
An Efficient Implementation of the Synchronization
Likelihood Algorithm for Functional Connectivity

Francisco Rosales • Antonio Garcia-Dopico •

Ricardo Bajo • Angel Nevado

Abstract Measures of functional connectivity are com-

monly employed in neuroimaging research. Among the

most popular measures is the Synchronization Likelihood

which provides a non-linear estimate of the statistical

dependencies between the activity time courses of different

brain areas. One aspect which has limited a wider use of

this algorithm is the fact that it is very computationally and

memory demanding. In the present work we propose new

implementations and parallelizations of the Synchronization

Likelihood algorithm with significantly better performance

both in time and in memory use. As a result both the amount

of required computational time is reduced by 3 orders of

magnitude and the amount of memory needed for calcu-

lations is reduced by 2 orders of magnitude. This allows

performing analyses that were not feasible before from a

computational standpoint.

Keywords Functional connectivity • Synchronization

likelihood • Implementation • Parallelization •

OpenMP • GPU

Introduction

Two notions coexist in brain functioning: segregation
and integration. The functional segregation of informa-
tion among distinct local areas (differing in anatomy and
physiology) contrasts with its global integration during
perception and behavior (Tononi et al. 1994).

In a recent review (Singer 2013), the brain is defined as a
"complex, self-organised system, in which principles of dis-
tributed, parallel processing coexist with serial operations
within highly interconnected networks".

Functional connectivity (FC) measures resulting from
calculating the statistical dependencies among the activity
time-course of different brain regions (Friston 1994) are
typically obtained from neuroimaging recordings to provide
an index of how brain regions are coordinated to sup-
port higher cognitive functions. Long range synchronization
between signals originated in relatively distant neuronal
populations have been proposed as the mechanism for com-
municating and integrating the information in the brain
(Várela et al. 2001; Fries 2005). It should be noted that
FC is a different concept to both anatomical and effective
connectivity (Friston 1994; Niso et al. 2013). Anatomi-
cal connectivity refers to the existence of tracts or fibres
linking the brain areas. The term effective connectivity is
used to convey that one area is directly influencing the
other.

FC is considered to be an essential "tool" for the study of
both healthy and pathological brain function (Singer 1999;
Várela et al. 2001; Buzsáki and Draguhn 2004). There is

increasing evidence of differences in FC between patients
and control groups in a large number of condition such as
schizophrenia, autism and Alzheimer disease (Singer 2013;
Guggisberg et al. 2008; Stam et al. 2009; Bajo et al. 2010;
Castellanos et al. 2010).

Many FC measures have their roots on dynamical sys-
tems or information theory and can be classified as reflect-
ing either generalized or phase synchronization (Pereda
et al. 2005). Among the generalized synchronization
indexes, the Synchronization Likelihood (SL) (Stam and
Van Dijk 2002) is arguably the most popular measure for
neurophysiological data (Pijnenburg et al. 2004; Ahmadlou
et al. 2012; Bulduetal. 2011; Montez et al. 2006).

The SL provides a normalized estimate of the dynami-
cal interdependencies between two simultaneously recorded
time series. It is closely related to the concept of general-
ized mutual information (Buzug et al. 1994) and relies on
the detection of simultaneously occurring patterns in the
two time series, which can be complex and widely different
across signals. Besides, it is robust and sensitive to nonlinear
dependencies.

Two important limitations for the practical use of
the SL are its computational and memory costs of cur-
rent implementations. Although references in the liter-
ature to the computational demands have been soft-
ening over time, ("computationally prohibitive" (Stam
et al. 2003), "very computationally demanding" (David
et al. 2004), "computationally demanding" (Montez et al.
2006) or "not computationally efficient" (Acharya et al.
2010)) probably alongside the progress in computa-
tional capabilities of computers, the limitation is still
serious.

In the present work we present three new very efficient
implementations of the SL algorithm: a sequential version
and two parallelizations based on the OpenMP and CUDA
architectures.

Methods

The Synchronization Likelihood Algorithm

The Synchronization Likelihood (SL) measures the gener-

alized synchronization between two signals. It is sensitive

to whether when one signal repeats its pattern of activity

other signals tend to repeat their own pattern at the same

times.

The SL algorithm uses the observation time-series of

dynamical systems in order to measure the degree of syn-

chronization or coupling between each pair of signals.

When applied to more than two signals, all calculations

should be done simultaneously in order to reduce the num-

ber of redundant computations.

