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An Efficient Implementation of the 

Head-Corner Parser 

G e r t j a n  v a n  N o o r d "  

Rijksuniversiteit Groningen 

This paper describes an efficient and robust implementation of a bidirectional, head-driven parser 

for constraint-based grammars. This parser is developed for the OVIS system: a Dutch spoken 

dialogue system in which information about public transport can be obtained by telephone. 

After a review of the motivation for head-driven parsing strategies, and head-corner parsing 

in particular, a nondeterministic version of the head-corner parser is presented. A memorization 

technique is applied to obtain a fast parser. A goal-weakening technique is introduced, which 

greatly improves average case efficiency, both in terms of speed and space requirements. 

I argue in favor of such a memorization strategy with goal-weakening in comparison with 

ordinary chart parsers because such a strategy can be applied selectively and therefore enormously 

reduces the space requirements of the parser, while no practical loss in time-efficiency is observed. 

On the contrary, experiments are described in which head-corner and left-corner parsers imple- 

mented with selective memorization and goal weakening outperform "standard" chart parsers. 

The experiments include the grammar of the OV/S system and the Alvey NL Tools grammar. 

Head-corner parsing is a mix of bottom-up and top-down processing. Certain approaches to 

robust parsing require purely bottom-up processing. Therefore, it seems that head-corner parsing 

is unsuitable for such robust parsing techniques. However, it is shown how underspecification 

(which arises very naturally in a logic programming environment) can be used in the head-corner 

parser to allow such robust parsing techniques. A particular robust parsing model, implemented 

in OVIS, is described. 

1. Motivation 

In this paper I discuss in full detail the implementation of the head-corner parser. 

But first I describe the motivations for this approach. I will start with considerations 

that lead to the choice of a head-driven parser; I will then argue for Prolog as an 

appropriate language for the implementation of the head-corner parser. 

1.1 Head-driven Processing 

Lexicalist grammar formalisms, such as Head-driven Phrase Structure Grammar 

(HPSG), have two characteristic properties: (1) lexical elements and phrases are as- 

sociated with categories that have considerable internal structure, and (2) instead of 

construction-specific rules, a small set of generic rule schemata is used. Consequently, 

the set of constituent structures defined by a grammar cannot be read off the rule 

set directly, but is defined by the interaction of the rule schemata and the lexical cate- 

gories. Applying standard parsing algorithms to such grammars is unsatisfactory for a 

number of reasons. Earley parsing is intractable in general, as the rule set is simply too 

general. For some grammars, naive top-down prediction may even fail to terminate. 
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Shieber (1985) therefore proposes a modified version of the Earley parser, using re- 

stricted top-down prediction. While this modification often leads to better termination 

properties of the parsing method, in practice it easily leads to a complete trivialization 

of the top-down prediction step, thus leading to inferior performance. 

Bottom-up parsing is far more attractive for lexicalist formalisms, as it is driven 

by the syntactic information associated with lexical elements, but certain inadequacies 

remain. Most importantly, the selection of rules to be considered for application may 

not be very efficient. Consider, for instance, the following Definite Clause Grammar 

(DCG) rule: 

s([] ,Sem) --> Arg, vp([Arg] ,Sem). (1) 

A parser in which application of a rule is driven by the left-most daughter, as it is for 

instance in a standard bottom-up active chart parser, will consider the application of 

this rule each time an arbitrary constituent Arg is derived. For a bottom-up active chart 

parser, for instance, this may lead to the introduction of large numbers of active items. 

Most of these items will be useless. For instance, if a determiner is derived, there is no 

need to invoke the rule, as there are simply no VP's selecting a determiner as subject. 

Parsers in which the application of a rule is driven by the right-most daughter, such 

as shift-reduce and inactive bottom-up chart parsers, encounter a similar problem for 

rules such as: 

vp(As,Sem) --> vp([ArgIAs],Sem), Arg. (2) 

Each time an arbitrary constituent Arg is derived, the parser will consider applying 

this rule, and a search for a matching VP-constituent will be carried out. Again, in 

many cases (if Arg is instantiated as a determiner or preposition, for instance) this 

search is doomed to fail, as a VP subcategorizing for a category Arg may simply not 

be derivable by the grammar. The problem may seem less acute than that posed by 

uninstantiated left-most daughters for an active chart parser, as only a search of the 

chart is carried out and no additional items are added to it. Note, however, that the 

amount of search required may grow exponentially, if more than one uninstantiated 

daughter is present: 

vp(As) --> vp([AI,A21As]), AI, A2. (3) 

or if the number of daughters is not specified by the rule: 

vp([AO]) --> vp([AO ..... An]), A1 ..... An. (4) 

as appears to be the case for some of the rule-schemata used in HPSG. 

Several authors have suggested parsing algorithms that may be more suitable for 

lexicalist grammars. Kay (1989) discusses the concept of head-driven parsing. The 

key idea is that the linguistic concept head can be used to obtain parsing algorithms 

that are better suited for typical natural language grammars. Most linguistic theories 

assume that among the daughters introduced by a rule there is one daughter that can 

be identified as the head of that rule. There are several criteria for deciding which 

daughter is the head, two of which seem relevant for parsing. First of all, the head of 

a rule determines to a large extent what other daughters may or must be present, as 

the head selects the other daughters. Second, the syntactic category and morphological 

properties of the mother node are, in the default case, identical to the category and 

morphological properties of the head daughter. These two properties suggest that it 

may be possible to design a parsing strategy in which one first identifies a potential 

head of a rule, before starting to parse the nonhead daughters. By starting with the 
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head, important information about the remaining daughters is obtained. Furthermore, 

since the head is to a large extent identical to the mother category, effective top-down 

identification of a potential head should be possible. 

In Kay (1989) two different head-driven parsers are presented. First, a head-driven 

shift-reduce parser is presented, which differs from a standard shift-reduce parser 

in that it considers the application of a rule (i.e., a reduce step) only if a category 

matching the head of the rule has been found. Furthermore, it may shift onto the 

parse-stack elements that are similar to the active items (or "dotted rules") of active 

chart parsers. By using the head of a rule to determine whether a rule is applicable, the 

head-driven shift-reduce parser avoids the disadvantages of parsers in which either 

the left-most or right-most daughter is used to drive the selection of rules. Kay also 

presents a head-corner parser. The striking property of this parser is that it does 

not parse a phrase from left to right, but instead operates bidirectionally. It starts by 

locating a potential head of the phrase and then proceeds by parsing the daughters 

to the left and the right of the head. Again, this strategy avoids the disadvantages 

of parsers in which rule selection is uniformly driven by either the left-most or right- 

most daughter. Furthermore, by selecting potential heads on the basis of a head-corner 

table (comparable to the left-corner table of a left-corner parser) it may use top-down 

filtering to minimize the search-space. This head-corner parser generalizes the left- 

corner parser. Kay's presentation is reminiscent of the left-corner parser as presented 

by Pereira and Shieber (1987), which itself is a version without memorization of the 

BUP parser (Matsumoto et al. 1983). 

Head-corner parsing has also been considered elsewhere. In Satta and Stock (1989), 

Sikkel and op den Akker (1992, 1993), and Sikkel (1993), chart-based head-corner 

parsing for context-free grammar is considered. It is shown that, in spite of the fact 

that bidirectional parsing seemingly leads to more overhead than left-to-right parsing, 

the worst-case complexity of a head-corner parser does not exceed that of an Earley 

parser. Some further variations are discussed in Nederhof and Satta (1994). 

In van Noord (1991, 1993) I argue that head-corner parsing is especially useful 

for parsing with nonconcatenative grammar formalisms. In Lavelli and Satta (1991) 

and van Noord (1994) head-driven parsing strategies for Lexicalized Tree Adjoining 

Grammars are presented. 

The head-corner parser is closely related to the semantic-head-driven generation 

algorithm (see Shieber et al. [1990] and references cited there), especially in its purely 

bottom-up incarnation. 

1.2 Selective Memorization 

The head-corner parser is in many respects different from traditional chart parsers. An 

important difference follows from the fact that in the head-corner parser only larger 

chunks of computation are memorized. Backtracking still plays an important role for 

the implementation of search. 

This may come as a surprise at first. Common wisdom is that although small 

grammars may be successfully treated with a backtracking parser, larger grammars 

for natural languages always require the use of a data structure such as a chart or a 

table of items to make sure that each computation is only performed once. In the case 

of constraint-based grammars, however, the cost associated with maintaining such a 

chart should not be underestimated. The memory requirements for an implementation 

of the Earley parser for a constraint-based grammar are often outrageous. Similarly, 

in an Earley deduction system too much effort may be spent on small portions of 

computation, which are inexpensive to (re-)compute anyway. 

For this reason, I will argue for an implementation of the head-corner parser in 
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which only large chunks of computation are memorized. In linguistic terms, I will ar- 

gue for a model in which only maximal projections are memorized. The computation 

that is carried out in order to obtain such a chunk uses a depth-first backtrack search 

procedure. This solution dramatically improves upon the (average case) memory re- 

quirements of a parser; moreover it also leads to an increase in (average case) time 

efficiency, especially in combination with goal weakening, because of the reduced 

overhead associated with the administration of the chart. In each of the experiments 

discussed in Section 7, the use of selective memorization with goal weakening out- 

performs standard chart-parsers. 

1.3 Why Prolog 
Prolog is a particularly useful language for the implementation of a head-corner parser 

for constraint-based grammars because: 

• Prolog provides a built-in unification operation. 

• Prolog provides a built-in backtrack search procedure; memorization can 

be applied selectively. 

• Underspecification can be exploited to obtain results required by certain 

techniques for robust parsing. 

• Prolog is a high-level language; this enables the application of partial 

evaluation techniques. 

The first consideration does not deserve much further attention. We want to exploit 

the fact that the primary data structures of constraint-based grammars and the cor- 

responding information-combining operation can be modeled by Prolog's first order 

terms and unification. 

As was argued above, Prolog backtracking is not used to simulate an iterative 

procedure to build up a chart via side-effects. On the contrary, Prolog backtracking is 

used truly for search. Of course, in order to make this approach feasible, certain well- 

chosen search goals are memorized. This is clean and logically well-defined (consider, 

for example, Warren [1992]), even if our implementation in Prolog uses extra-logical 

predicates. 

