such a

chart should not be underestimated. The memory requirements for an implementation

of the Earley parser for a constraint-based grammar are often outrageous. Similarly,

in an Earley deduction system too much effort may be spent on small portions of

computation, which are inexpensive to (re-)compute anyway.

For this reason, I will argue for an implementation of the head-corner parser in

427

Computational Linguistics Volume 23, Number 3

which only large chunks of computation are memorized. In linguistic terms, I will ar-

gue for a model in which only maximal projections are memorized. The computation

that is carried out in order to obtain such a chunk uses a depth-first backtrack search

procedure. This solution dramatically improves upon the (average case) memory re-

quirements of a parser; moreover it also leads to an increase in (average case) time

efficiency, especially in combination with goal weakening, because of the reduced

overhead associated with the administration of the chart. In each of the experiments

discussed in Section 7, the use of selective memorization with goal weakening out-

performs standard chart-parsers.

1.3 Why Prolog
Prolog is a particularly useful language for the implementation of a head-corner parser

for constraint-based grammars because:

• Prolog provides a built-in unification operation.

• Prolog provides a built-in backtrack search procedure; memorization can

be applied selectively.

• Underspecification can be exploited to obtain results required by certain

techniques for robust parsing.

• Prolog is a high-level language; this enables the application of partial

evaluation techniques.

The first consideration does not deserve much further attention. We want to exploit

the fact that the primary data structures of constraint-based grammars and the cor-

responding information-combining operation can be modeled by Prolog's first order

terms and unification.

As was argued above, Prolog backtracking is not used to simulate an iterative

procedure to build up a chart via side-effects. On the contrary, Prolog backtracking is

used truly for search. Of course, in order to make this approach feasible, certain well-

chosen search goals are memorized. This is clean and logically well-defined (consider,

for example, Warren [1992]), even if our implementation in Prolog uses extra-logical

predicates.

The third consideration is relevant only for robust parsing. In certain methods in

robust parsing, we are interested in the partial results obtained by the parser. To make

sure that a parser is complete with respect to such partial results, it is often assumed

that a parser must be applied that works exclusively bottom-up. In Section 6 it will be

shown that the head-corner parser, which uses a mixture of bottom-up and top-down

processing, can be applied in a similar fashion by using underspecification in the top

goal. Clearly, underspecification is a concept that arises naturally in Prolog.

The fact that Prolog is a high-level language has a number of practical advantages

related to the speed of development. A further advantage is obtained because tech-

niques such as partial evaluation can be applied. For example, I have successfully

applied the Mixtus partial evaluator (Sahlin 1991) to the head-corner parser discussed

below, to obtain an additional 20% speed increase. In languages such as C, partial

evaluation does not seem to be possible because the low-levelness of the language

makes it impossible to recognize the concepts that are required.

1.4 Left-Corner Parsing and Head-Corner Parsing
As the names suggest, there are many parallels between left-corner and head-corner

parsing. In fact, head-corner parsing is a generalization of left-corner parsing. Many

428

van Noord Efficient Head-Corner Parsing

of the techniques that will be described in the following sections can be applied to a

left-corner parser as well.

A head-corner parser for a grammar in which for each rule the left-most daughter

is considered to be the head, will effectively function as a left-corner parser. In such

cases, the head-corner parser can be said to run in left-corner mode. Of course, in a left-

corner parser, certain simplifications are possible. Based on the experiments discussed

in Section 7, it can be concluded that a specialized left-corner parser is only about 10%

faster than a head-corner parser running in left-corner mode. This is an interesting

result: a head-corner parser performs at least almost as well as a left-corner parser,

and, as some of the experiments indicate, often better.

1.5 Practical Relevance of Head-Corner Parsing: Efficiency and Robustness

The head-corner parser is one of the parsers that is being developed as part of the

NWO Priority Programme on Language and Speech Technology. An overview of the

Programme can be found in Boves et al. (1995). An important goal of the Programme

is the implementation of a spoken dialogue system for public transport information

(the OVIS system). The language of the system is Dutch.

In the context of the OVIS system, it is important that the parser can deal with

input from the speech recognizer. The interface between the speech recognizer and

the parser consists of word-graphs. In Section 5, I show how the head-corner parser

is generalized to deal with word-graphs.

Moreover, the nature of the application also dictates that the parser proceeds in a

robust way. In Section 6, I discuss the OVIS Robustness component, and I show that

the use of a parser that includes top-down prediction is not an obstacle to robustness.

In Section 7, I compare the head-corner parser with the other parsers implemented

in the Programme for the OVIS application and show that the head-corner parser op-

erates much faster than implementations of a bottom-up Earley parser and related

chart-based parsers. Moreover, the space requirements are far more modest. The dif-

ference with a left-corner parser, which was derived from the head-corner parser, is

small.

We performed similar experiments for the Alvey NL Tools grammar of English

(Grover, Carroll, and Briscoe 1993), and the English grammar of the MiMo2 system

(van Noord et al. 1991). From these experiments it can be concluded that selective

memorization with goal-weakening (as applied to head-corner and left-corner parsing)

is substantially more efficient than conventional chart parsing. We conclude that at

least for some grammars, head-corner parsing is a good option.

2. A Specification of the Head-Corner Parser

Head-corner parsing is a radical approach to head-driven parsing in that it gives up the

idea that parsing should proceed from left to right. Rather, processing in a head-corner

parser is bidirectional, starting from a head outward (island-driven). A head-corner

parser can be thought of as a generalization of the left-corner parser (Rosenkrantz and

Lewis 1970; Matsumoto et al. 1983; Pereira and Shieber 1987). As in the left-corner

parser, the flow of information in a head-corner parser is both bottom-up and top-

down.

In order to explain the parser, I first introduce some terminology. I assume that

grammars are defined in the Definite Clause Grammar formalism (Pereira and Warren

1980). Without any loss of generality I assume that no external Prolog calls (the ones

that are defined within { and }) are used, and that all lexical material is introduced

in rules that have no other right-hand-side members (these rules are called lexical

429

Computational Linguistics Volume 23, Number 3

goal

.

lex
Figure 1
The head-corner parser.

g? l goal

entries). The grammar thus consists of a set of rules and a set of lexical entries• For

each rule an element of the right-hand side is identified as the head of that rule. The

head-relation of two categories h, m holds with respect to a grammar iff the grammar

contains a rule with left-hand side m and head daughter h. The relation head-corner

is the reflexive and transitive closure of the head relation.

The basic idea of the head-corner parser is illustrated in Figure 1. The parser selects

a word (1), and proves that the category associated with this word is the head-corner

of the goal. To this end, a rule is selected of which this category is the head daughter•

Then the other daughters of the rule are parsed recursively in a bidirectional fashion:

the daughters left of the head are parsed from right to left (starting from the head),

and the daughters right of the head are parsed from left to right (starting from the

head). The result is a slightly larger head-corner (2). This process repeats itself until a

head-corner is constructed that dominates the whole string (3).

Note that a rule is triggered only with a fully instantiated head daughter. The

generate-and-test behavior discussed in the previous section (examples 1 and 2) is

avoided in a head-corner parser, because in the cases discussed there, the rule would

be applied only if the VP is found, and hence arg is instantiated. For example if arg

= np(sg3, [] ,Subj), the parser continues to search for a singular NP, and need not

consider other categories•

To make the definition of the parser easier, and to make sure that rules are indexed

appropriately, grammar rules are represented by the predicate headod_rulo/4 in which

the first argument is the head of the rule, the second argument is the mother node of

the rule, the third argument is the reversed list of daughters left of the head, and the

fourth argument is the list of the daughters right of the head. 1 This representation of

a grammar will in practice be compiled from a friendlier notation•

As an example, the DCG rule

x(A,E) --> a(A), b(B,A), x(C,B), d(C,D), e(D,E).

of which the third daughter constitutes the head, is represented now as:

headed_rule(x(C,B), x(A,E), [b(B,A), a(A)], [d(C,D), e(D,E)]).

It is assumed furthermore that lexical lookup has been performed already by an-

other module. This module has asserted clauses for the predicate lexieal_analysis/3

where the first two arguments are the string positions and the third argument is the

1 Later we will also allow the use of rules with an empty right-hand side. These will simply be
represented by the predicate gap/1.

430

van Noord Efficient Head-Comer Parsing

% parse(?Cat,+PO,+P)

% there is a category Cat from PO to P

parse(Cat,PO,P) :- parse(Cat,PO,P,PO,P).

% parse(?Cat,?PO,?P,+E0,+E)

% there is a category Cat from PO to P within the interval E0-E

parse(Cat,P0,P,E0,E) :-

predict(Cat,PO,P,E0,E,SmallCat,Q0,Q),

head_corner(SmallCat,QO,~,Cat,PO,P,EO,E).

% head_corner(?Small,+QO,+Q,?Cat,?PO,?P,+EO,+E)

Small from QO-Q is a head-corner of Cat from PO-P

where PO-P occurs within EO-E

head_corner(Cat,PO,P,Cat,PO,P).

head_corner(Small,QO,Q,Cat,PO,P,EO,E) :-

headed_rule(Small,Mother,RevLeftDs,RightDs),

head_link(Cat,PO,P,Mother,QL,QR),

parse_left_ds(RevLeftDs,QL,QO,EO), parse_right_ds(RightDs,Q,QR,E),

head_corner(Mother,QL,QR,Cat,PO,P,EO,E).

% parse_left_ds(+RevLeftDs,-Q0,+Q,+E0)

% there are categories LeftDs from QO to Q

s.t. RevLeftDs is reverse of LeftDs, and E0=<~0.

parse left_ds([],Q,Q,_).

parse left_ds([HIT],QO,Q,EO) "-

parse(H,QI,Q,E0,Q), parse_left_ds(T,Q0,QI,E0).

% parse_right_ds(+RightDs,+Q0,-Q,+E)

% there are categories RightDs from Q0 to Q s.t. Q =< E.

parse_right_ds([],Q,Q,_).

parse right_ds([HIT],Q0,Q,E) "-

parse(H,QO,Ql,@0,E), parse_right ds(T,QI,Q,E).

% predict(+Cat,?PO,?P,+EO,+E,-Small,-QO,-Q)

% Small from QO-Q (within EO-E) is a lexical category and possible

% head-corner for Cat from PO-P.

predict(Cat,PO,P,EO,E,Small,QO,Q) :-

lex_head_link(Cat,PO,P,Small,QO,Q),

lexical_analysis(QO,Q,Small),

smaller_equal(EO,QO),

smaller_equal(Q,E).

Figure 2
Definite clause specification of the head-corner parser.

(lexical) category. For an input sentence Timeyqies like an arrow this module may produce

the following set of clauses:

lexical_analysis (0, I, verb). (5)

lexical_analysis (0,2 ,noun).

lexieal_analysis (i, 2, verb).

lexical_analysis (2,3, verb).

lexical_analysis (4,5, noun).

A simple definite-clause specification of the head-corner parser is given in Figure 2.

The predicate visible to the rest of the world will be the predicate parse/3. This

lexical_analysis(O,l,noun).

lexical_analysis(1,2,noun).

lexical_analysis(2,3,prep).

lexical_analysis(3,4,det).

431

Computational Linguistics Volume 23, Number 3

predicate is defined in terms of the parse/5 predicate. The extra arguments introduce

a pair of indices representing the extreme positions between which a parse should be

found. This will be explained in more detail below. A goal category can be parsed if

a predicted lexical category can be shown to be a head-corner of that goal. The head-

corner predicate constructs (in a bottom-up fashion) larger and larger head-corners.

To parse a list of daughter categories, each daughter category is parsed in turn. A

predicted category must be a lexical category that lies somewhere between the extreme

positions. The predicate smaller_equal is true if the first argument is a smaller or

equal integer than the second. The use of the predicates head_link and lex_head_link

is explained below.

Note that unlike the left-corner parser, the head-corner parser may need to con-

sider alternative words as a possible head-corner of a phrase, for example, when

parsing a sentence that contains several verbs. This is a source of inefficiency if it is

difficult to determine what the appropriate lexical head for a given goal category is.

This problem is somewhat reduced because of:

• the use of extremes

• the use of top-down information

2.1 The Use of Extremes

The main difference between the head-corner parser in the previous paragraph and

the left-corner parser is--apart from the head-driven selection of rules--the use of

two pairs of indices, to implement the bidirectional way in which the parser proceeds

through the string.

Observe that each parse-goal in the left-corner parser is provided with a category

and a left-most position. In the head-corner parser, a parse-goal is provided either

with a begin or end position (depending on whether we parse from the head to the

left or to the right) but also with the extreme positions between which the category

should be found. In general, the parse predicate is thus provided with a category and

two pairs of indices. The first pair indicates the begin and end position of the category,

the second pair indicates the extreme positions between which the first pair should

lie. In Figure 3 the motivation for this technique is illustrated with an example.

2.2 Adding Top-Down Filtering
2.2.1 Category Information. As in the left-corner parser, a linking table is maintained,

which represents important aspects of the head-corner relation. For some grammars,

this table simply represents the fact that the HEAD features of a category and its head-

corner are shared. Typically, such a table makes it possible to predict that in order to

parse a finite sentence, the parser should start with a finite verb; to parse a singular

noun-phrase the parser should start with a singular noun, etc.

The table is defined by a number of clauses for the predicate head_link/2 where

the first argument is a category for which the second argument is a possible head-

corner. A sample linking table may be:

head_link(s,verb).

head_link(s, vp).

head_link(pp,prep).

head_link(X, X).

head_link(vp, verb).

head_link(np, noun).

head_link(sbar, comp).

(6)

432

van Noord Efficient Head-Corner Parsing

vp

v np

5 6 7 8

Figure 3
This example illustrates how the use of two pairs of string positions reduces the number of
possible lexical head-corners for a given goal. Suppose the parser predicted (for a goal
category s) a category v from position 5 to 6. In order to construct a complete tree s for this
head-corner, a rule is selected that dictates that a category np should be parsed to the right,
starting from position 6. To parse np, the category n from 7 to 8 is predicted. Suppose
furthermore that in order to connect n to np a rule is selected that requires a category adjp to
the left of n. It will be clear that this category adjp should end in position 7, but can never
start before position 6. Hence the only candidate head-corner of this phrase is to be found
between 6 and 7.

2.2.2 String Position Information. The head-corner table also includes informat ion

about begin and end positions, fol lowing an idea in Sikkel (1993). For example, if the

goal is to parse a phrase wi th category s b a r f rom posi t ion 7, and within posi t ions 7 and

12, then for some g r a m m a r s it can be concluded that the only possible lexical head-

corner for this goal should be a complement ize r start ing at posi t ion 7. Such informat ion

is represented in the table as well. This can be done by defining the head relation as a

relation be tween two triples, where each triple consists of a category and two indices

(representing the begin and end position). The head relation ((Cm, pm, qm), (Ch, ph, qh))

holds iff there is a g r a m m a r rule wi th mothe r Cm and head Ch. Moreover, if the list of

daughters left of the head of that rule is empty, then the begin posi t ions are identical,

i.e., Ph = Pro. Similarly, if the list of daughte rs right of the head is empty, then qh = qm.

As before, the head-corner relation is the reflexive and transit ive closure of the head

relation.

The previous example n o w becomes:

head_link(s verb).

head_link(s,_,P, vp,_,P).

head_link(pp,P,_, prep,P,_).

head_link(X,P,Q, X,P,Q).

head_link(vp,P,_, verb,P,_).

head_link(np noun).

head_link(sbar,P,_, comp,P,_).

(7)

Obviously, the nature of the g r a m m a r determines whe ther it is useful to represent

such information. In order to be able to run a head-corner parser in left-corner mode ,

this technique is crucial. On the other hand, for g r a m m a r s in which this technique does

not p rov ide any useful t op -down informat ion no extra costs are in t roduced either.

433

Computational Linguistics Volume 23, Number 3

2.2.3 Integrat ing the Head-Corner Table. The linking table information is used to

restrict which lexical entries are examined as candidate heads dur ing prediction, and

to check whether a rule that is selected can in fact be used to reach the current goal.

To distinguish the two uses, we use the relation lex_head_l ink, which is a subset

of the head_l ink relation in which the head category is a possible lexical category.

An example might be the following (where we assume that the category vp is never

assigned to a lexical entry), which is a subset of the table in 7.

lex_head_link(s

lex_head link(np

lex_head link(sbar,P,_,

verb).

noun,_,_).

comp,P,_).

lex_head_link(vp,P,_, verb,P,_).

lex_head_link(pp,P,_, prep,P,_).

lex_head_link(X,P,Q, X,P,Q).

(8)

A few potential problems arise in connection with the use of linking tables. Firstly,

for constraint-based grammars of the type assumed here the number of possible non-

terminals is infinite. Therefore, we generally cannot use all information available in

the grammar but rather we should compute a "weakened" version of the linking table.

This can be accomplished, for example, by replacing all terms beyond a certain dep th

by anonymous variables, or by other restrictors (Shieber 1985).

Secondly, the use of a linking table may give rise to spurious ambiguities. Consider

the case in which the category we are trying to parse can be matched against two

different items in the linking table, but in which case the predicted head-category m ay

turn out to be the same.

Fortunately, the memoriza t ion technique discussed in Section 3 takes care of this

problem. Another possibility is to use the linking table only as a check, but not as a

source of information, by encapsulating the call within a double negation. 2

The solution implemented in the head-corner parser is to use, for each pair of

functors of categories, the generalization of the head-corner relation. Such functors

typically are major and minor syntactic category labels such as NP, VP, S, S-bar, verb,

. . . . As a result there will always be at most one matching clause in the linking table

for a given goal category and a given head category (thus there is no risk of obtaining

spurious ambiguities). Moreover, this approach allows a ve ry efficient implementat ion

technique, as described below.

2.2.4 Indexing of the Head-Corner Table. In the implementat ion of the head-corner

parser, we use an efficient implementat ion of the head-corner relation by exploiting

Prolog's first a rgument indexing. This technique ensures that the lookup of the head-

corner table can be done in (essentially) constant time. The implementat ion consists

of two steps. In the first step, the head-corner table is weakened such that for a given

goal category and a given head category at most a single matching clause exists. In the

second step, this table is encoded in such a way that first a rgument indexing ensures

that table lookup is efficient.

As a first step we modify the head-corner relation to make sure that for all pairs

of functors of categories, there will be at most one matching clause in the head-corner

table. This is illustrated with an example. Suppose a hypothet ical head-corner table

2 This approach also solves another potential problem: the linking table may give rise to (undesired)
cyclic terms due to the absence of the occur check. The double negation also takes care of this potential
problem.

434

van Noord Efficient Head-Corner Parsing

contains the following two clauses relating categories with functor x/4 and y/4:

head_link (x (A, B) y(A,B)).

head_link(x(_,B,C,_) y(_,B,C,_)).

In this case, the modified head-corner relation table will consist of a single clause

relating x/4 and y/4 by taking the generalization (or "anti-unification") of the two

clauses:

head_link(x(_ ,B) y(_ ,B)).

As a result, for a given goal and head category, table lookup is deterministic.

In the second and final step of the modification we re-arrange the information in

the table such that for each possible goal category functor g/n, there will be a clause:

head_link(g(Al..An) ,Pg,Qg,Head,Ph,Qh) :-

head_link_G_N (Head, Ph, Qh, g (AI.. An), Pg, Qg).