The third consideration is relevant only for robust parsing. In certain methods in 

robust parsing, we are interested in the partial results obtained by the parser. To make 

sure that a parser is complete with respect to such partial results, it is often assumed 

that a parser must be applied that works exclusively bottom-up. In Section 6 it will be 

shown that the head-corner parser, which uses a mixture of bottom-up and top-down 

processing, can be applied in a similar fashion by using underspecification in the top 

goal. Clearly, underspecification is a concept that arises naturally in Prolog. 

The fact that Prolog is a high-level language has a number of practical advantages 

related to the speed of development. A further advantage is obtained because tech- 

niques such as partial evaluation can be applied. For example, I have successfully 

applied the Mixtus partial evaluator (Sahlin 1991) to the head-corner parser discussed 

below, to obtain an additional 20% speed increase. In languages such as C, partial 

evaluation does not seem to be possible because the low-levelness of the language 

makes it impossible to recognize the concepts that are required. 

1.4 Left-Corner Parsing and Head-Corner Parsing 
As the names suggest, there are many parallels between left-corner and head-corner 

parsing. In fact, head-corner parsing is a generalization of left-corner parsing. Many 
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of the techniques that will be described in the following sections can be applied to a 

left-corner parser as well. 

A head-corner parser for a grammar in which for each rule the left-most daughter 

is considered to be the head, will effectively function as a left-corner parser. In such 

cases, the head-corner parser can be said to run in left-corner mode. Of course, in a left- 

corner parser, certain simplifications are possible. Based on the experiments discussed 

in Section 7, it can be concluded that a specialized left-corner parser is only about 10% 

faster than a head-corner parser running in left-corner mode. This is an interesting 

result: a head-corner parser performs at least almost as well as a left-corner parser, 

and, as some of the experiments indicate, often better. 

1.5 Practical Relevance of Head-Corner Parsing: Efficiency and Robustness 

The head-corner parser is one of the parsers that is being developed as part of the 

NWO Priority Programme on Language and Speech Technology. An overview of the 

Programme can be found in Boves et al. (1995). An important goal of the Programme 

is the implementation of a spoken dialogue system for public transport information 

(the OVIS system). The language of the system is Dutch. 

In the context of the OVIS system, it is important that the parser can deal with 

input from the speech recognizer. The interface between the speech recognizer and 

the parser consists of word-graphs. In Section 5, I show how the head-corner parser 

is generalized to deal with word-graphs. 

Moreover, the nature of the application also dictates that the parser proceeds in a 

robust way. In Section 6, I discuss the OVIS Robustness component, and I show that 

the use of a parser that includes top-down prediction is not an obstacle to robustness. 

In Section 7, I compare the head-corner parser with the other parsers implemented 

in the Programme for the OVIS application and show that the head-corner parser op- 

erates much faster than implementations of a bottom-up Earley parser and related 

chart-based parsers. Moreover, the space requirements are far more modest. The dif- 

ference with a left-corner parser, which was derived from the head-corner parser, is 

small. 

We performed similar experiments for the Alvey NL Tools grammar of English 

(Grover, Carroll, and Briscoe 1993), and the English grammar of the MiMo2 system 

(van Noord et al. 1991). From these experiments it can be concluded that selective 

memorization with goal-weakening (as applied to head-corner and left-corner parsing) 

is substantially more efficient than conventional chart parsing. We conclude that at 

least for some grammars, head-corner parsing is a good option. 

2. A Specification of the Head-Corner Parser 

Head-corner parsing is a radical approach to head-driven parsing in that it gives up the 

idea that parsing should proceed from left to right. Rather, processing in a head-corner 

parser is bidirectional, starting from a head outward (island-driven). A head-corner 

parser can be thought of as a generalization of the left-corner parser (Rosenkrantz and 

Lewis 1970; Matsumoto et al. 1983; Pereira and Shieber 1987). As in the left-corner 

parser, the flow of information in a head-corner parser is both bottom-up and top- 

down. 

In order to explain the parser, I first introduce some terminology. I assume that 

grammars are defined in the Definite Clause Grammar formalism (Pereira and Warren 

1980). Without any loss of generality I assume that no external Prolog calls (the ones 

that are defined within { and }) are used, and that all lexical material is introduced 

in rules that have no other right-hand-side members (these rules are called lexical 
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goal 

. 

lex 
Figure 1 
The head-corner parser. 

g? l goal 

entries). The grammar thus consists of a set of rules and a set of lexical entries• For 

each rule an element of the right-hand side is identified as the head of that rule. The 

head-relation of two categories h, m holds with respect to a grammar iff the grammar 

contains a rule with left-hand side m and head daughter h. The relation head-corner 

is the reflexive and transitive closure of the head relation. 

The basic idea of the head-corner parser is illustrated in Figure 1. The parser selects 

a word (1), and proves that the category associated with this word is the head-corner 

of the goal. To this end, a rule is selected of which this category is the head daughter• 

Then the other daughters of the rule are parsed recursively in a bidirectional fashion: 

the daughters left of the head are parsed from right to left (starting from the head), 

and the daughters right of the head are parsed from left to right (starting from the 

head). The result is a slightly larger head-corner (2). This process repeats itself until a 

head-corner is constructed that dominates the whole string (3). 

Note that a rule is triggered only with a fully instantiated head daughter. The 

generate-and-test behavior discussed in the previous section (examples 1 and 2) is 

avoided in a head-corner parser, because in the cases discussed there, the rule would 

be applied only if the VP is found, and hence arg is instantiated. For example if arg 

= np(sg3, [] ,Subj), the parser continues to search for a singular NP, and need not 

consider other categories• 

To make the definition of the parser easier, and to make sure that rules are indexed 

appropriately, grammar rules are represented by the predicate headod_rulo/4 in which 

the first argument is the head of the rule, the second argument is the mother node of 

the rule, the third argument is the reversed list of daughters left of the head, and the 

fourth argument is the list of the daughters right of the head. 1 This representation of 

a grammar will in practice be compiled from a friendlier notation• 

As an example, the DCG rule 

x(A,E) --> a(A), b(B,A), x(C,B), d(C,D), e(D,E). 

of which the third daughter constitutes the head, is represented now as: 

headed_rule(x(C,B), x(A,E), [b(B,A), a(A)], [d(C,D), e(D,E)]). 

It is assumed furthermore that lexical lookup has been performed already by an- 

other module. This module has asserted clauses for the predicate lexieal_analysis/3 

where the first two arguments are the string positions and the third argument is the 

1 Later we will also allow the use of rules with an empty right-hand side. These will simply be 
represented by the predicate gap/1. 
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% parse(?Cat,+PO,+P) 

% there is a category Cat from PO to P 

parse(Cat,PO,P) :- parse(Cat,PO,P,PO,P). 

% parse(?Cat,?PO,?P,+E0,+E) 

% there is a category Cat from PO to P within the interval E0-E 

parse(Cat,P0,P,E0,E) :- 

predict(Cat,PO,P,E0,E,SmallCat,Q0,Q), 

head_corner(SmallCat,QO,~,Cat,PO,P,EO,E). 

% head_corner(?Small,+QO,+Q,?Cat,?PO,?P,+EO,+E) 

Small from QO-Q is a head-corner of Cat from PO-P 

where PO-P occurs within EO-E 

head_corner(Cat,PO,P,Cat,PO,P .... ). 

head_corner(Small,QO,Q,Cat,PO,P,EO,E) :- 

headed_rule(Small,Mother,RevLeftDs,RightDs), 

head_link(Cat,PO,P,Mother,QL,QR), 

parse_left_ds(RevLeftDs,QL,QO,EO), parse_right_ds(RightDs,Q,QR,E), 

head_corner(Mother,QL,QR,Cat,PO,P,EO,E). 

% parse_left_ds(+RevLeftDs,-Q0,+Q,+E0) 

% there are categories LeftDs from QO to Q 

s.t. RevLeftDs is reverse of LeftDs, and E0=<~0. 

parse left_ds([],Q,Q,_). 

parse left_ds([HIT],QO,Q,EO) "- 

parse(H,QI,Q,E0,Q), parse_left_ds(T,Q0,QI,E0). 

% parse_right_ds(+RightDs,+Q0,-Q,+E) 

% there are categories RightDs from Q0 to Q s.t. Q =< E. 

parse_right_ds([],Q,Q,_). 

parse right_ds([HIT],Q0,Q,E) "- 

parse(H,QO,Ql,@0,E), parse_right ds(T,QI,Q,E). 

% predict(+Cat,?PO,?P,+EO,+E,-Small,-QO,-Q) 

% Small from QO-Q (within EO-E) is a lexical category and possible 

% head-corner for Cat from PO-P. 

predict(Cat,PO,P,EO,E,Small,QO,Q) :- 

lex_head_link(Cat,PO,P,Small,QO,Q), 

lexical_analysis(QO,Q,Small), 

smaller_equal(EO,QO), 

smaller_equal(Q,E). 

Figure 2 
Definite clause specification of the head-corner parser. 

(lexical) category. For an input sentence Timeyqies like an arrow this module may produce 

the following set of clauses: 

lexical_analysis (0, I, verb). (5) 

lexical_analysis (0,2 ,noun). 

lexieal_analysis (i, 2, verb). 

lexical_analysis (2,3, verb). 

lexical_analysis (4,5, noun). 

A simple definite-clause specification of the head-corner parser is given in Figure 2. 

The predicate visible to the rest of the world will be the predicate parse/3. This 

lexical_analysis(O,l,noun). 

lexical_analysis(1,2,noun). 

lexical_analysis(2,3,prep). 

lexical_analysis(3,4,det). 
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predicate is defined in terms of the parse/5 predicate. The extra arguments introduce 

a pair of indices representing the extreme positions between which a parse should be 

found. This will be explained in more detail below. A goal category can be parsed if 

a predicted lexical category can be shown to be a head-corner of that goal. The head- 

corner predicate constructs (in a bottom-up fashion) larger and larger head-corners. 

To parse a list of daughter categories, each daughter category is parsed in turn. A 

predicted category must be a lexical category that lies somewhere between the extreme 

positions. The predicate smaller_equal is true if the first argument is a smaller or 

equal integer than the second. The use of the predicates head_link and lex_head_link 

is explained below. 