Moreover, all the relations head_link_G_N now contain the relevant information from

the head-comer table. Thus, for clauses of the form:

head_link (x (_, B) y(_,B)) .

we now have:

head_link_x 4(y(_,B) x(_,B)).

First argument indexing now ensures that table lookup is efficient.

The same technique is applied for the lex_head_link relation. This technique sig-

nificantly improves the practical time efficiency of the parser (especially if the resulting

code is compiled).

2.3 Dealing with Epsilon Rules

In the preceding paragraphs we have said nothing about empty productions (epsilon

rules). A possible approach is to compile the grammar into an equivalent grammar in

which no such epsilon rules are defined. It is also possible to deal with epsilon rules

in the head-corner parser directly. For example, we could assert empty productions

as possible lexical analyses. In such an approach, the result of lexical analysis may

contain clauses such as those in (9), in case there is a rule np/np --+ [].

lexical_analysis (0, O, np/np), lexical_analysis (i, I, np/np) . (9)

lexical_analysis (2,2, np/np), lexical_analysis (3,3,np/np).

lexical_analysis (4,4, np/np).

There are two objections to this approach. The first objection may be that this is a

task that can hardly be expected from a lexical lookup procedure. The second, more

important, objection is that empty categories are hypothesized essentially everywhere.

In the general version of the head-corner parser, gaps are inserted by a special

clause for the p r e d i c t / 8 predicate (10), where shared variables are used to indicate the

corresponding string positions. The gap_head_link relation is a subset of the head_link

relation in which the head category is a possible gap.

predict (Cat, PO, P, _EO, _E, Small, Q, Q) • - (10)

gap_head_link (Cat, PO, P, Small, Q, 6)),

gap(Small).

435

Computational Linguistics Volume 23, Number 3

For this approach to work, other predicates must expect string positions that are

not instantiated. For example, Prolog's built-in comparison operator cannot be used,

since that operator requires that its arguments are ground. The definition of the

smaller_equal predicate therefore reflects the possibility that a string position is a

variable (in which case, calls to this predicate should succeed).

For some grammars it turns out that a simplification is possible. If it is never

possible that a gap can be used as the head of a rule, then we can omit this new clause

for the p red ic t predicate, and instead use a new clause for the parse/S predicate, as

follows:

parse (Small, Q, Q, _EO, _E) :-

gap(Small).

(11)

This will typically be much more efficient because in this case gaps are hypothesized

in a purely top-down manner.

It should be noted that the general version of the head-corner parser is not guaran-

teed to terminate, even if the grammar defines only a finite number of derivations for

all input sentences. Thus, even though the head-corner parser proceeds in a bottom-up

direction, it can run into left-recursion problems (just as the left-corner parser can).

This is because it may be possible that an empty category is predicted as the head,

after which trying to construct a larger projection of this head gives rise to a parse-goal

for which a similar empty category is a possible candidate head This problem is

sometimes called "hidden left-recursion" in the context of left-corner parsers.

This problem can be solved in some cases by a good (but relatively expensive)

implementation of the memorization technique, e.g., along the lines of Warren (1992) or

Johnson and DOrre (1995). The simplified (and more efficient) memorization technique

that I use (see Section 3), however, does not solve this problem.

A quite different solution, which is often applied for the same problem if a left-

corner parser is used, is to compile the grammar into an equivalent grammar without

gaps. For left-corner parsers, this can be achieved by partially evaluating all rules

that can take gap(s) as their left-most daughter(s). Therefore, the parser only needs

to consider gaps in non-left-most position, by a clause similar to the clause in (11).

Obviously, the same compilation technique can be applied for the head-corner parser.

However, there is a problem: it will be unclear what the heads of the newly created

rules will be. Moreover, and more importantly, the head-corner relation will typically

become much less predictive. For example, if there is a rule vp --> np verb where

verb can be realized as a gap, then after compilation, a rule of the form vp --> np

will exist. Therefore, an np will be a possible head-corner of vp. The effect will be that

head-corners are difficult to predict, and hence efficiency will decrease.

Fortunately, experience suggests that grammars exhibiting hidden head-recursion

can often be avoided. For example, in the Alvey NL Tools grammar in only 3 rules (out

of more than 700) the head of the rule could be gapped. These rules are of the form

x --> not x. Arguably, in such rules the second daughter should not be gapped.

In the MiMo2 grammar of English, no heads can be gapped. Finally, in the Dutch

OVIS grammar (in which verb-second is implemented by gap-threading) no hidden

head-recursion occurs, as long as the head-corner table includes information about the

feature vslash, which encodes whether or not a v-gap is expected.

436

van Noord Efficient Head-Corner Parsing

3. Selective Memorization and Goal-Weakening

3.1 Selective Memorization

The basic idea behind memorization is simple: do not compute things twice. In Prolog,

we can keep track of each goal that has already been searched and keep a list of the

corresponding solution(s). If the same goal needs to be solved later, then we can skip

the computation and simply do a table lookup. Maintaining a table and doing the table

lookup is rather expensive. Therefore, we should modify the slogan "do not compute

things twice" to do not compute expensive things twice.

In the head-corner parser it turns out that the parse/5 predicate is a very good

candidate for memorization. The other predicates are not. This implies that each max-

imal projection is computed only once; partial projections of a head can be constructed

during a parse any number of times, as can sequences of categories (considered as

sisters to a head). Active chart parsers memo everything (including sequences of cat-

egories); inactive chart parsers only memo categories, but not sequences of categories.

In our proposal, we memo only those categories that are maximal projections, i.e., pro-

jections of a head that unify with the top category (start symbol) or with a nonhead

daughter of a rule.

The implementation of memorization uses Prolog's internal database to store the

tables. The advantage of this technique is that we use Prolog's first argument indexing

for such tables. Moreover, during the consultation of the table we need not worry about

modifications to it (in contrast to an approach in which the table would be maintained

as the value of a Prolog variable). On the other hand, the use of the internal database

brings about a certain overhead. Therefore, it may be worthwhile to experiment with

a meta-interpreter along the lines of the XOLDT system (Warren 1992) in which the

table is maintained dynamically.

Memorization is implemented by two different tables. The first table encodes

which goals have already been searched. Items in the first table are called goal items.

The second table represents all solved (i.e., instantiated) goals. Items in this second

table are called result items. It might be tempting to use only the second table, but

in that case, it would not be possible to tell the difference between a goal that has

already been searched, but did not result in a solution ("fail-goal") and a goal that has

not been searched at all. If we have two tables, then we can also immediately stop

working on branches in the search-space for which it has already been shown that

there is no solution. The distinction between these two kinds of item is inherited from

BUP (Matsumoto et al. 1983). The memorized version of the parse predicate can be

defined as in (12).

parse(Cat,PO,P,EO,E) :-

(in_tablel(Cat,PO,P,E0,E)

-> true

; (

assert_table2(Cat,P0,P),

fail

; assert_tablel(Cat,PO,P,E0,E)

)),

in_table2(Cat,P0,P,EO,E).

done before?

then don't search

predict(Cat,PO,P,E0,E,SmCat,Q0,Q), ~ otherwise find all

head_corner(SmCat,Q0,Q,Cat,PO,P,EO,E), ~ results and assert

these

Z goal is now done

pick a solution

(12)

437

Computational Linguistics Volume 23, Number 3

The first table is represented by the predicate ' GOAL_ITEM'. This predicate sim-

ply consists of a number of unit-clauses indicating all goals that have been searched

completely. Thus, before we try to a t tempt to solve Goal, we first check whether a

goal i tem for that goal already exists. Given the fact that Goal may contain vari-

ables, we should be a bit careful here. Unification is clearly not appropriate, since

it may result in a situation in which a more general goal is not searched because a

more specific variant of that goal had been solved. We want exactly the opposite: if

a more general version of Goal is included in the goal table, then we can continue

to look for a solution in the result table. It is useful to consider the fact that if we

had previously solved, for example, the goal p a r s e (s , 3, X, 3 ,12) , then if we later en-

counter the goal p a r s e (s , 3 , Y , 3 , 1 0) , we can also use the second table immediately:

the way in which the extreme positions are used ensures that the former is more gen-

eral than the latter. The predicates for the maintenance of the goal table are defined

in (13).

in_tablel (Cat, P0, P, E0, E) • - (13)

'GOAL_ITEM'(Cat_d,P0_d,P_d,E0_d,E_d), Z goal exists which is

subsumes chk((Cat_d,P0_d,P_d), (Cat,P0,P)), Z more general and within

smaller_equal(E0_d,E0), °h a larger interval

smaller_equal (E, E_d).

assert_tablel(Cat,PO,P,EO,E) :- assertz('GOAL_ITEM'(Cat,PO,P,EO,E)).

The second table is represented by the predicate 'RESULT_ITEM'. It is defined by

unit-clauses that each represent an instantiated goal (i.e., a solution). Each time a result

is found, the table is checked to see whether that result is already available. If it is,

the newer result is ignored. If no (more general version of the) result exists, then the

result is added to the table. Moreover, more specific results that may have been pu t

on the table previously are marked. These results need not be used anymore. 3 This is

not strictly necessary but is often useful because it decreases the size of the tables; in

this approach, tables are redundancy free and hence minimal. Moreover, no further

work will be done based on those results. Note that result items do not keep track

of the extreme positions. This implies that in order to see whether a result i tem is

applicable, we check whether the interval covered by the result i tem lies within the

extreme positions of the current goal. The predicates dealing with the result table are

defined in (14).

in_table2(Cat,P0,P,E0,E) "-

clause('RESULT_ITEM'(Cat,P0,P),Ref),

\+ 'REPLACED_ITEM'(Ref,_),

smaller_equal(EO,PO), smaller_equal(P,E).