Note that unlike the left-corner parser, the head-corner parser may need to con- 

sider alternative words as a possible head-corner of a phrase, for example, when 

parsing a sentence that contains several verbs. This is a source of inefficiency if it is 

difficult to determine what the appropriate lexical head for a given goal category is. 

This problem is somewhat reduced because of: 

• the use of extremes 

• the use of top-down information 

2.1 The Use of Extremes 

The main difference between the head-corner parser in the previous paragraph and 

the left-corner parser is--apart from the head-driven selection of rules--the use of 

two pairs of indices, to implement the bidirectional way in which the parser proceeds 

through the string. 

Observe that each parse-goal in the left-corner parser is provided with a category 

and a left-most position. In the head-corner parser, a parse-goal is provided either 

with a begin or end position (depending on whether we parse from the head to the 

left or to the right) but also with the extreme positions between which the category 

should be found. In general, the parse predicate is thus provided with a category and 

two pairs of indices. The first pair indicates the begin and end position of the category, 

the second pair indicates the extreme positions between which the first pair should 

lie. In Figure 3 the motivation for this technique is illustrated with an example. 

2.2 Adding Top-Down Filtering 
2.2.1 Category Information. As in the left-corner parser, a linking table is maintained, 

which represents important aspects of the head-corner relation. For some grammars, 

this table simply represents the fact that the HEAD features of a category and its head- 

corner are shared. Typically, such a table makes it possible to predict that in order to 

parse a finite sentence, the parser should start with a finite verb; to parse a singular 

noun-phrase the parser should start with a singular noun, etc. 

The table is defined by a number of clauses for the predicate head_link/2 where 

the first argument is a category for which the second argument is a possible head- 

corner. A sample linking table may be: 

head_link(s,verb). 

head_link( s, vp). 

head_link(pp,prep). 

head_link( X, X). 

head_link( vp, verb). 

head_link( np, noun). 

head_link(sbar, comp). 

(6) 
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vp 

v np 

5 6 7 8 

Figure 3 
This example illustrates how the use of two pairs of string positions reduces the number of 
possible lexical head-corners for a given goal. Suppose the parser predicted (for a goal 
category s) a category v from position 5 to 6. In order to construct a complete tree s for this 
head-corner, a rule is selected that dictates that a category np should be parsed to the right, 
starting from position 6. To parse np, the category n from 7 to 8 is predicted. Suppose 
furthermore that in order to connect n to np a rule is selected that requires a category adjp to 
the left of n. It will be clear that this category adjp should end in position 7, but can never 
start before position 6. Hence the only candidate head-corner of this phrase is to be found 
between 6 and 7. 

2.2.2 String Position Information. The head-corner  table also includes informat ion 

about  begin and  end positions, fol lowing an idea in Sikkel (1993). For example,  if the 

goal is to parse  a phrase  wi th  category s b a r  f rom posi t ion 7, and  within  posi t ions 7 and  

12, then for some g r a m m a r s  it can be concluded that the only possible lexical head-  

corner for this goal should  be a complement ize r  start ing at posi t ion 7. Such informat ion 

is represented in the table as well. This can be done by  defining the head  relation as a 

relation be tween  two triples, where  each triple consists of a category and  two indices 

(representing the begin and end position). The head relation ((Cm, pm, qm), (Ch, ph, qh)) 

holds  iff there is a g r a m m a r  rule wi th  mothe r  Cm and head  Ch. Moreover,  if the list of 

daughters  left of the head  of that rule is empty,  then the begin posi t ions are identical, 

i.e., Ph = Pro. Similarly, if the list of daughte rs  right of the head  is empty,  then qh = qm. 

As before, the head-corner  relation is the reflexive and  transit ive closure of the head  

relation. 

The previous  example  n o w  becomes:  

head_link( s ..... verb .... ). 

head_link( s,_,P, vp,_,P). 

head_link(pp,P,_, prep,P,_). 

head_link( X,P,Q, X,P,Q). 

head_link( vp,P,_, verb,P,_). 

head_link( np ..... noun .... ). 

head_link(sbar,P,_, comp,P,_). 

(7) 

Obviously,  the nature  of the g r a m m a r  determines  whe ther  it is useful to represent  

such information.  In order  to be able to run  a head-corner  parser  in left-corner mode ,  

this technique is crucial. On the other hand,  for g r a m m a r s  in which this technique does 

not  p rov ide  any  useful t op -down informat ion no extra costs are in t roduced either. 
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2.2.3 Integrat ing the Head-Corner  Table. The linking table information is used to 

restrict which lexical entries are examined as candidate heads dur ing prediction, and 

to check whether  a rule that is selected can in fact be used to reach the current  goal. 

To distinguish the two uses, we use the relation lex_head_l ink,  which is a subset 

of the head_l ink  relation in which the head category is a possible lexical category. 

An example might  be the following (where we assume that the category vp is never  

assigned to a lexical entry), which is a subset of the table in 7. 

lex_head_link( s ..... 

lex_head link( np ..... 

lex_head link(sbar,P,_, 

verb .... ). 

noun,_,_). 

comp,P,_). 

lex_head_link(vp,P,_, verb,P,_). 

lex_head_link(pp,P,_, prep,P,_). 

lex_head_link( X,P,Q, X,P,Q). 

(8) 

A few potential  problems arise in connection with the use of linking tables. Firstly, 

for constraint-based grammars  of the type assumed here the number  of possible non- 

terminals is infinite. Therefore, we generally cannot  use all information available in 

the grammar  but  rather we should compute  a "weakened"  version of the linking table. 

This can be accomplished, for example,  by  replacing all terms beyond  a certain dep th  

by anonymous  variables, or by  other restrictors (Shieber 1985). 

Secondly, the use of a linking table may  give rise to spurious ambiguities. Consider  

the case in which the category we are trying to parse can be matched  against two 

different items in the linking table, but  in which case the predicted head-category m ay  

turn out  to be the same. 

Fortunately, the memoriza t ion  technique discussed in Section 3 takes care of this 

problem. Another  possibility is to use the linking table only as a check, but  not  as a 

source of information, by  encapsulating the call within a double  negation. 2 

The solution implemented  in the head-corner  parser  is to use, for each pair of 

functors of categories, the generalization of the head-corner  relation. Such functors 

typically are major and minor  syntactic category labels such as NP, VP, S, S-bar, verb, 

. . . .  As a result there will always be at most  one matching clause in the linking table 

for a given goal category and a given head category (thus there is no risk of obtaining 

spurious ambiguities). Moreover,  this approach allows a ve ry  efficient implementat ion 

technique, as described below. 

2.2.4 Indexing  of the Head-Corner  Table. In the implementat ion of the head-corner  

parser, we use an efficient implementat ion of the head-corner  relation by  exploiting 

Prolog's first a rgument  indexing. This technique ensures that the lookup of the head- 

corner table can be done in (essentially) constant time. The implementat ion consists 

of two steps. In the first step, the head-corner  table is weakened  such that for a given 

goal category and a given head category at most  a single matching clause exists. In the 

second step, this table is encoded in such a way  that first a rgument  indexing ensures 

that table lookup is efficient. 

As a first step we modify  the head-corner  relation to make  sure that for all pairs 

of functors of categories, there will be at most  one matching clause in the head-corner  

table. This is illustrated with an example. Suppose a hypothet ical  head-corner  table 

2 This approach also solves another potential problem: the linking table may give rise to (undesired) 
cyclic terms due to the absence of the occur check. The double negation also takes care of this potential 
problem. 
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contains the following two clauses relating categories with functor x/4 and y/4: 

head_link (x (A, B .... ) ..... y(A,B .... ) .... ). 

head_link(x(_,B,C,_) ..... y(_,B,C,_) .... ). 

In this case, the modified head-corner relation table will consist of a single clause 

relating x/4 and y/4 by taking the generalization (or "anti-unification") of the two 

clauses: 

head_link(x(_ ,B .... ) ..... y(_ ,B .... ) .... ). 

As a result, for a given goal and head category, table lookup is deterministic. 

In the second and final step of the modification we re-arrange the information in 

the table such that for each possible goal category functor g/n, there will be a clause: 

head_link(g(Al..An) ,Pg,Qg,Head,Ph,Qh) :- 

head_link_G_N (Head, Ph, Qh, g (AI.. An), Pg, Qg). 

Moreover, all the relations head_link_G_N now contain the relevant information from 

the head-comer table. Thus, for clauses of the form: 

head_link (x (_, B .... ) ..... y(_,B .... ) .... ) . 

we now have: 

head_link_x 4(y(_,B .... ) ..... x(_,B .... ) .... ). 

First argument indexing now ensures that table lookup is efficient. 

The same technique is applied for the lex_head_link relation. This technique sig- 

nificantly improves the practical time efficiency of the parser (especially if the resulting 

code is compiled). 

2.3 Dealing with Epsilon Rules 

In the preceding paragraphs we have said nothing about empty productions (epsilon 

rules). A possible approach is to compile the grammar into an equivalent grammar in 

which no such epsilon rules are defined. It is also possible to deal with epsilon rules 

in the head-corner parser directly. For example, we could assert empty productions 

as possible lexical analyses. In such an approach, the result of lexical analysis may 

contain clauses such as those in (9), in case there is a rule np/np --+ []. 

lexical_analysis (0, O, np/np), lexical_analysis (i, I, np/np) . (9) 

lexical_analysis (2,2, np/np), lexical_analysis (3,3,np/np). 

lexical_analysis (4,4, np/np). 

There are two objections to this approach. The first objection may be that this is a 

task that can hardly be expected from a lexical lookup procedure. The second, more 

important, objection is that empty categories are hypothesized essentially everywhere. 

In the general version of the head-corner parser, gaps are inserted by a special 

clause for the p r e d i c t / 8  predicate (10), where shared variables are used to indicate the 

corresponding string positions. The gap_head_link relation is a subset of the head_link 

relation in which the head category is a possible gap. 

predict (Cat, PO, P, _EO, _E, Small, Q, Q) • - (10) 

gap_head_link (Cat, PO, P, Small, Q, 6)), 

gap(Small). 
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For this approach to work, other predicates must expect string positions that are 

not instantiated. For example, Prolog's built-in comparison operator cannot be used, 

since that operator requires that its arguments are ground. The definition of the 

smaller_equal predicate therefore reflects the possibility that a string position is a 

variable (in which case, calls to this predicate should succeed). 