(14)

result exists, not

replaced by general

result

within desired interval

3 Note that such items are not removed, because in that case the item reference becomes available for
later items, which is unsound.

438

van Noord Efficient Head-Corner Parsing

assert_table2(Cat,P0,P):-

('RESULT_ITEM'(Cat_d,P0_d,P_d),

subsumes_chk((Cat_d,P0_d,P_d),(Cat,P0,P)

-> true

; assertz('RESULT_ITEM'(Cat,P0,P),Ref),

mark_item('RESULT_ITEM'(Cat,P0,P),Ref)

).

% if result exists

% which is more general

then ok

otherwise assert it, and

mark more specific items

mark_item(Cat,NewRef) "-

(clause(Specific,_,Ref),

\+ Ref=NewRef,

subsumes_chk(Cat,Specific),

assertz('REPLACED_ITEM'(Ref,NewRef)),

fail

; true

).

% item exists

not the one just added

and it's more specific

then mark it

% do this for all such

% items

The implementation uses a faster implementation of memorizating in which both

goal items and result items are indexed by the functor of the category and the string

positions.

In the head-corner parser, parse-goals are memorized. Note that nothing would

prevent us from memoing other predicates as well, but experience suggests that the

cost of maintaining tables for the head_corner relation, for example, is (much) higher

than the associated profit. The use of memorization for only the parse/5 goals implies

that the memory requirements of the head-corner parser in terms of the number of

items being recorded is much smaller than in ordinary chart parsers. Not only do

we refrain from asserting so-called active items, but we also refrain from asserting

inactive items for nonmaximal projections of heads. In practice the difference in space

requirements can be enormous. This difference is a significant reason for the practical

efficiency of the head-corner parser.

3.2 The Occur Check

It turns out that the use of tables defined in the previous subsection can lead to a

problem with cyclic unifications. If we assume that Prolog's unification includes the

occur check then no problem would arise. But since most versions of Prolog do not

implement the occur check it is worthwhile investigating this potential problem.

The problem arises because cyclic solutions can be constructed that would not have

been constructed by ordinary SLD-resolution. Furthermore, these cyclic structures lead

to practical problems because items containing such a cyclic structure may have to be

put in the table. In SICStus Prolog, this results in a crash.

An example may clarify the problem. Suppose we have a very simple program

containing the following unit clause:

x(A,B).

439

Computational Linguistics Volume 23, Number 3

Furthermore suppose that in the course of the computation a goal of the form

?- x(f(x) ,x)

is attempted. This clearly succeeds. Furthermore an item of that form is added to the

table. Later on it may be the case that a goal of the form

7- x(Y,Y)

is attempted. Clearly this is not a more specific goal than we solved before, so we

need to solve this goal afresh. This succeeds too. Now we can continue by picking up

a solution from the second table. However, if we pick the first solution then a cyclic

term results.

A possible approach to deal with this situation is to index the items of the second

table with the item of the first table from which the solution was obtained. In other

words, if you want to select a solution from the second table, it must not only be the

case that the solution matches your goal, but also that the corresponding goal of the

solution is more general than your current goal. This strategy works, but turns out to

be considerably slower than the original version given above. The reason seems to be

that the size of the second table is increased quite drastically, because solutions may

now be added to the table more than once (for all goals that could give rise to that

solution).

An improvement of the head-corner parser using a goal-weakening technique of-

ten eliminates this occur check problem. Goal weakening is discussed in the following

subsection.

3.3 Goal Weakening

The insight behind goal weakening (or abstraction [Johnson and D6rre 1995]) in the

context of memorization is that we may combine a number of slightly different goals

into a single, more general, goal. Very often it is much cheaper to solve this single

(but more general) goal than to solve each of the specific goals in turn. Moreover,

the goal table will be smaller (both in terms of number of items, and the size of

individual items), which can have a positive effect on the amount of memory and

CPU-time required for the administration of the table. Clearly, one must be careful not

to remove essential information from the goal (in the worst case, this may even lead

to nontermination of otherwise well-behaved programs).

Depending on the properties of a particular grammar, it may, for example, be

worthwhile to restrict a given category to its syntactic features before attempting to

solve the parse-goal of that category. Shieber's (1985) restriction operator can be used

here. Thus we essentially throw some information away before an attempt is made to

solve a (memorized) goal. For example, the category

x(A, B, f (A, B), g(A,h(B, i (C))))

may be weakened into:

x(A,B,f (_,_) ,g(_,_))

If we assume that the predicate weaken/2 relates a term t to a weakened version tw,

such that tw subsumes t, then (15) is the improved version of the parse predicate:

parse_with_weakening (Cat, P0, P, E0, E) • - (15)

weaken(Cat,WeakenedCat),

parse(WeakenedCat,P0,P,E0,E),

Cat=WeakenedCat.

440

van Noord Efficient Head-Corner Parsing

Note that goal weakening is sound. An answer a to a weakened goal g is only

considered if a and g unify. Also note that goal weakening is complete in the sense

that for an answer a to a goal g there will always be an answer a t to the weakening

of g such that a t subsumes a.

For practical implementations the use of goal weakening can be extremely im-

portant. It is my experience that a well-chosen goal-weakening operator may reduce

parsing times by an order of magnitude.

The goal-weakening technique can also be used to eliminate typical instances of the

problems concerning the occur check (discussed in the previous subsection). Coming

back to the example in the previous subsection, if our first goal

x(f (x) ,x)

were weakened into

x(f (_) ,_)

then the problem would not occur. If we want to guarantee that no cyclic structures

can be formed, then we would need to define goal weakening in such a way that no

variable sharing occurs in the weakened goal.

An important question is how to come up with a good goal-weakening operator.

For the experiments discussed in the final section all goal-weakening operators were

chosen by hand, based on small experiments and inspection of the goal table and item

table. Even if goal weakening is reminiscent of Shieber's (1985) restriction operator,

the rules of the game are quite different: in the case of goal weakening, as much infor-

mation as possible is removed without risking nontermination of the parser, whereas

in the case of Shieber's restriction operator, information is removed until the resulting

parser terminates. For the current version of the grammar of OVIS, weakening the goal

category in such a way that all information below a depth of 6 is replaced by fresh

variables eliminates the problem caused by the absence of the occur check; moreover,

this goal-weakening operator reduces parsing times substantially. In the latest version,

we use different goal-weakening operators for each different functor.

An interesting special case of goal weakening is constituted by a goal-weakening

operator that ignores all feature constraints, and hence only leaves the functor for

each goal category. In this case the administration of the goal table can be simplified

considerably (the table consists of ground facts, hence no subsumption checks are

required). This technique is used in the MiMo2 grammar and the Alvey NL Tools

grammar, both discussed in Section 7.

4. Compact Representation of Parse Trees

Often a distinction is made between recognition and parsing. Recognition checks

whether a given sentence can be generated by a grammar. Usually recognizers can be

adapted to be able to recover the possible parse trees of that sentence (if any).

In the context of Definite Clause Grammar this distinction is often blurred because

it is possible to build up the parse tree as part of the complex nonterminal symbols.

Thus the parse tree of a sentence may be constructed as a side effect of the recognition

phase. If we are interested in logical forms rather than in parse trees, a similar trick

may be used. The result of this, however, is that as early as the recognition phase,

ambiguities will result in a (possibly exponential) increase of processing time.

For this reason we will assume that parse trees are not built by the grammar, but

rather are the responsibility of the parser. This allows the use of efficient packing

441

Computational Linguistics Volume 23, Number 3

112:s-adv-s

/ \
46 s-np-vp

/ \
87 vp-vp-np-pp

vp-v 121 125

give22

Figure 4
Example of a partial derivation tree projected by a history item.

techniques. The result of the parser will be a parse forest: a compact representat ion

of all possible parse trees rather than an enumerat ion of all parse trees.

The structure of the parse forest in the head-corner parser is rather unusual, and

therefore we will take some time to explain it. Because the head-corner parser uses

selective memorizat ion, conventional approaches to constructing parse forests (Billot

and Lang 1989) are not applicable. The head-corner parser maintains a table of partial

derivat ion trees, each of which represents a successful pa th from a lexical head (or

gap) up to a goal category. The table consisting of such partial parse trees is called the

history table; its items are his tory items.

More specifically, each history i tem is a triple consisting of a result i tem reference,

a rule name, and a list of triples. The rule name is always the name of a rule wi thout

daughters (i.e., a lexical entry or a gap): the (lexical) head. Each triple in the list of

triples represents a local tree. It consists of the rule name, and two lists of result i tem

references (representing the list of daughters left of the head in reverse, and the list of

daughters right of the head). An example will clarify this. Suppose we have a history

item:

' HISTORY_ITEM ' (112, give22,

[rule (vp_v, [] , []) ,

rule (s_np_vp, [87] , []) ,

rule (vp_vp_np_pp, [] , [121,125]),

rule (s_adv_s, [46] , [])]).

(16)

This i tem indicates that there is a possible derivat ion of the category defined in result

i tem 112 of the form illustrated in Figure 4. In this figure, the labels of the interior

nodes are rule names, and the labels of the leaves are references to result items. The

head-corner leaf is special: it is a reference to either a lexical entry or an epsilon rule.

The root node is special too: it has both an associated rule name and a reference to a

result item. The latter indicates how this partial derivat ion tree combines with other

partial trees.

The history table is a lexicalized tree substitution grammar, in which all nodes

(except substitution nodes) are associated with a rule identifier (of the original gram-

mar). This g rammar derives exactly all derivat ion trees of the input. 4 As an example,

4 The tree substitution grammar is lexicalized in the sense that each of the trees has an associated anchor,

442

van Noord Efficient Head-Corner Parsing

nt5:I nt0:a nt l :4 nt2:3

/ \ r
ntO m a n h o m e

nt3:6

/ \
at nt2

nt4:5 nt6:l

/\ /\
4 nt3 nt5 7

/\ /\
nt0 m a n see nt4

nt6:2

/ \
1 nt3

/ \
nt5 7

/ \
see n t l

Figure 5
Tree substitution grammar that derives each of the two derivation trees of the sentence I see a

man at home, for the grammar of Billot and Lang (1989). The start symbol of this grammar is
nt6. Note that all nodes, except for substitution nodes, are associated with a rule (or lexical
entry) of the original grammar. Root nodes have a nonterminal symbol before the colon, and
the corresponding rule identifier after the colon. The set of derived trees for this tree
substitution grammar equals the set of derivation trees of the parse (ignoring the nonterminal
symbols of the tree substitution grammar).

consider the g r a m m a r used by Tomita (1987) and Billot and Lang (1989), g iven here

in (17) and (18).

(I) s --> np, vp. (2) s --> s, pp. (3) np --> n.

(4) np --> det, n. (5) np --> rip, pp. (6) pp --> prep, rip.

(7) vp --> v, rip.

(17)

n --> ['I'] . n --> [man] . v --> [see] . (18)

prep--> [at]. det--> [a]. n--> [home].

The sentence I see a m a n at home has two derivations, according to this grammar . The

lexicalized tree substi tut ion g r a m m a r in Figure 5, which is constructed by the head-

corner parser, derives exactly these two derivations.

Note that the i tem references are used in the same manne r as the compute r gener-

ated names of nonterminals in the approach of Billot and Lang (1989). Because we use

chunks of parse trees, less packing is possible than in their approach. Correspondingly,

the theoretical worst-case space requi rements are also worse. In practice, however , this

does not seem to be problematic: in our experiments , the size of the history table is

a lways m u c h smaller than the size of the other tables (this is expected because the

latter tables have to record complex category information).

Let us now look at h o w the parser of the previous section can be adap ted to be able

to assert his tory items. First, we add an (output-) a rgumen t to the p a r s e predicate. This

sixth a rgumen t is the reference to the result i tem that was actually used. The predicates

to parse a list of daughters are a u g m e n t e d with a list of such references. This enables

the construct ion of a te rm for each local tree in the head_corner predicate consisting

of the name of the rule that was appl ied and the list of references of the result i tems

which is a pointer to either a lexical entry or a gap.

443

Computational Linguistics Volume 23, Number 3

used for the left and right daughters of that rule. Such a local tree representation is

an element of a list that is maintained for each lexical head upward to its goal. Such

a list thus represents in a bottom-up fashion all rules and result items that were used

to show that that lexical entry indeed was a head-corner of the goal. If a parse goal

has been solved then this list containing the history information is asserted in a new

kind of table: the 'HISTORY_ITEM'/3 table. 5

We already argued above that parse trees should not be explicitly defined in the

grammar. Logical forms often implicitly represent the derivational history of a cate-

gory. Therefore, the common use of logical forms as part of the categories will imply

that you will hardly ever find two different analyses for a single category, because two

different analyses will also have two different logical forms. Therefore, no packing is

possible and the recognizer will behave as if it is enumerating all parse trees. The

solution to this problem is to delay the evaluation of semantic constraints. During the

first phase, all constraints referring to logical forms are ignored. Only if a parse tree

is recovered from the parse forest we add the logical form constraints. This is similar

to the approach worked out in CLE (Alshawi 1992).

This approach may lead to a situation in which the second phase actually filters

out some otherwise possible derivations, in case the construction of logical forms is

not compositional in the appropriate sense. In such cases, the first phase may be said

to be unsound in that it allows ungrammatical derivations. The first phase combined

with the second phase is of course still sound. Furthermore, if this situation arose very

often, then the first phase would tend to be useless, and all work would have to be

done during the recovery phase. The present architecture of the head-corner parser

embodies the assumption that such cases are rare, and that the construction of logical

forms is (grosso modo) compositional.

The distinction between semantic and syntactic information is compiled into the

grammar rules on the basis of a user declaration. We simply assume that in the first

phase the parser only refers to syntactic information, whereas in the second phase

both syntactic and semantic information is taken into account.

If we assume that the grammar constructs logical forms, then it is not clear that we

are interested in parse trees at all. A simplified version of the recover predicate may

be defined in which we only recover the semantic information of the root category,

but in which we do not build parse trees. The simplified version may be regarded

as the run-time version, whereas parse trees will still be very useful for grammar

development.

5. Parsing Word-Graphs with Probabilities

The head-corner parser is one of the parsers developed within the NWO Priority

Programme on Language and Speech Technology. In this program a spoken dialog

system is developed for public transportation information (Boves et al. 1995).

In this system the input for the parser is not a simple list of words, as we have

assumed up to now, but rather a word-graph: a directed, acyclic graph where the

states are points in time and the edges are labeled with word hypotheses and their

corresponding acoustic score. Thus, such word-graphs are acyclic weighted finite-state

automata.

In Lang (1989) a framework for processing ill-formed input is described in which

5 A complication is needed for those cases where items are removed later because a more general item

has been found.

444

van Noord Efficient Head-Corner Parsing

certain c om mon errors are mode led as (weighted) finite-state transducers. The compo-

sition of an input sentence with these transducers produces a (weighted) finite-state

automaton, which is then input for the parser. In such an approach, the need to gen-

eralize from input strings to input finite-state automata is also clear.

The generalization from strings to weighted acyclic finite-state automata intro-

duces essentially two complications: we cannot use string indices anymore and we

need to keep track of the acoustic scores of the words used in a certain derivation.

5.1 From String Positions to State Names

Parsing on the basis of a finite-state au tomaton can be seen as the computat ion of

the intersection of that au tomaton with the grammar. If the definite clause grammar

is off-line parsable, and if the finite-state au tomaton is acyclic, then this computat ion

can be guaranteed to terminate (van Noord 1995). This is obvious because an acyclic

finite-state automaton defines a finite number of strings. More importantly, existing

techniques for parsing based on strings can be generalized easily by using the names

of states in the au tomaton instead of the usual string indices.

In the head-corner parser, this leads to an alternative to the predicate smal ler_

equa l /2 . Rather than a simple integer comparison, we now need to check that a

derivation from P0 to P can be extended to a derivation from E0 to E by checking that

there are paths in the word-graph from E0 to P0 and from P to E.

The predicate c o n n e c t i o n / 2 is true if there is a path in the word-graph from the

first a rgument to the second argument. It is assumed that state names are integers;

to rule out cyclic word-graphs we also require that, for all transitions from P0 to P, it

is the case that P0 < P. Transitions in the word-graph are represented by clauses of

the form wordg raph : t r ans (P0, Sym, P, Score) , which indicate that there is a transition

from state P0 to P with symbol Sym and acoustic score Score. The connection predicate

can be specified simply as the reflexive and transitive closure of the transition relation

between states:

connect ion (A, A) . (19)

connection(AO,A) "-

wordgraph : trans (AO, _, A i, _),

connection (AI, A).

The implementat ion allows for the possibility that state names are not instantiated (as

required by the treatment of gaps). Moreover it uses memorizat ion, and it ensures that

the predicate succeeds at most once:

c o n n e c t i o n (A , B) : -

(var(A) -> true

; var(B) -> true

; A=:=B -> true

; B < A -> fail

; ok_conn(A,B) -> true

; fail_conn(A,B) -> fail

; wordgraph:trans(A,_,X,_),

connection(X,B)

% word-graphs are acyclic

-> assertz(ok_conn(A,B))

(20)

445

Computational Linguistics Volume 23, Number 3

; assertz(fail_conn(A,B)),

fail

.

A somewhat different approach that may turn out to be more efficient is to use the

ordinary comparison operator that we used in the original definition of the head-corner

parser. The possible extra cost of allowing impossible partial analyses is worthwhile

if the more precise check would be more expensive. If, for typical input word-graphs,

the number of transitions per state is high (such that almost all pairs of states are

connected), then this may be an option.

5.2 Accounting for Word-Graph Scores

To account for the acoustic score of a derivation (defined as the sum of the acoustic

scores associated with all transitions from the word-graph involved in the derivation),

we assume that the predicate l ex i ca l_ana lys i s represents the acoustic score of the

piece of the word-graph that it covers by an extra argument. During the first phase,

acoustic scores are ignored. During the second phase (when a particular derivation is

constructed), the acoustic scores are combined.

6. Head-Corner Parsing and Robustness

Certain approaches towards robust parsing use the partial results of the parser. It is

assumed in such approaches that even if no full parse for the input could be con-

structed, the discovery of other phrases in the input might still be useful. It is also

often assumed that a bottom-up parser is essential for such approaches to work: parsers

that use top-down information (such as the head-corner parser) may fail to recognize

relevant subparses in the context of an ungrammaticality.

In the application for which the head-corner parser was developed, robust pro-

cessing is essential. In a spoken dialogue system it is often impossible to parse a full

sentence, but in such cases the recognition of other phrases, such as temporal expres-

sions, might still be very useful. Therefore, a robust processing technique that collects

the remnants of the parsing process in a meaningful way seems desirable.

In this subsection, we show how the head-corner parser can be used in such

circumstances. The parser is modified in such a way that it finds all derivations of the

start symbol anywhere in the input. Furthermore, the start symbol should be defined in

such a way that it includes all categories considered useful for the application.

6.1 Underspecification of the Positions

Normally the head-corner parser will be called as follows, for example:

?- parse(s(Sem) ,0,12) .

indicating that we want to parse a sentence from position zero to twelve with cate-

gory s (Sere) (a sentence with a semantic representation that is yet to be discovered).