For some grammars it turns out that a simplification is possible. If it is never 

possible that a gap can be used as the head of a rule, then we can omit this new clause 

for the p red ic t  predicate, and instead use a new clause for the parse/S predicate, as 

follows: 

parse (Small, Q, Q, _EO, _E) :- 

gap(Small). 

(11) 

This will typically be much more efficient because in this case gaps are hypothesized 

in a purely top-down manner. 

It should be noted that the general version of the head-corner parser is not guaran- 

teed to terminate, even if the grammar defines only a finite number of derivations for 

all input sentences. Thus, even though the head-corner parser proceeds in a bottom-up 

direction, it can run into left-recursion problems (just as the left-corner parser can). 

This is because it may be possible that an empty category is predicted as the head, 

after which trying to construct a larger projection of this head gives rise to a parse-goal 

for which a similar empty category is a possible candidate head . . . .  This problem is 

sometimes called "hidden left-recursion" in the context of left-corner parsers. 

This problem can be solved in some cases by a good (but relatively expensive) 

implementation of the memorization technique, e.g., along the lines of Warren (1992) or 

Johnson and DOrre (1995). The simplified (and more efficient) memorization technique 

that I use (see Section 3), however, does not solve this problem. 

A quite different solution, which is often applied for the same problem if a left- 

corner parser is used, is to compile the grammar into an equivalent grammar without 

gaps. For left-corner parsers, this can be achieved by partially evaluating all rules 

that can take gap(s) as their left-most daughter(s). Therefore, the parser only needs 

to consider gaps in non-left-most position, by a clause similar to the clause in (11). 

Obviously, the same compilation technique can be applied for the head-corner parser. 

However, there is a problem: it will be unclear what the heads of the newly created 

rules will be. Moreover, and more importantly, the head-corner relation will typically 

become much less predictive. For example, if there is a rule vp --> np verb where 

verb can be realized as a gap, then after compilation, a rule of the form vp --> np 

will exist. Therefore, an np will be a possible head-corner of vp. The effect will be that 

head-corners are difficult to predict, and hence efficiency will decrease. 

Fortunately, experience suggests that grammars exhibiting hidden head-recursion 

can often be avoided. For example, in the Alvey NL Tools grammar in only 3 rules (out 

of more than 700) the head of the rule could be gapped. These rules are of the form 

x --> not x. Arguably, in such rules the second daughter should not be gapped. 

In the MiMo2 grammar of English, no heads can be gapped. Finally, in the Dutch 

OVIS grammar (in which verb-second is implemented by gap-threading) no hidden 

head-recursion occurs, as long as the head-corner table includes information about the 

feature vslash,  which encodes whether or not a v-gap is expected. 
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3. Selective Memorization and Goal-Weakening 

3.1 Selective Memorization 

The basic idea behind memorization is simple: do not compute things twice. In Prolog, 

we can keep track of each goal that has already been searched and keep a list of the 

corresponding solution(s). If the same goal needs to be solved later, then we can skip 

the computation and simply do a table lookup. Maintaining a table and doing the table 

lookup is rather expensive. Therefore, we should modify the slogan "do not compute 

things twice" to do not compute expensive things twice. 

In the head-corner parser it turns out that the parse/5 predicate is a very good 

candidate for memorization. The other predicates are not. This implies that each max- 

imal projection is computed only once; partial projections of a head can be constructed 

during a parse any number of times, as can sequences of categories (considered as 

sisters to a head). Active chart parsers memo everything (including sequences of cat- 

egories); inactive chart parsers only memo categories, but not sequences of categories. 

In our proposal, we memo only those categories that are maximal projections, i.e., pro- 

jections of a head that unify with the top category (start symbol) or with a nonhead 

daughter of a rule. 

The implementation of memorization uses Prolog's internal database to store the 

tables. The advantage of this technique is that we use Prolog's first argument indexing 

for such tables. Moreover, during the consultation of the table we need not worry about 

modifications to it (in contrast to an approach in which the table would be maintained 

as the value of a Prolog variable). On the other hand, the use of the internal database 

brings about a certain overhead. Therefore, it may be worthwhile to experiment with 

a meta-interpreter along the lines of the XOLDT system (Warren 1992) in which the 

table is maintained dynamically. 

Memorization is implemented by two different tables. The first table encodes 

which goals have already been searched. Items in the first table are called goal items. 

The second table represents all solved (i.e., instantiated) goals. Items in this second 

table are called result items. It might be tempting to use only the second table, but 

in that case, it would not be possible to tell the difference between a goal that has 

already been searched, but did not result in a solution ("fail-goal") and a goal that has 

not been searched at all. If we have two tables, then we can also immediately stop 

working on branches in the search-space for which it has already been shown that 

there is no solution. The distinction between these two kinds of item is inherited from 

BUP (Matsumoto et al. 1983). The memorized version of the parse predicate can be 

defined as in (12). 

parse(Cat,PO,P,EO,E) :- 

( in_tablel(Cat,PO,P,E0,E) 

-> true 

; ( 

assert_table2(Cat,P0,P), 

fail 

; assert_tablel(Cat,PO,P,E0,E) 

) ), 

in_table2(Cat,P0,P,EO,E). 

done before? 

then don't search 

predict(Cat,PO,P,E0,E,SmCat,Q0,Q), ~ otherwise find all 

head_corner(SmCat,Q0,Q,Cat,PO,P,EO,E), ~ results and assert 

these 

Z goal is now done 

pick a solution 

(12) 

437 



Computational Linguistics Volume 23, Number 3 

The first table is represented by  the predicate ' GOAL_ITEM'. This predicate sim- 

ply consists of a number  of unit-clauses indicating all goals that have been searched 

completely. Thus, before we try to a t tempt  to solve Goal, we first check whether  a 

goal i tem for that goal already exists. Given the fact that Goal may  contain vari- 

ables, we should be a bit careful here. Unification is clearly not appropriate,  since 

it may  result in a situation in which a more  general goal is not searched because a 

more specific variant of that goal had been solved. We want  exactly the opposite: if 

a more general version of Goal is included in the goal table, then we can continue 

to look for a solution in the result table. It is useful to consider the fact that if we 

had previously solved, for example,  the goal p a r s e  ( s ,  3, X, 3 ,12) ,  then if we later en- 

counter  the goal p a r s e ( s , 3 , Y , 3 , 1 0 ) ,  we can also use the second table immediately:  

the way  in which the extreme positions are used ensures that the former  is more  gen- 

eral than the latter. The predicates for the maintenance of the goal table are defined 

in (13). 

in_tablel (Cat, P0, P, E0, E) • - (13) 

'GOAL_ITEM'(Cat_d,P0_d,P_d,E0_d,E_d), Z goal exists which is 

subsumes chk((Cat_d,P0_d,P_d), (Cat,P0,P)), Z more general and within 

smaller_equal(E0_d,E0), °h a larger interval 

smaller_equal (E, E_d). 

assert_tablel(Cat,PO,P,EO,E) :- assertz('GOAL_ITEM'(Cat,PO,P,EO,E)). 

The second table is represented by  the predicate 'RESULT_ITEM'. It is defined by  

unit-clauses that each represent an instantiated goal (i.e., a solution). Each time a result 

is found, the table is checked to see whether  that result is already available. If it is, 

the newer  result is ignored. If no (more general version of the) result exists, then the 

result is added  to the table. Moreover,  more specific results that may  have been pu t  

on the table previously are marked.  These results need not  be used anymore.  3 This is 

not strictly necessary but  is often useful because it decreases the size of the tables; in 

this approach,  tables are redundancy  free and hence minimal. Moreover,  no further  

work  will be done based on those results. Note  that result items do not  keep track 

of the extreme positions. This implies that in order  to see whether  a result i tem is 

applicable, we check whether  the interval covered by  the result i tem lies within the 

extreme positions of the current  goal. The predicates dealing with the result table are 

defined in (14). 

in_table2(Cat,P0,P,E0,E) "- 

clause('RESULT_ITEM'(Cat,P0,P),Ref), 

\+ 'REPLACED_ITEM'(Ref,_), 

smaller_equal(EO,PO), smaller_equal(P,E). 

(14) 

result exists, not 

replaced by general 

result 

within desired interval 

3 Note that such items are not removed, because in that case the item reference becomes available for 
later items, which is unsound. 
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assert_table2(Cat,P0,P):- 

( 'RESULT_ITEM'(Cat_d,P0_d,P_d), 

subsumes_chk((Cat_d,P0_d,P_d),(Cat,P0,P) 

-> true 

; assertz('RESULT_ITEM'(Cat,P0,P),Ref), 

mark_item('RESULT_ITEM'(Cat,P0,P),Ref) 

). 

% if result exists 

% which is more general 

then ok 

otherwise assert it, and 

mark more specific items 

mark_item(Cat,NewRef) "- 

(clause(Specific,_,Ref), 

\+ Ref=NewRef, 

subsumes_chk(Cat,Specific), 

assertz('REPLACED_ITEM'(Ref,NewRef)), 

fail 

; true 

). 

% item exists 

not the one just added 

and it's more specific 

then mark it 

% do this for all such 

% items 

The implementation uses a faster implementation of memorizating in which both 

goal items and result items are indexed by the functor of the category and the string 

positions. 

In the head-corner parser, parse-goals are memorized. Note that nothing would 

prevent us from memoing other predicates as well, but experience suggests that the 

cost of maintaining tables for the head_corner relation, for example, is (much) higher 

than the associated profit. The use of memorization for only the parse/5 goals implies 

that the memory requirements of the head-corner parser in terms of the number of 

items being recorded is much smaller than in ordinary chart parsers. Not only do 

we refrain from asserting so-called active items, but we also refrain from asserting 

inactive items for nonmaximal projections of heads. In practice the difference in space 

requirements can be enormous. This difference is a significant reason for the practical 

efficiency of the head-corner parser. 

3.2 The Occur Check 

It turns out that the use of tables defined in the previous subsection can lead to a 

problem with cyclic unifications. If we assume that Prolog's unification includes the 

occur check then no problem would arise. But since most versions of Prolog do not 

implement the occur check it is worthwhile investigating this potential problem. 

The problem arises because cyclic solutions can be constructed that would not have 

been constructed by ordinary SLD-resolution. Furthermore, these cyclic structures lead 

to practical problems because items containing such a cyclic structure may have to be 

put in the table. In SICStus Prolog, this results in a crash. 

An example may clarify the problem. Suppose we have a very simple program 

containing the following unit clause: 

x(A,B). 
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Furthermore suppose that in the course of the computation a goal of the form 

?- x(f(x) ,x) 

is attempted. This clearly succeeds. Furthermore an item of that form is added to the 

table. Later on it may be the case that a goal of the form 

7- x(Y,Y) 

is attempted. Clearly this is not a more specific goal than we solved before, so we 

need to solve this goal afresh. This succeeds too. Now we can continue by picking up 

a solution from the second table. However, if we pick the first solution then a cyclic 

term results. 

A possible approach to deal with this situation is to index the items of the second 

table with the item of the first table from which the solution was obtained. In other 

words, if you want to select a solution from the second table, it must not only be the 

case that the solution matches your goal, but also that the corresponding goal of the 

solution is more general than your current goal. This strategy works, but turns out to 

be considerably slower than the original version given above. The reason seems to be 

that the size of the second table is increased quite drastically, because solutions may 

now be added to the table more than once (for all goals that could give rise to that 

solution). 

An improvement of the head-corner parser using a goal-weakening technique of- 

ten eliminates this occur check problem. Goal weakening is discussed in the following 

subsection. 

3.3 Goal Weakening 

The insight behind goal weakening (or abstraction [Johnson and D6rre 1995]) in the 

context of memorization is that we may combine a number of slightly different goals 

into a single, more general, goal. Very often it is much cheaper to solve this single 

(but more general) goal than to solve each of the specific goals in turn. Moreover, 

the goal table will be smaller (both in terms of number of items, and the size of 

individual items), which can have a positive effect on the amount of memory and 

CPU-time required for the administration of the table. Clearly, one must be careful not 

to remove essential information from the goal (in the worst case, this may even lead 

to nontermination of otherwise well-behaved programs). 

Depending on the properties of a particular grammar, it may, for example, be 

worthwhile to restrict a given category to its syntactic features before attempting to 

solve the parse-goal of that category. Shieber's (1985) restriction operator can be used 

here. Thus we essentially throw some information away before an attempt is made to 

solve a (memorized) goal. For example, the category 

x(A, B, f (A, B), g(A,h(B, i (C)) ) ) 

may be weakened into: 

x(A,B,f (_,_) ,g(_,_)) 

If we assume that the predicate weaken/2 relates a term t to a weakened version tw, 

such that tw subsumes t, then (15) is the improved version of the parse predicate: 

parse_with_weakening (Cat, P0, P, E0, E) • - (15) 

weaken(Cat,WeakenedCat), 

parse(WeakenedCat,P0,P,E0,E), 

Cat=WeakenedCat. 
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Note that goal weakening is sound. An answer a to a weakened goal g is only 

considered if a and g unify. Also note that goal weakening is complete in the sense 

that for an answer a to a goal g there will always be an answer a t to the weakening 

of g such that a t subsumes a. 

For practical implementations the use of goal weakening can be extremely im- 

portant. It is my experience that a well-chosen goal-weakening operator may reduce 

parsing times by an order of magnitude. 

The goal-weakening technique can also be used to eliminate typical instances of the 

problems concerning the occur check (discussed in the previous subsection). Coming 

back to the example in the previous subsection, if our first goal 

x(f (x) ,x) 

were weakened into 

x(f  (_) ,_) 

then the problem would not occur. If we want to guarantee that no cyclic structures 

can be formed, then we would need to define goal weakening in such a way that no 

variable sharing occurs in the weakened goal. 

An important question is how to come up with a good goal-weakening operator. 

For the experiments discussed in the final section all goal-weakening operators were 

chosen by hand, based on small experiments and inspection of the goal table and item 

table. Even if goal weakening is reminiscent of Shieber's (1985) restriction operator, 

the rules of the game are quite different: in the case of goal weakening, as much infor- 

mation as possible is removed without risking nontermination of the parser, whereas 

in the case of Shieber's restriction operator, information is removed until the resulting 

parser terminates. For the current version of the grammar of OVIS, weakening the goal 

category in such a way that all information below a depth of 6 is replaced by fresh 

variables eliminates the problem caused by the absence of the occur check; moreover, 

this goal-weakening operator reduces parsing times substantially. In the latest version, 

we use different goal-weakening operators for each different functor. 

An interesting special case of goal weakening is constituted by a goal-weakening 

operator that ignores all feature constraints, and hence only leaves the functor for 

each goal category. In this case the administration of the goal table can be simplified 

considerably (the table consists of ground facts, hence no subsumption checks are 

required). This technique is used in the MiMo2 grammar and the Alvey NL Tools 

grammar, both discussed in Section 7. 

4. Compact Representation of Parse Trees 

Often a distinction is made between recognition and parsing. Recognition checks 

whether a given sentence can be generated by a grammar. Usually recognizers can be 

adapted to be able to recover the possible parse trees of that sentence (if any). 

In the context of Definite Clause Grammar this distinction is often blurred because 

it is possible to build up the parse tree as part of the complex nonterminal symbols. 

Thus the parse tree of a sentence may be constructed as a side effect of the recognition 

phase. If we are interested in logical forms rather than in parse trees, a similar trick 

may be used. The result of this, however, is that as early as the recognition phase, 

ambiguities will result in a (possibly exponential) increase of processing time. 

For this reason we will assume that parse trees are not built by the grammar, but 

rather are the responsibility of the parser. This allows the use of efficient packing 
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112:s-adv-s 

/ \  
46 s-np-vp 

/ \  
87 vp-vp-np-pp 

vp-v 121 125 

give22 

Figure 4 
Example of a partial derivation tree projected by a history item. 

techniques. The result of the parser will be a parse forest: a compact  representat ion 

of all possible parse trees rather than an enumerat ion  of all parse trees. 

The structure of the parse forest in the head-corner  parser is rather unusual,  and 

therefore we will take some time to explain it. Because the head-corner  parser  uses 

selective memorizat ion,  conventional  approaches to constructing parse forests (Billot 

and Lang 1989) are not  applicable. The head-corner  parser maintains a table of partial 

derivat ion trees, each of which represents a successful pa th  from a lexical head (or 

gap) up to a goal category. The table consisting of such partial parse trees is called the 

history table; its items are his tory  items. 

More specifically, each history i tem is a triple consisting of a result i tem reference, 

a rule name, and a list of triples. The rule name is always the name of a rule wi thout  

daughters  (i.e., a lexical entry or a gap): the (lexical) head. Each triple in the list of 

triples represents a local tree. It consists of the rule name, and two lists of result i tem 

references (representing the list of daughters  left of the head in reverse, and the list of 

daughters  right of the head). An example will clarify this. Suppose we have a history 

item: 

' HISTORY_ITEM ' ( 112, give22, 

[rule (vp_v, [] , [] ) , 

rule (s_np_vp, [87] , [] ) , 

rule (vp_vp_np_pp, [] , [121,125] ), 

rule (s_adv_s, [46] , [] )] ). 

(16) 

This i tem indicates that there is a possible derivat ion of the category defined in result 

i tem 112 of the form illustrated in Figure 4. In this figure, the labels of the interior 

nodes are rule names, and the labels of the leaves are references to result items. The 

head-corner  leaf is special: it is a reference to either a lexical entry or an epsilon rule. 

The root node  is special too: it has both  an associated rule name and a reference to a 

result item. The latter indicates how this partial derivat ion tree combines with other 

partial trees. 

The history table is a lexicalized tree substitution grammar,  in which all nodes 

(except substitution nodes) are associated with a rule identifier (of the original gram- 

mar). This g rammar  derives exactly all derivat ion trees of the input. 4 As an example, 

4 The tree substitution grammar is lexicalized in the sense that each of the trees has an associated anchor, 
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nt5:I nt0:a nt l :4 nt2:3 

/ \  r 
ntO m a n  h o m e  

nt3:6 

/ \  
at nt2 

nt4:5 nt6:l 

/\ /\ 
4 nt3 nt5 7 

/\ /\ 
nt0 m a n  see nt4 

nt6:2 

/ \  
1 nt3 

/ \  
nt5 7 

/ \  
see n t l  

Figure 5 
Tree substitution grammar that derives each of the two derivation trees of the sentence I see a 

man at home, for the grammar of Billot and Lang (1989). The start symbol of this grammar is 
nt6. Note that all nodes, except for substitution nodes, are associated with a rule (or lexical 
entry) of the original grammar. Root nodes have a nonterminal symbol before the colon, and 
the corresponding rule identifier after the colon. The set of derived trees for this tree 
substitution grammar equals the set of derivation trees of the parse (ignoring the nonterminal 
symbols of the tree substitution grammar). 

consider the g r a m m a r  used by  Tomita (1987) and  Billot and Lang (1989), g iven here 

in (17) and  (18). 

(I) s --> np, vp. (2) s --> s, pp. (3) np --> n. 

(4) np --> det, n. (5) np --> rip, pp. (6) pp --> prep, rip. 

(7) vp --> v, rip. 

(17) 

n --> ['I'] . n --> [man] . v --> [see] . (18) 

prep--> [at]. det--> [a]. n--> [home]. 

The sentence I see a m a n  at home  has two derivations,  according to this grammar .  The 

lexicalized tree substi tut ion g r a m m a r  in Figure 5, which is constructed by  the head-  

corner parser,  derives exactly these two derivations. 

Note  that the i tem references are used in the same manne r  as the compute r  gener- 

ated names  of nonterminals  in the approach  of Billot and  Lang (1989). Because we  use 

chunks of parse  trees, less packing  is possible than in their approach.  Correspondingly,  

the theoretical worst-case space requi rements  are also worse.  In practice, however ,  this 

does not  seem to be problematic:  in our  experiments ,  the size of the history table is 

a lways  m u c h  smaller  than the size of the other tables (this is expected because the 

latter tables have  to record complex category information).  