Suppose, however, that a specific robustness module is interested in all maximal pro-

jections anywhere in the sentence. Such a maximal projection may be represented by

a term xp (Sere). Furthermore there may be unary grammar rules rewriting such an xp

into appropriate categories, for example:

xp(Sem) --> np(Sem), xp(Sem) --> s(Sem). (21)

xp(Sem) --> pp(Sem), xp(Sem) --> advp(Sem).

446

van Noord Efficient Head-Corner Parsing

If we want to recognize all maximal projections at all positions in the input, then we

can simply give the following parse-goah

?- parse(xp(Sem)). (22)

Now one might expect that such an underspecified goal will dramatically slow down

the head-corner parser, but this turns out to be false. In actual fact we have experienced

an increase of efficiency using underspecification. This can only be understood in the

light of the use of memorization. Even though we now have a much more general

goal, the number of different goals that we need to solve is much smaller.

Also note that even though the first call to the parse predicate has variable extreme

positions, this does not imply that all power of top-down prediction is lost by this

move; recursive calls to the parse predicate may still have instantiated left and /or right

extreme positions. The same applies with even more force for top-down information

on categories.

6.2 The Robustness Component in OVIS

In an attempt to obtain a robust natural language understanding component, we have

experimented in OVIS with the techniques mentioned in the preceding paragraph. The

top category (start symbol) of the OVIS grammar is defined as the category max (gem).

Moreover there are unary rules such as max(gem) --* np(Sem,..) for NP, S, PP, AdvP.

In the first phase, the parser finds all occurrences of the top category in the input

word-graph. Thus, we obtain items for all possible maximal projections anywhere in

the input graph. In the second phase, the robustness component selects a sequence

of such maximal projections. The robustness procedure consists of a best-first search

from the beginning of the graph to the end of the graph. A path in the input graph

can be constructed by taking steps of two types. To move from position P to Q you

can either:

• use a maximal projection from P to Q (as constructed by the parser), or

• use a transition from P to Q. In this case we say that we skip that

transition.

In order to compare paths in the best-first search method, we have experimented

with score functions that include some or all of the following factors:

• the number of skips. We prefer paths with a smaller number of such

skips.

• the number of maximal projections. We prefer paths with a smaller

number of such projections.

• the combined acoustic score as defined in the word-graph.

• the appropriateness of the semantic representation given the dialogue

context

• the bigram score.

If bigram scores are not included, then this best-first search method can be im-

plemented efficiently because for each state in the word-graph we only have to keep

track of the best path to that state.

447

Computational Linguistics Volume 23, Number 3

The resulting best path in general consists of a number of maximal projections. In

the OVIS application, these are often simple time or place expressions. The pragmatic

module is able to deal with such unconnected pieces of information and will perform

better if given such partial parse results.

To evaluate the appropriate combination of the factors determining the scoring

function, and to evaluate this approach with respect to other approaches, we use a

corpus of word-graphs for which we know the corresponding actual utterances. We

compare the sentence associated with the best path in the word-graph with the sen-

tence that was actually spoken. Clearly, the more often the robustness component

uses the information that was actually uttered, the more confidence we have in that

component. This notion of word accuracy is an approximation of semantic accuracy

(or "concept accuracy"). The string comparison is defined by the minimal number of

deletions and insertions that is required to turn the first string into the second (Lev-

enshtein distance), although it may be worthwhile to investigate other measures. For

example, it seems likely that for our application it is much less problematic to "miss"

information than to "hallucinate". This could be formalized by a scoring function in

which insertion (into analysis result) is cheaper than deletion.

Currently, the best results are obtained with a scoring function in which bigram

scores, acoustic scores, and the number of skips are included. We have also imple-

mented a version of the system in which acoustic scores and bigram scores are used

to select the best path through the word-graph. This path is then sent to the parser

and the robustness component. In this "best-l-mode" the system performs somewhat

worse in terms of word accuracy, but much faster, as seen in the experiments in the

next section.

7. Practical Experience

There does not exist a generally agreed-upon method to measure the efficiency of

parsers for grammars of the kind we assume here, i.e., constraint-based grammars for

natural language understanding. Therefore, I will present the results of the parser for

the current version of the OVIS grammar in comparison with a number of other parsers

that have been developed in the same project (by my colleagues and myself). Moreover,

a similar experiment was performed with two other grammars: the English MiMo2

grammar (van Noord et al. 1991), and the English Alvey NL Tools grammar (Grover,

Carroll, and Briscoe 1993). 6 It should be clear that the results to be presented should

not be taken as a formal evaluation, but are presented solely to give an impression

of the practical feasibility of the parser, at least for its present purpose. The following

results should be understood with these reservations in mind.

7.1 Other Parsers

The head-corner parser was compared with a number of other parsers. The parsers

are described in further detail in van Noord, Bouma, Koeling, and Nederhof (1996)

6 The material used to perform the experiments with the MiMo2 grammar and the Alvey NL Tools
grammar, including several versions of the head-corner parser, is available via anonymous ftp at:
f t p : / / f t p . l e t . rug. nllpublprolog-app/CL97/and the world-wide-web at:
http://www, l e t . rug. nl/~vannoord/CL97/. The material is ready to be plugged into the Hdrug
environment available from the same site.

448

van Noord Efficient Head-Comer Parsing

and van Noord, Nederhof, Koeling, and Bouma (1996). The last two parsers of the

following list were implemented by Mark-Jan Nederhof.

• lc . Left-corner parser. This parser is der ived from the head-corner parser.

It therefore uses many of the ideas presented above. Most importantly, it

uses selective memoriza t ion with goal weakening and packing. The

parser is closely related to the BUP parser (Matsumoto et al. 1983).

• b u - i n a c t i v e . Inactive chart parser. This is a bot tom-up parser that

records only inactive edges. It uses packing. It uses a precompiled

version of the grammar in which no empty product ions are present.

• b u - e a r l e y . Bottom-up Earley parser. This is a bot tom-up chart parser

that records both active and inactive items. It operates in two phases and

uses packing. It uses a precompiled version of the grammar in which no

empty product ions are present.

• b u - a c t i v e . Bottom-up Earley parser wi thout packing. This is a chart

parser that constructs only active items (except for categories that unify

with the top category). It uses a precompiled version of the grammar in

which no empty product ions are present.

• l r . LR parser. This is an experimental implementat ion of a generalization

for Definite Clause Grammars of the parser described in Nederhof and

Satta (1996). It proceeds in a single phase and does not use packing. It

uses a table to maintain partial analyses. It was not possible to per form

all the experiments with this parser due to m e m o r y problems during the

construction of the LR table.

Note that we have exper imented with a number of different versions of each of

these parsers. We will report only on the most efficient version. The experiments were

per formed on a 125Mhz HP-UX 735 machine with 240 Megabytes of memory. Timings

measure CPU-time and should be independent of the load on the machine. 7

7.2 Exper iment 1: OVIS

The OVIS grammar (for Dutch) contains about 1,400 lexical entries (many of which are

station and city names) and 66 rules (a substantial fraction of which are concerned with

time and date expressions), including 7 epsilon rules. The most impor tant epsilon rule

is part of a gap-threading implementat ion of verb-second. The grammar is documented

in detail in van Noord, Nederhof, Koeling, and Bouma (1996). The head-corner table

contains 128 pairs, the lexical head-corner table contains 93 pairs, the gap-head-corner

table contains 14 pairs. The left-corner table contains 156 pairs, the lexical left-corner

table contains 114 pairs, the gap-left-corner table contains 20 pairs. The precompiled

grammar, which is used by the chart parsers, contains 92 rules.

The input for the parser consists of a test set of 5,000 word-graphs, randomly taken

from a corpus of more than 25,000 word-graphs. These word-graphs are the latest

word-graphs that were available to us; they are "real" ou tput of the current version of

the speech recognizer as developed by our project partners. In this application, typical

7 Experiments suggest that the load on the machine in fact does influence the timings somewhat.
However, the experiments were performed at times when the load of the machine was low. It is
believed, therefore, that no such artifacts are present in the numbers given here.

449

Computational Linguistics Volume 23, Number 3

Table 1
The left-most table gives information concerning the
number of transitions per word-graph of the test set for
the OVIS grammar. As can be seen from this table, more
than half of the corpus consists of word-graphs with at
most five transitions. In the right-most table, the number
of words per utterance is given. Many utterances consists
of less than five words.

Number of Number of Number of Number of
Transitions Word-Graphs Words Utterances

0-5 2,825 1-2 2,465
6-10 850 3-4 1,448

11-15 408 5-6 543
16-20 246 7-8 319
21-30 237 9-10 118
31-40 146 11-12 56
41-50 83 13-14 26
51-75 112 15-16 20
76-100 44 17-18 5

101-150 36
151-200 12

263 1

utterances are short. As a consequence, the typical size of word-graphs is rather small

too, as can be seen in Table 1.

We report on three different experiments with the OVIS grammar and these word-

graphs. In the first experiment, the system runs in best- l -mode: the best pa th is selected

from the word-graph using bigram scores and the acoustic scores (present in the word-

graph). This best path is then sent to the parser and robustness component . In the

second experiment, the parser is given the utterance as it was actually spoken (to

simulate a situation in which speech recognition is perfect). In the third experiment,

the parser takes the full word-graph as its input. The results are then passed on to

the robustness component . As explained in the previous section on robustness, each

of the parsers finds all derivations of the start symbol anywhere in the input (this is

the case in each of the OVIS experiments).

For the current version of the OVIS system, parsing on the basis of the best pa th in

the word-graph gives results in terms of word accuracy that are similar to the results

obtained with full word-graphs. Results for concept accuracy are not yet available.

Details can be found in van Noord, Bouma, Koeling, and Nederhof (1996).