Let us now look at h o w  the parser  of the previous  section can be adap ted  to be able 

to assert  his tory items. First, we  add  an (output-) a rgumen t  to the p a r s e  predicate.  This 

sixth a rgumen t  is the reference to the result  i tem that  was  actually used. The predicates 

to parse a list of daughters  are a u g m e n t e d  with a list of such references. This enables 

the construct ion of a te rm for each local tree in the head_corner predicate  consisting 

of the name  of the rule that was  appl ied and the list of references of the result i tems 

which is a pointer to either a lexical entry or a gap. 
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used for the left and right daughters of that rule. Such a local tree representation is 

an element of a list that is maintained for each lexical head upward to its goal. Such 

a list thus represents in a bottom-up fashion all rules and result items that were used 

to show that that lexical entry indeed was a head-corner of the goal. If a parse goal 

has been solved then this list containing the history information is asserted in a new 

kind of table: the 'HISTORY_ITEM'/3 table. 5 

We already argued above that parse trees should not be explicitly defined in the 

grammar. Logical forms often implicitly represent the derivational history of a cate- 

gory. Therefore, the common use of logical forms as part of the categories will imply 

that you will hardly ever find two different analyses for a single category, because two 

different analyses will also have two different logical forms. Therefore, no packing is 

possible and the recognizer will behave as if it is enumerating all parse trees. The 

solution to this problem is to delay the evaluation of semantic constraints. During the 

first phase, all constraints referring to logical forms are ignored. Only if a parse tree 

is recovered from the parse forest we add the logical form constraints. This is similar 

to the approach worked out in CLE (Alshawi 1992). 

This approach may lead to a situation in which the second phase actually filters 

out some otherwise possible derivations, in case the construction of logical forms is 

not compositional in the appropriate sense. In such cases, the first phase may be said 

to be unsound in that it allows ungrammatical derivations. The first phase combined 

with the second phase is of course still sound. Furthermore, if this situation arose very 

often, then the first phase would tend to be useless, and all work would have to be 

done during the recovery phase. The present architecture of the head-corner parser 

embodies the assumption that such cases are rare, and that the construction of logical 

forms is (grosso modo) compositional. 

The distinction between semantic and syntactic information is compiled into the 

grammar rules on the basis of a user declaration. We simply assume that in the first 

phase the parser only refers to syntactic information, whereas in the second phase 

both syntactic and semantic information is taken into account. 

If we assume that the grammar constructs logical forms, then it is not clear that we 

are interested in parse trees at all. A simplified version of the recover predicate may 

be defined in which we only recover the semantic information of the root category, 

but in which we do not build parse trees. The simplified version may be regarded 

as the run-time version, whereas parse trees will still be very useful for grammar 

development. 

5. Parsing Word-Graphs with Probabilities 

The head-corner parser is one of the parsers developed within the NWO Priority 

Programme on Language and Speech Technology. In this program a spoken dialog 

system is developed for public transportation information (Boves et al. 1995). 

In this system the input for the parser is not a simple list of words, as we have 

assumed up to now, but rather a word-graph: a directed, acyclic graph where the 

states are points in time and the edges are labeled with word hypotheses and their 

corresponding acoustic score. Thus, such word-graphs are acyclic weighted finite-state 

automata. 

In Lang (1989) a framework for processing ill-formed input is described in which 

5 A complication is needed for those cases where items are removed later because a more general item 

has been found. 
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certain c om mon  errors are mode led  as (weighted) finite-state transducers. The compo-  

sition of an input  sentence with these transducers produces  a (weighted) finite-state 

automaton,  which is then input  for the parser. In such an approach,  the need to gen- 

eralize from input  strings to input  finite-state automata is also clear. 

The generalization from strings to weighted acyclic finite-state automata intro- 

duces essentially two complications: we cannot use string indices anymore  and we 

need to keep track of the acoustic scores of the words  used in a certain derivation. 

5.1 From String Positions to State Names 

Parsing on the basis of a finite-state au tomaton  can be seen as the computat ion of 

the intersection of that au tomaton  with the grammar. If the definite clause grammar  

is off-line parsable, and if the finite-state au tomaton  is acyclic, then this computat ion 

can be guaranteed to terminate (van Noord  1995). This is obvious because an acyclic 

finite-state automaton defines a finite number  of strings. More importantly, existing 

techniques for parsing based on strings can be generalized easily by using the names 

of states in the au tomaton  instead of the usual string indices. 

In the head-corner  parser, this leads to an alternative to the predicate smal ler_  

equa l /2 .  Rather than a simple integer comparison,  we now need to check that a 

derivation from P0 to P can be extended to a derivation from E0 to E by  checking that 

there are paths in the word-graph  from E0 to P0 and from P to E. 

The predicate c o n n e c t i o n / 2  is true if there is a path in the word-graph  from the 

first a rgument  to the second argument.  It is assumed that state names are integers; 

to rule out cyclic word-graphs  we also require that, for all transitions from P0 to P, it 

is the case that P0 < P. Transitions in the word-graph  are represented by  clauses of 

the form wordg raph : t r ans  (P0, Sym, P, Score) ,  which indicate that there is a transition 

from state P0 to P with symbol Sym and acoustic score Score. The connection predicate 

can be specified simply as the reflexive and transitive closure of the transition relation 

between states: 

connect ion (A, A) . (19) 

connection(AO,A) "- 

wordgraph : trans (AO, _, A i, _), 

connection (AI, A). 

The implementat ion allows for the possibility that state names are not  instantiated (as 

required by the treatment of gaps). Moreover  it uses memorizat ion,  and it ensures that 

the predicate succeeds at most  once: 

c o n n e c t i o n ( A , B ) : -  

( var(A) -> true 

; var(B) -> true 

; A=:=B -> true 

; B < A -> fail 

; ok_conn(A,B) -> true 

; fail_conn(A,B) -> fail 

; wordgraph:trans(A,_,X,_), 

connection(X,B) 

% word-graphs are acyclic 

-> assertz(ok_conn(A,B)) 

(20) 
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; assertz(fail_conn(A,B)), 

fail 

. 

A somewhat different approach that may turn out to be more efficient is to use the 

ordinary comparison operator that we used in the original definition of the head-corner 

parser. The possible extra cost of allowing impossible partial analyses is worthwhile 

if the more precise check would be more expensive. If, for typical input word-graphs, 

the number of transitions per state is high (such that almost all pairs of states are 

connected), then this may be an option. 

5.2 Accounting for Word-Graph Scores 

To account for the acoustic score of a derivation (defined as the sum of the acoustic 

scores associated with all transitions from the word-graph involved in the derivation), 

we assume that the predicate l ex i ca l_ana lys i s  represents the acoustic score of the 

piece of the word-graph that it covers by an extra argument. During the first phase, 

acoustic scores are ignored. During the second phase (when a particular derivation is 

constructed), the acoustic scores are combined. 

6. Head-Corner Parsing and Robustness 

Certain approaches towards robust parsing use the partial results of the parser. It is 

assumed in such approaches that even if no full parse for the input could be con- 

structed, the discovery of other phrases in the input might still be useful. It is also 

often assumed that a bottom-up parser is essential for such approaches to work: parsers 

that use top-down information (such as the head-corner parser) may fail to recognize 

relevant subparses in the context of an ungrammaticality. 

In the application for which the head-corner parser was developed, robust pro- 

cessing is essential. In a spoken dialogue system it is often impossible to parse a full 

sentence, but in such cases the recognition of other phrases, such as temporal expres- 

sions, might still be very useful. Therefore, a robust processing technique that collects 

the remnants of the parsing process in a meaningful way seems desirable. 

In this subsection, we show how the head-corner parser can be used in such 

circumstances. The parser is modified in such a way that it finds all derivations of the 

start symbol anywhere in the input. Furthermore, the start symbol should be defined in 

such a way that it includes all categories considered useful for the application. 

6.1 Underspecification of the Positions 

Normally the head-corner parser will be called as follows, for example: 

?- parse(s(Sem) ,0,12) . 

indicating that we want to parse a sentence from position zero to twelve with cate- 

gory s (Sere) (a sentence with a semantic representation that is yet to be discovered). 

Suppose, however, that a specific robustness module is interested in all maximal pro- 

jections anywhere in the sentence. Such a maximal projection may be represented by 

a term xp (Sere). Furthermore there may be unary grammar rules rewriting such an xp 

into appropriate categories, for example: 

xp(Sem) --> np(Sem), xp(Sem) --> s(Sem). (21) 

xp(Sem) --> pp(Sem), xp(Sem) --> advp(Sem). 
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If we want to recognize all maximal projections at all positions in the input, then we 

can simply give the following parse-goah 

?- parse(xp(Sem) .... ). (22) 

Now one might expect that such an underspecified goal will dramatically slow down 

the head-corner parser, but this turns out to be false. In actual fact we have experienced 

an increase of efficiency using underspecification. This can only be understood in the 

light of the use of memorization. Even though we now have a much more general 

goal, the number of different goals that we need to solve is much smaller. 

Also note that even though the first call to the parse predicate has variable extreme 

positions, this does not imply that all power of top-down prediction is lost by this 

move; recursive calls to the parse predicate may still have instantiated left and /or  right 

extreme positions. The same applies with even more force for top-down information 

on categories. 

6.2 The Robustness Component in OVIS 

In an attempt to obtain a robust natural language understanding component, we have 

experimented in OVIS with the techniques mentioned in the preceding paragraph. The 

top category (start symbol) of the OVIS grammar is defined as the category max (gem). 

Moreover there are unary rules such as max(gem) --* np(Sem,.. ) for NP, S, PP, AdvP. 

In the first phase, the parser finds all occurrences of the top category in the input 

word-graph. Thus, we obtain items for all possible maximal projections anywhere in 

the input graph. In the second phase, the robustness component selects a sequence 

of such maximal projections. The robustness procedure consists of a best-first search 

from the beginning of the graph to the end of the graph. A path in the input graph 

can be constructed by taking steps of two types. To move from position P to Q you 

can either: 

• use a maximal projection from P to Q (as constructed by the parser), or 

• use a transition from P to Q. In this case we say that we skip that 

transition. 

In order to compare paths in the best-first search method, we have experimented 

with score functions that include some or all of the following factors: 

• the number of skips. We prefer paths with a smaller number of such 

skips. 

• the number of maximal projections. We prefer paths with a smaller 

number of such projections. 

• the combined acoustic score as defined in the word-graph. 

• the appropriateness of the semantic representation given the dialogue 

context 

• the bigram score. 

If bigram scores are not included, then this best-first search method can be im- 

plemented efficiently because for each state in the word-graph we only have to keep 

track of the best path to that state. 
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The resulting best path in general consists of a number of maximal projections. In 

the OVIS application, these are often simple time or place expressions. The pragmatic 

module is able to deal with such unconnected pieces of information and will perform 

better if given such partial parse results. 

To evaluate the appropriate combination of the factors determining the scoring 

function, and to evaluate this approach with respect to other approaches, we use a 

corpus of word-graphs for which we know the corresponding actual utterances. We 

compare the sentence associated with the best path in the word-graph with the sen- 

tence that was actually spoken. Clearly, the more often the robustness component 

uses the information that was actually uttered, the more confidence we have in that 

component. This notion of word accuracy is an approximation of semantic accuracy 

(or "concept accuracy"). The string comparison is defined by the minimal number of 

deletions and insertions that is required to turn the first string into the second (Lev- 

enshtein distance), although it may be worthwhile to investigate other measures. For 

example, it seems likely that for our application it is much less problematic to "miss" 

information than to "hallucinate". This could be formalized by a scoring function in 

which insertion (into analysis result) is cheaper than deletion. 

Currently, the best results are obtained with a scoring function in which bigram 

scores, acoustic scores, and the number of skips are included. We have also imple- 

mented a version of the system in which acoustic scores and bigram scores are used 

to select the best path through the word-graph. This path is then sent to the parser 

and the robustness component. In this "best-l-mode" the system performs somewhat 

worse in terms of word accuracy, but much faster, as seen in the experiments in the 

next section. 

7. Practical Experience 

There does not exist a generally agreed-upon method to measure the efficiency of 

parsers for grammars of the kind we assume here, i.e., constraint-based grammars for 

natural language understanding. Therefore, I will present the results of the parser for 

the current version of the OVIS grammar in comparison with a number of other parsers 

that have been developed in the same project (by my colleagues and myself). Moreover, 

a similar experiment was performed with two other grammars: the English MiMo2 

grammar (van Noord et al. 1991), and the English Alvey NL Tools grammar (Grover, 

Carroll, and Briscoe 1993). 6 It should be clear that the results to be presented should 

not be taken as a formal evaluation, but are presented solely to give an impression 

of the practical feasibility of the parser, at least for its present purpose. The following 

results should be understood with these reservations in mind. 

7.1 Other Parsers 

The head-corner parser was compared with a number of other parsers. The parsers 

are described in further detail in van Noord, Bouma, Koeling, and Nederhof (1996) 

6 The material used to perform the experiments with the MiMo2 grammar and the Alvey NL Tools 
grammar, including several versions of the head-corner parser, is available via anonymous ftp at: 
f t p  : / / f t p .  l e t .  rug. nllpublprolog-app/CL97/and the world-wide-web at: 
http://www, l e t .  rug. nl/~vannoord/CL97/. The material is ready to be plugged into the Hdrug 
environment available from the same site. 
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and van Noord,  Nederhof,  Koeling, and Bouma (1996). The last two parsers of the 

following list were implemented  by  Mark-Jan Nederhof.  

• lc .  Left-corner parser. This parser is der ived from the head-corner  parser. 

It therefore uses many  of the ideas presented above. Most importantly, it 

uses selective memoriza t ion  with goal weakening and packing. The 

parser is closely related to the BUP parser (Matsumoto et al. 1983). 

• b u - i n a c t i v e .  Inactive chart parser. This is a bot tom-up parser that 

records only inactive edges. It uses packing. It uses a precompiled 

version of the grammar  in which no empty  product ions  are present. 

• b u - e a r l e y .  Bottom-up Earley parser. This is a bot tom-up chart parser 

that records both active and inactive items. It operates in two phases and 

uses packing. It uses a precompiled version of the grammar  in which no 

empty  product ions  are present. 

• b u - a c t i v e .  Bottom-up Earley parser wi thout  packing. This is a chart 

parser that constructs only active items (except for categories that unify 

with the top category). It uses a precompiled version of the grammar  in 

which no empty  product ions  are present. 

• l r .  LR parser. This is an experimental  implementat ion of a generalization 

for Definite Clause Grammars  of the parser described in Nederhof  and 

Satta (1996). It proceeds in a single phase and does not  use packing. It 

uses a table to maintain partial analyses. It was not  possible to per form 

all the experiments with this parser due  to m e m o r y  problems during the 

construction of the LR table. 

Note that we have exper imented with a number  of different versions of each of 

these parsers. We will report  only on the most  efficient version. The experiments  were 

per formed on a 125Mhz HP-UX 735 machine with 240 Megabytes of memory.  Timings 

measure CPU-time and should be independent  of the load on the machine. 7 

7.2 Exper iment  1: OVIS  

The OVIS grammar  (for Dutch) contains about  1,400 lexical entries (many of which are 

station and city names) and 66 rules (a substantial fraction of which are concerned with 

time and date expressions), including 7 epsilon rules. The most  impor tant  epsilon rule 

is part  of a gap-threading implementat ion of verb-second. The grammar  is documented  

in detail in van Noord,  Nederhof,  Koeling, and Bouma (1996). The head-corner  table 

contains 128 pairs, the lexical head-corner  table contains 93 pairs, the gap-head-corner  

table contains 14 pairs. The left-corner table contains 156 pairs, the lexical left-corner 

table contains 114 pairs, the gap-left-corner table contains 20 pairs. The precompiled 

grammar,  which is used by  the chart parsers, contains 92 rules. 

The input  for the parser consists of a test set of 5,000 word-graphs,  randomly  taken 

from a corpus of more than 25,000 word-graphs.  These word-graphs  are the latest 

word-graphs  that were available to us; they are "real" ou tput  of the current  version of 

the speech recognizer as developed by  our  project partners.  In this application, typical 

7 Experiments suggest that the load on the machine in fact does influence the timings somewhat. 
However, the experiments were performed at times when the load of the machine was low. It is 
believed, therefore, that no such artifacts are present in the numbers given here. 
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Table 1 
The left-most table gives information concerning the 
number of transitions per word-graph of the test set for 
the OVIS grammar. As can be seen from this table, more 
than half of the corpus consists of word-graphs with at 
most five transitions. In the right-most table, the number 
of words per utterance is given. Many utterances consists 
of less than five words. 

Number of Number of Number of Number of 
Transitions Word-Graphs Words Utterances 

0-5 2,825 1-2 2,465 
6-10 850 3-4 1,448 

11-15 408 5-6 543 
16-20 246 7-8 319 
21-30 237 9-10 118 
31-40 146 11-12 56 
41-50 83 13-14 26 
51-75 112 15-16 20 
76-100 44 17-18 5 

101-150 36 
151-200 12 

263 1 

utterances are short. As a consequence,  the typical size of word-graphs  is rather small 

too, as can be seen in Table 1. 

We report  on three different experiments  with the OVIS grammar  and these word-  

graphs. In the first experiment,  the system runs in best- l -mode:  the best pa th  is selected 

from the word-graph  using bigram scores and the acoustic scores (present in the word-  

graph). This best path is then sent to the parser and robustness component .  In the 

second experiment,  the parser is given the utterance as it was actually spoken (to 

simulate a situation in which speech recognition is perfect). In the third experiment,  

the parser takes the full word-graph  as its input. The results are then passed on to 

the robustness component .  As explained in the previous section on robustness, each 

of the parsers finds all derivations of the start symbol anywhere  in the input  (this is 

the case in each of the OVIS experiments).  

For the current  version of the OVIS system, parsing on the basis of the best pa th  in 

the word-graph  gives results in terms of word  accuracy that are similar to the results 

obtained with full word-graphs.  Results for concept accuracy are not  yet  available. 

Details can be found in van Noord,  Bouma, Koeling, and Nederhof  (1996). 

7.2.1 Parsing Best Path Only. In Table 2, the CPU-time requirements  and the maxi- 

m u m  space requirements  of the different parsers are listed. In the table we list, respec- 

tively, the total number  of milliseconds CPU-time required for all 5,000 word-graphs  

(timings include lexical lookup, parsing, and the robustness component) ,  the average 

number  of milliseconds per word-graph,  and the max imum number  of milliseconds 

for a word-graph.  The final co lumn lists the m ax im u m  amount  of space requirements  

(per word-graph,  in Kbytes). 8 

8 These sizes are obtained us ing  the SICStus prolog built- in predicate s t a t i s t i c s  ( p r o g r a m ~ p a c e , X ) .  

This only  measu re s  the size of the internal database,  bu t  not  the size of the stacks. The size of stacks 
has  never  been  a problem for any  of the parsers;  the  size of the  internal  database  has  occasionally led 
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Table 2 
Total and average CPU-time and maximal space requirements for a test set of 5,000 best 
paths through word-graphs (OVIS grammar). 

Parser Total (msec) msec/Sentence Maximum Maximum Space 

hc 169,370 34 530 163 
lc 180,160 36 530 171 
bu-active 291,870 58 4,220 1,627 
bu-inactive 545,060 109 13,050 784 
bu-earley 961,760 192 24,470 2,526 
lr 1,088,940 218 416,000 4,412 

Table 3 
Total and average CPU-time and maximum space requirements for a test set of 5,000 
utterances (OVIS grammar). 

Parser Total (msec) msec/Sentence Maximum Maximum Space 

hc 126,930 25 510 137 
lc 137,090 27 490 174 
bu-active 257,390 51 4,030 1,438 
bu-inactive 546,650 109 15,170 1,056 
bu-earley 934,810 187 25,490 3,558 
lr 957,980 192 417,580 4,435 

Table 4 
Total and average CPU-time and maximum space requirements for a test set of 5,000 
word-graphs (OVIS grammar). 