7.2.1 Parsing Best Path Only. In Table 2, the CPU-time requirements and the maxi-

m u m space requirements of the different parsers are listed. In the table we list, respec-

tively, the total number of milliseconds CPU-time required for all 5,000 word-graphs

(timings include lexical lookup, parsing, and the robustness component) , the average

number of milliseconds per word-graph, and the max imum number of milliseconds

for a word-graph. The final co lumn lists the m ax im u m amount of space requirements

(per word-graph, in Kbytes). 8

8 These sizes are obtained us ing the SICStus prolog built- in predicate s t a t i s t i c s (p r o g r a m ~ p a c e , X) .

This only measu re s the size of the internal database, bu t not the size of the stacks. The size of stacks
has never been a problem for any of the parsers; the size of the internal database has occasionally led

450

van Noord Efficient Head-Corner Parsing

Table 2
Total and average CPU-time and maximal space requirements for a test set of 5,000 best
paths through word-graphs (OVIS grammar).

Parser Total (msec) msec/Sentence Maximum Maximum Space

hc 169,370 34 530 163
lc 180,160 36 530 171
bu-active 291,870 58 4,220 1,627
bu-inactive 545,060 109 13,050 784
bu-earley 961,760 192 24,470 2,526
lr 1,088,940 218 416,000 4,412

Table 3
Total and average CPU-time and maximum space requirements for a test set of 5,000
utterances (OVIS grammar).

Parser Total (msec) msec/Sentence Maximum Maximum Space

hc 126,930 25 510 137
lc 137,090 27 490 174
bu-active 257,390 51 4,030 1,438
bu-inactive 546,650 109 15,170 1,056
bu-earley 934,810 187 25,490 3,558
lr 957,980 192 417,580 4,435

Table 4
Total and average CPU-time and maximum space requirements for a test set of 5,000
word-graphs (OVIS grammar).

Parser Total (msec) msec/Word-Graph Maximum Maximum Space

lc 410,670 82 15,360 4,455
hc 435,320 87 16,230 4,174

7.2.2 Parsing Sentences. The differences in CPU-time for the corpus of 5,000 word-

graphs are similar to differences we have found for other test sets. The results are also

very similar to the results we obtain if we parse the utterances actually spoken. Table 3

lists the results of parsing the set of 5,000 utterances from which the word-graphs were

derived.

7.2.3 Parsing Word-Graphs. Obviously, parsing word-graphs is more difficult than

parsing only the best pa th through a word-graph, or parsing an ordinary sentence.

In Table 4, we list the results for the same set of 5,000 word-graphs. This exper iment

could only be per formed for the head-corner and the left-corner parser. The other

parsers ran into m e m o r y problems for some very large word-graphs.

In order to compare the other parsers too, I per formed the exper iment with a

t ime-out of 5,000 msec (the m e m o r y problems only occur for word-graphs that take

longer to process). In Table 5 the percentage of word-graphs that can be treated within

a certain amount of CPU-time are listed.

From the experiments with the OVIS grammar and corpus, it can be concluded

to problems for the bottom-up chart parsers.

451

Computational Linguistics Volume 23, Number 3

Table 5
Percentage of word-graphs that can be treated within time limit (OVIS grammar).

Parser 500 1,000 2,000 3,000 4,000 5,000 Time-Outs

lc 97.72 99.28 99.78 99.92 99.92 99.92 4
hc 97.42 98.94 99.60 99.84 99.92 99.92 4
lr 91.44 94.42 96.30 96.98 97.34 97.70 115
bu-active 91.84 94.76 96.04 96.84 97.30 97.60 120
bu-inactive 82.36 88.64 92.24 94.10 95.14 95.86 207
bu-earley 77.10 84.26 89.04 91.42 92.64 93.50 325

that the head-corner and left-corner parsers (implemented with selective memorization

and goal weakening) are much more efficient than the other parsers. In the case of

word-graphs, the left-corner parser is about 5% faster than the head-corner parser; for

strings, the head-corner parser is about 6% to 8% faster than the left-corner parser.

7.3 Experiment 2:MiMo2

Another experiment was carried out for the English grammar of the MiMo2 system.

This grammar is a unification-based grammar that is compiled into a DCG. The gram-

mar contains 525 lexical entries, 63 rules including 13 gaps. The head-corner relation

contains 33 pairs and the lexical head-corner relation contains 18 pairs. The left-corner

parser runs into hidden left-recursion problems on the original grammar, so it uses

a version of the grammar in which left-most gaps are compiled out. This compiled

grammar has 69 rules. The left-corner relation contains 80 pairs; the lexical left-corner

relation contains 62 pairs. As a result, the left-corner parser only hypothesizes gaps

for non-left-most daughters. Because the grammar never allows gaps as head, the

head-corner parser can be optimized in a similar fashion. Both the left-corner and

head-corner parser use a goal-weakening operator that only leaves the functor sym-

bol. This simplifies the way in which the goal table is maintained.

For this experiment we have no notion of typical input, but instead made up a set

of 25 sentences of various lengths and levels of difficulty, with a total of 338 readings.

In order to be able to complete the experiment, a time-out of 60 seconds of CPU-time

was used. Timings include lexical lookup and parse tree recovery.

The original parser implemented in the MiMo2 system (a left-corner parser with-

out packing) took 294 seconds of CPU-time to complete the experiment (with three

time-outs). Because the test environment was (only slightly) different, we have indi-

cated the latter results in italics. Average CPU-time is only given for those parsers

that completed each of the sentences within the time limit. The results are given in

Table 6.

The bottom-up active chart parser performs better on smaller sentences with a

small number of readings. For longer and more ambiguous sentences, the head-corner

parser is (much) more efficient. The other parsers are consistently much less efficient.

7.4 Experiment 3: Alvey NL Tools

A final set of experiments was performed for the Alvey NL Tools grammar (Grover,

Carroll, and Briscoe 1993), similar to the experiments discussed in Carroll (1994). For

a longer description of the grammar and the test sets we refer the reader to this

publication. The grammar contains 2,363 lexical entries, and 780 rules (8 of which

are gaps). The left-corner relation contains 440 pairs; the lexical left-corner relation

452

van Noord Efficient Head-Corner Parsing

Table 6

Total and average CPU-time and maximum space requirements for a set of 25 sentences
(MiMo2 grammar). Italicized items are offered for cautious comparison.

Parser Total (msec) msec/Sentence Maximum Space Time-Outs

hc 52,670 2,107 2,062 0
bu-active 52,990 2,120 30,392 0
lc 109,750 4,390 8,570 0
mimo2-lc 294,000 3

bu-earley 439,050 12,910 4
bu-inactive 498,610 7,236 5

Table 7

Total and average CPU-time and maximum space requirements for a set
of 129 short sentences (Alvey NL Tools grammar). Italicized items are
offered for cautious comparison.

Parser msec msec/Sentence Maximum Kbytes

bu-active 18250 141 1276
lc 21900 170 137
Carroll BU-LC 21500 167

hc (lc mode) 23690 184 165
bu-earley 27670 214 758
hc 68880 534 140
bu-inactive 83690 649 170

contains 254 pairs. No gaps are possible as left-most e lements of the r ight-hand side

of a rule.

To use the head-corner parser, it mus t be de te rmined for each of the rules which

e lement on the r ight-hand side consti tutes the head of the rule. The head-corner re-

lation contains 352 pairs; the lexical head-corner relation contains 180 pairs. We also

repor t on exper iments in which, for each rule, the left-most m e m b e r of the r ight-hand

side was selected as the head. The goal -weakening opera tor used for the left-corner

and head-corner parser r emoves all features (only leaving the functor symbol of each

category); again this simplifies the main tenance of the goal table considerably.

The bo t tom-up chart parsers use a version of the g r a m m a r in which all epsilon

rules are compi led out. The result ing g r a m m a r has 1,015 rules.

The first test set consists of 129 short sentences (mean length 6.7 words). Our results

were obtained wi th a newer version of the Alvey NL Tools grammar . In Table 7 we

list the results for the same g r a m m a r and test set for Carroll 's bo t tom-up left-corner

parser (BU-LC). Carroll pe r fo rmed this exper iment on a SUN UltraSparc 1/140. It was

es t imated by Carroll and the author that this machine is about 1.62 t imes faster than

the HP-UX 735 on which the other exper iments were per formed. 9 In Table 7, we have

mult ipl ied the 13.3 seconds of CPU-t ime (obtained by Carroll) wi th this factor in order

to compare his results wi th our results. Clearly, these number s should be taken with

extreme caution, because m a n y factors in the test env i ronment differ (hardware, LISP

versus Prolog). For this reason we use italics in Table 7.

The second test set consists of 100 longer and m u c h more complex sentences. The

length of the sentences is distr ibuted uni formly be tween 13 and 30 words (sentences

9 The SPECINT92 figures for the Ultra 1/140 and HP 735/125 confirm this: 215 and 136 respectively.

453

Computational Linguistics Volume 23, Number 3

Table 8
Total and average CPU-time and maximum space requirements for set of
100 longer sentences (Alvey NL Tools grammar). Italicized items are
offered for cautious comparison.

Parser msec msec/Sentence Maximum Kbytes

lc 195,850 1,959
hc (lc mode) 216,180 2,162
Carroll BU-LC 333,000 3,330
bu-earley 1,219,120 12,191
hc 3,053,910 30,539
bu-inactive 3,578,370 35,784
bu-active >>

10,955
10,969

18,232
7,915

16,936
> 65,000

created by Carroll). Many of the sentences have many parses: the max imum number

of parses is 2,736 for one 29-word sentence. Average number of readings is about 100

readings per sentence.

Again, we list the results Carroll obtained with the BU-LC parser. It took 205.7

seconds on the SUN UltraSparc 1/140.1° The bot tom-up active chart parser ran into

m emory problems for some very ambiguous sentences and was very slow on m an y

of the other sentences (due to the lack of packing). The results are summar ized in

Table 8.