Parser Total (msec) msec/Word-Graph Maximum Maximum Space 

lc 410,670 82 15,360 4,455 
hc 435,320 87 16,230 4,174 

7.2.2 Parsing Sentences. The differences in CPU-time for the corpus of 5,000 word-  

graphs are similar to differences we have found for other test sets. The results are also 

very  similar to the results we obtain if we parse the utterances actually spoken. Table 3 

lists the results of parsing the set of 5,000 utterances from which the word-graphs  were 

derived. 

7.2.3 Parsing Word-Graphs. Obviously, parsing word-graphs  is more difficult than 

parsing only the best pa th  through a word-graph,  or parsing an ordinary sentence. 

In Table 4, we list the results for the same set of 5,000 word-graphs.  This exper iment  

could only be per formed for the head-corner  and the left-corner parser. The other 

parsers ran into m e m o r y  problems for some very  large word-graphs.  

In order  to compare  the other parsers too, I per formed the exper iment  with a 

t ime-out of 5,000 msec (the m e m o r y  problems only occur for word-graphs  that take 

longer to process). In Table 5 the percentage of word-graphs  that can be treated within 

a certain amount  of CPU-time are listed. 

From the experiments with the OVIS grammar  and corpus, it can be concluded 

to problems for the bottom-up chart parsers. 
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Table 5 
Percentage of word-graphs that can be treated within time limit (OVIS grammar). 

Parser 500 1,000 2,000 3,000 4,000 5,000 Time-Outs 

lc 97.72 99.28 99.78 99.92 99.92 99.92 4 
hc 97.42 98.94 99.60 99.84 99.92 99.92 4 
lr 91.44 94.42 96.30 96.98 97.34 97.70 115 
bu-active 91.84 94.76 96.04 96.84 97.30 97.60 120 
bu-inactive 82.36 88.64 92.24 94.10 95.14 95.86 207 
bu-earley 77.10 84.26 89.04 91.42 92.64 93.50 325 

that the head-corner and left-corner parsers (implemented with selective memorization 

and goal weakening) are much more efficient than the other parsers. In the case of 

word-graphs, the left-corner parser is about 5% faster than the head-corner parser; for 

strings, the head-corner parser is about 6% to 8% faster than the left-corner parser. 

7.3 Experiment 2:MiMo2 

Another experiment was carried out for the English grammar of the MiMo2 system. 

This grammar is a unification-based grammar that is compiled into a DCG. The gram- 

mar contains 525 lexical entries, 63 rules including 13 gaps. The head-corner relation 

contains 33 pairs and the lexical head-corner relation contains 18 pairs. The left-corner 

parser runs into hidden left-recursion problems on the original grammar, so it uses 

a version of the grammar in which left-most gaps are compiled out. This compiled 

grammar has 69 rules. The left-corner relation contains 80 pairs; the lexical left-corner 

relation contains 62 pairs. As a result, the left-corner parser only hypothesizes gaps 

for non-left-most daughters. Because the grammar never allows gaps as head, the 

head-corner parser can be optimized in a similar fashion. Both the left-corner and 

head-corner parser use a goal-weakening operator that only leaves the functor sym- 

bol. This simplifies the way in which the goal table is maintained. 

For this experiment we have no notion of typical input, but instead made up a set 

of 25 sentences of various lengths and levels of difficulty, with a total of 338 readings. 

In order to be able to complete the experiment, a time-out of 60 seconds of CPU-time 

was used. Timings include lexical lookup and parse tree recovery. 

The original parser implemented in the MiMo2 system (a left-corner parser with- 

out packing) took 294 seconds of CPU-time to complete the experiment (with three 

time-outs). Because the test environment was (only slightly) different, we have indi- 

cated the latter results in italics. Average CPU-time is only given for those parsers 

that completed each of the sentences within the time limit. The results are given in 

Table 6. 

The bottom-up active chart parser performs better on smaller sentences with a 

small number of readings. For longer and more ambiguous sentences, the head-corner 

parser is (much) more efficient. The other parsers are consistently much less efficient. 

7.4 Experiment 3: Alvey NL Tools 

A final set of experiments was performed for the Alvey NL Tools grammar (Grover, 

Carroll, and Briscoe 1993), similar to the experiments discussed in Carroll (1994). For 

a longer description of the grammar and the test sets we refer the reader to this 

publication. The grammar contains 2,363 lexical entries, and 780 rules (8 of which 

are gaps). The left-corner relation contains 440 pairs; the lexical left-corner relation 
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Table 6 

Total and average CPU-time and maximum space requirements for a set of 25 sentences 
(MiMo2 grammar). Italicized items are offered for cautious comparison. 

Parser Total (msec) msec/Sentence Maximum Space Time-Outs 

hc 52,670 2,107 2,062 0 
bu-active 52,990 2,120 30,392 0 
lc 109,750 4,390 8,570 0 
mimo2-lc 294,000 3 

bu-earley 439,050 12,910 4 
bu-inactive 498,610 7,236 5 

Table 7 

Total and average CPU-time and maximum space requirements for a set 
of 129 short sentences (Alvey NL Tools grammar). Italicized items are 
offered for cautious comparison. 

Parser msec msec/Sentence Maximum Kbytes 

bu-active 18250 141 1276 
lc 21900 170 137 
Carroll BU-LC 21500 167 

hc (lc mode) 23690 184 165 
bu-earley 27670 214 758 
hc 68880 534 140 
bu-inactive 83690 649 170 

contains 254 pairs. No gaps  are possible as left-most e lements  of the r ight-hand side 

of a rule. 

To use the head-corner  parser, it mus t  be de te rmined  for each of the rules which  

e lement  on the r ight-hand side consti tutes the head  of the rule. The head-corner  re- 

lation contains 352 pairs; the lexical head-corner  relation contains 180 pairs. We also 

repor t  on exper iments  in which, for each rule, the left-most m e m b e r  of the r ight-hand 

side was  selected as the head.  The goal -weakening opera tor  used  for the left-corner 

and head-corner  parser  r emoves  all features (only leaving the functor symbol  of each 

category); again this simplifies the main tenance  of the goal table considerably. 

The bo t tom-up  chart  parsers  use a version of the g r a m m a r  in which all epsilon 

rules are compi led  out. The result ing g r a m m a r  has 1,015 rules. 

The first test set consists of 129 short  sentences (mean length 6.7 words).  Our  results 

were  obtained wi th  a newer  version of the Alvey NL Tools grammar .  In Table 7 we  

list the results for the same g r a m m a r  and test set for Carroll 's  bo t tom-up  left-corner 

parser  (BU-LC). Carroll  pe r fo rmed  this exper iment  on a SUN UltraSparc 1/140. It was  

es t imated by  Carroll and  the author  that this machine  is about  1.62 t imes faster than 

the HP-UX 735 on which the other exper iments  were  per formed.  9 In Table 7, we  have  

mult ipl ied the 13.3 seconds of CPU-t ime (obtained by  Carroll) wi th  this factor in order  

to compare  his results wi th  our  results. Clearly, these number s  should be taken with  

extreme caution, because m a n y  factors in the test env i ronment  differ (hardware,  LISP 

versus  Prolog). For this reason we use italics in Table 7. 

The second test set consists of 100 longer and m u c h  more  complex sentences. The 

length of the sentences is distr ibuted uni formly  be tween  13 and  30 words  (sentences 

9 The SPECINT92 figures for the Ultra 1/140 and HP 735/125 confirm this: 215 and 136 respectively. 
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Table 8 
Total and average CPU-time and maximum space requirements for set of 
100 longer sentences (Alvey NL Tools grammar). Italicized items are 
offered for cautious comparison. 

Parser msec msec/Sentence Maximum Kbytes 

lc 195,850 1,959 
hc (lc mode) 216,180 2,162 
Carroll BU-LC 333,000 3,330 
bu-earley 1,219,120 12,191 
hc 3,053,910 30,539 
bu-inactive 3,578,370 35,784 
bu-active >> 

10,955 
10,969 

18,232 
7,915 

16,936 
> 65,000 

created by  Carroll). Many  of the sentences have many  parses: the max imum number  

of parses is 2,736 for one 29-word sentence. Average number  of readings is about  100 

readings per  sentence. 

Again, we list the results Carroll obtained with the BU-LC parser. It took 205.7 

seconds on the SUN UltraSparc 1/140.1° The bot tom-up active chart parser ran into 

m emory  problems for some very  ambiguous  sentences and was very  slow on m an y  

of the other sentences (due to the lack of packing). The results are summar ized  in 

Table 8. 

The implementat ion of the left-corner parser based on selective memoriza t ion  and 

goal weakening seems to be substantially more efficient than the chart-based imple- 

mentat ion of Carroll. The head-corner  parser running in left-corner mode  is almost 

as fast as this specialized left-corner parser. This suggests that the use of selective 

memoriza t ion  with goal weakening is on the right track. 

From these experiments,  it can be concluded that the head-corner  parser is not  

suitable for the Alvey NL Tools grammar.  The reason seems to be that for this gram- 

mar the amount  of top-down information available through the head-corner  table is 

of limited value--typical ly,  too many  different lexical head-corners  are available for 

parsing a given goal category. For example,  for parsing a sentence, possible head- 

corners include auxiliaries, verbs, adverbs, complementizers ,  pronouns,  prepositions, 

determiners,  nouns,  and conjunctions. (In contrast, in the MiMo2 grammar,  only verbs 

can function as the head-corners of sentences.) As a result, the prediction step intro- 

duces too much  nondeterminism.  A related reason for the poor  performance for this 

grammar  might  be the large amount  of lexical ambiguity. The grammar  and lexicon 

used in the exper iment  is compiled from a compact  user notation. In the compiled for- 

mat, all disjunctions are spelled out in different rules and lexical entries. As a result, 

many  words  have a large number  of (only slightly different) readings. It m ay  be that 

the head-corner  parser is less suitable in such circumstances. This could also explain 

the fact that the head-corner  parser performs better  on strings then on word-graphs:  

in many  respects the generalization to word-graphs  is similar to an increase in lexical 

ambiguity. This suggests that the design of the head-corner  parser could be improved  

in the prediction step. 

10 Note that Carroll reports on recognition times only, whereas our results include the construction of all 
individual parse trees. For this experiment the left-corner parser used about 163 seconds on 
recognition. In the recognition phase, however, the parser ignores a number of syntactic features, 
therefore, this number cannot be compared fairly with Carroll's number either. 
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