The implementat ion of the left-corner parser based on selective memoriza t ion and

goal weakening seems to be substantially more efficient than the chart-based imple-

mentat ion of Carroll. The head-corner parser running in left-corner mode is almost

as fast as this specialized left-corner parser. This suggests that the use of selective

memoriza t ion with goal weakening is on the right track.

From these experiments, it can be concluded that the head-corner parser is not

suitable for the Alvey NL Tools grammar. The reason seems to be that for this gram-

mar the amount of top-down information available through the head-corner table is

of limited value--typical ly, too many different lexical head-corners are available for

parsing a given goal category. For example, for parsing a sentence, possible head-

corners include auxiliaries, verbs, adverbs, complementizers , pronouns, prepositions,

determiners, nouns, and conjunctions. (In contrast, in the MiMo2 grammar, only verbs

can function as the head-corners of sentences.) As a result, the prediction step intro-

duces too much nondeterminism. A related reason for the poor performance for this

grammar might be the large amount of lexical ambiguity. The grammar and lexicon

used in the exper iment is compiled from a compact user notation. In the compiled for-

mat, all disjunctions are spelled out in different rules and lexical entries. As a result,

many words have a large number of (only slightly different) readings. It m ay be that

the head-corner parser is less suitable in such circumstances. This could also explain

the fact that the head-corner parser performs better on strings then on word-graphs:

in many respects the generalization to word-graphs is similar to an increase in lexical

ambiguity. This suggests that the design of the head-corner parser could be improved

in the prediction step.

10 Note that Carroll reports on recognition times only, whereas our results include the construction of all
individual parse trees. For this experiment the left-corner parser used about 163 seconds on
recognition. In the recognition phase, however, the parser ignores a number of syntactic features,
therefore, this number cannot be compared fairly with Carroll's number either.

454

van Noord Efficient Head-Corner Parsing

Acknowledgments

Some of the introductory material of this
article is a modified and extended version
of the introduction of Bouma and van
Noord (1993). Gosse Bouma, John Carroll,
Rob Koeling, Mark-Jan Nederhof, John
Nerbonne and three anonymous ACL
reviewers provided useful feedback. The
grammar used in the OVIS experiments is
written by Gosse Bouma, Rob Koeling and
myself. Mark-Jan Nederhof implemented
the bottom-up active chart parser and the
experimental LR parser. The MiMo2
grammar was written by Joke Dorrepaal,
Pim van der Eijk, and myself. I am very
grateful to John Carroll for his help in
making the experiments with the Alvey NL
Tools grammar possible. This research was
carried out within the framework of the
Priority Programme Language and Speech
Technology (TST). The TST-Programme is
sponsored by NWO (Dutch Organization
for Scientific Research).

References

Alshawi, Hiyan, editor. 1992. The Core
Language Engine. ACL-MIT press.

Billot, S. and B. Lang. 1989. The structure of
shared parse forests in ambiguous
parsing. In Proceedings of the 27th Annual
Meeting, pages 143-151, Vancouver.
Association for Computational
Linguistics.

Bouma, Gosse and Gertjan van Noord. 1993.
Head-driven parsing for lexicalist
grammars: Experimental results. In
Proceedings of the Sixth Conference of the
European Chapter of the Association for
Computational Linguistics, Utrecht.
Available from
http: //www.let.rug.nl / ~vannoord /
papers/.

Boves, Lou, Jan Landsbergen, Remko Scha,
and Gertjan van Noord. 1995. Language
and Speech Technology. NWO Den Haag.
Project plan for the NWO Priority
Programme 'Language and Speech
Technology'. Available from
http://odur.let.rug.nl:4321/.

Carroll, John. 1994. Relating complexity to
practical performance in parsing with
wide-coverage unification grammars. In
Proceedings of the 32th Annual Meeting,
pages 287-294, Las Cruces, NM.
Association for Computational
Linguistics.

Grover, Claire, John Carroll, and Ted
Briscoe. 1993. The Alvey natural language
tools grammar (4th release). Technical

Report 284, Computer Laboratory,
Cambridge University, UK.

Johnson, Mark and Jochen D6rre. 1995.
Memorization of coroutined constraints.
In Proceedings of the 33th Annual Meeting,
pages 100-107, Boston, MA. Association
for Computational Linguistics.

Kay, Martin. 1989. Head driven parsing. In
Proceedings of the Workshop on Parsing
Technologies, Pittsburg, PA.

Lang, Bernard. 1989. A generative view of
ill-formed input processing. In Proceedings
of the ATR Symposium on Basic Research for
Telephone Interpretation (ASTI), Kyoto,

Japan.
Lavelli, Alberto and Giorgio Satta. 1991.

Bidirectional parsing of lexicalized tree
adjoining grammar. In Proceedings of the
Fifth Conference of the European Chapter of the
Association for Computational Linguistics,
Berlin.

Matsumoto, Y., H. Tanaka, H. Hirakawa,
H. Miyoshi, and H. Yasukawa. 1983. BUP:
A bottom up parser embedded in Prolog.
New Generation Computing, 1(2).

Nederhof, Mark-Jan and Giorgio Satta. 1994.
An extended theory of head-driven
parsing. In Proceedings of the 32th Annual
Meeting, Las Cruces, NM. Association for
Computational Linguistics.

Nederhof, Mark-Jan and Giorgio Satta. 1996.
Efficient tabular LR parsing. In Proceedings
of the 34th Annual Meeting, pages 239-246,
Santa Cruz, CA. Association for
Computational Linguistics.

Pereira, Fernando C.N. and Stuart M.
Shieber. 1987. Prolog and Natural Language
Analysis. Center for the Study of
Language and Information, Stanford.

Pereira, Eernando C.N. and David Warren.
1980. Definite clause grammars for
language analysis--a survey of the
formalism and a comparison with
augmented transition networks. Artificial
Intelligence, 13.

Rosenkrantz, D.J. and P.M. Lewis II. 1970.
Deterministic left corner parsing. In
Proceedings of the IEEE Conference of the 11th
Annual Symposium on Switching and
Automata Theory, pages 139-152.

Sahlin, Dan. 1991. An Automatic Partial
Evaluator for Full Prolog. Ph.D. thesis, The
Royal Institute of Technology (KTH)
Stockholm, Sweden. SICS Dissertation
Series 04.

Satta, Giorgio and Oliviero Stock. 1989.
Head-driven bidirectional parsing. A
tabular method. In Proceedings of the
Workshop on Parsing Technologies, pages

455

Computational Linguistics Volume 23, Number 3

43-51, Pittsburg, PA.
Shieber, Stuart M. 1985. Using restriction to

extend parsing algorithms for
complex-feature-based formalisms. In
Proceedings of the 23th Annual Meeting,
Chicago, IL. Association for
Computational Linguistics.

Shieber, Stuart M., Gertjan van Noord,
Robert C. Moore, and Fernando C.N.
Pereira. 1990. Semantic-head-driven
generation. Computational Linguistics,
16(1). Available from
http: / / www. let. rug .nl / ~ vannoord / pap ers/.

Sikkel, Klaas. 1993. Parsing Schemata. Ph.D.
thesis, Twente University, Enschede.
(Published in Texts in Theoretical
Computer Science, An EATCS Series.
Springer Verlag, 1997.)

Sikkel, Klaas and Rieks op den Akker. 1992.
Head-corner chart parsing. In Proceedings
of Computer Science in the Netherlands (CSN
'92), Utrecht.

Sikkel, Klaas and Rieks op den Akker. 1993.
Predictive head-comer chart parsing. In
IWPT 3, Third International Workshop on
Parsing Technologies, pages 267-276,
Tilburg/Durbuy.

Tomita, M. 1987. An efficient augmented
context-free parsing algorithm.
Computational Linguistics, 13(1-2):31-46.

van Noord, Gertjan. 1991. Head corner
parsing for discontinuous constituency. In
Proceedings of the 29th Annual Meeting,
Berkeley, CA. Association for
Computational Linguistics. Available from
http://www.let.rug.nl/~vannoord/papers/.

van Noord, Gertjan. 1993. Reversibility in
Natural Language Processing. Ph.D. thesis,
University of Utrecht. Available from
http: //www.let.rug.nl/~vannoord/papers/.

van Noord, Gerljan. 1994. Head comer
parsing for TAG. Computational
Intelligence, 10(4). Available from
http://www.let.rug.nl/~vannoord/papers/.

van Noord, Gertjan. 1995. The intersection
of finite state automata and definite
clause grammars. In Proceedings of the 33th
Annual Meeting, Boston, MA. Association
for Computational Linguistics. Available
from
http://www.let.rug.nl / ~vannoord/papers/.

van Noord, Gertjan, Gosse Bouma, Rob
Koeling, and Mark-Jan Nederhof. 1996.
Conventional natural language processing
in the NWO Priority Programme on
Language and Speech Technology.
October 1996 Deliverables. Technical
Report 28, NWO Priority Programme
Language and Speech Technology.
Avaiable from
http://odur.let.rug.nl:4321/.

van Noord, Gertjan, Joke Dorrepaal, Pim
van der Eijk, Maria Florenza, Herbert
Ruessink, and Louis des Tombe. 1991. An
overview of MiMo2. Machine Translation,
6:201-214. Available from
http: / / www.let, rug .nl / ~ vannoord /
papers/.

van Noord, Gertjan, Mark-Jan Nederhof,
Rob Koeling, and Gosse Bouma. 1996.
Conventional natural language processing
in the NWO Priority Programme on
Language and Speech Technology.
January 1996 Deliverables. Technical
Report 22, NWO Priority Programme
Language and Speech Technology.
Available from
http://odur.let.rug.nl:4321/.

Warren, David S. 1992. Memoing for logic
programs. Communications of the ACM,
35(3):94-111.

456