Phase one: Construction of the Time-delay Embedding

Vectors

Typically we do not have access to all the variables that
characterize a dynamical system but rather to a subset or
combination of them. The behaviour of an underlying sys-
tem can be characterized from a time series of observations.
The state of the system at any time instant can be repre-
sented by a time-delay embedding vector (Takens 1981),
which is a set of values of the signal in a given time-window.
Takens proved that, if the time-delay vector is chosen appro-
priately, the reconstructed vectors convey the fundamental
characteristics of the underlying system such as degrees of
freedom, dependence on initial conditions and dynamics,
and that recurrent states of the system are represented by
similar time-delay vectors. (Takens 1981; Posthuma et al.
2005)

For each single observation of a signal x¡ (where i
denotes the time instant), a state vector Z¡ is defined as,

X{ = (Xi,Xi+L,Xi+2L, ..., *; + (m-l)L) (1)

where m is the embedding dimension and L is the time
lag between chosen samples. The optimal values of these
parameters are a function of the frequency band of interest
(Montez et al. 2006). The lag should be chosen so that the
highest frequency is sampled at least twice per cycle, and
the embedding dimension should be such that at least one
whole cycle of the slowest oscillations is captured (Betzel
et al. 2012).

Of course, there is a gap of (m — \)L samples at the end
of the time-series where Z¡ cannot be defined with the same
dimension. This is a boundary situation to take into account.

Phase two: Localization of the Recurrent Dynamical States

The probability P | ; that state vectors X¡ in the time-
interval defined by parameters w\ and w2 are closer than
certain distance e to a reference state vector X¡ at time
instant i can be defined (Stam and Van Dijk 2002) as

PY; = V 6(e-\Xi-Xi+i\) (2)
z ' ! 2x(w2-wl) ¿—

 y ' + J l
>

 ;

The distance || between state vectors can be the
Euclidean distance or any other such the maximum norm.
The Heaviside step function 6 (d) is 1 when its argument d

is positive and 0 otherwise.

The w\ parameter establishes an exclusion window
around the time instant i where similar state vectors are not
likely to represent a recurrence but rather that the system has
not had time to evolve (Theiler 1986).

The w2 parameter establishes an inclusion window
around the time instant i that sharpens the time resolution
of the synchronization measure (Stam and Van Dijk 2002).

It has to be large enough for Pf to make sense as the pro-
portion of vectors considered as recurrences (Montez et al.
2006).

The combination of wl and w2 establishes the surround-
ings of i given by the subintervals [/ — w2, i — wl) and
(/ + wl, i + w2].

The original description of Stam and Van Dijk (2002)
states that:

"Now for each X and each i the critical distance ex,i is
determined for which P^

x
:' = pref, where pref <C 1"

A literal interpretation of this statement would lead to a
naive algorithm implementation to find changing values of
the "critical distance ex," for each signal X and each time
instant i, but this is far from necessary, because pref is not
an unknown but one of the SL algorithm input parameters.

When applied to Eq. 2, the pref parameter represents
the fraction of state vectors inside the time subintervals
[/ — w2, i — wl) and (/ + wl, i + w2], which are to be
considered closer to Xi than the critical distance. So, as
pref, wl and w2 are constant values for any signal and for
any time instant1, then the number of state vectors closer
than the distance is also a constant integer, and equal to:

N = \2 X (w 2 — w l) X Pref]-

The roundup operator |~] is used to obtain a non zero

integer. So the actual effective pref which is used is:

Effective pref = N/(2 x (w2 — wl)).

What we need to determine therefore, for any signal X

and time instant i, is the set Cxj of time instants; relative to
i where the Heaviside step function 6 takes value 1. In other
words, to identify where, within the defined interval, the N
most similar state vectors to the reference state vector Z¡
are. As we will see, this set of points is all that is necessary
for the next phase of the algorithm.

Phase three: Likelihood of Simultaneous Recurrent States

in two Signals

The SL measures the likelihood that there is recurrence in

the simultaneous states of the two systems.

The number of simultaneous repetitions for signals X and

Y around time instant i is defined as:

nxr,i= J2 0(ex,i-\Xi-Xi+j\)e(eY,i-\Yi-Yi+jt)

M±w2M±wl]

(3)

It follows that the Synchronization Likelihood at time
instant i is just the number recurrences over the total possi-
ble number of recurrences in the time interval considered:

The problem of dealing with the head and the tail of the time series

will be discussed later.

Phase four: Computation of the SL Across a Time Interval

Usually, the SL is expressed as an average across time of
SLi. can be reduced by computing SLi at time steps larger
than the sampling interval of the original signal at the cost of
losing precision and time resolution. The original algorithm
implementation calls this step parameter speed

2
(Ca\mel&

et al. 2008). Caution should be exerted when using this
speeded-up calculation as SLi can change rapidly on time
scales smaller than wl (Montez et al. 2006).

Low Level Description of the Implementation

Although we had access to a MATLAB3 implementation
of the algorithm from the original author's group termed
"Synchronization Likelihood Stand-Alone Calculator", we
decided to use it only as a reference. Instead we chose to
develop our own complete reimplementation of the algo-
rithm in the C language, starting from the analysis of the
algorithm as shown in the previous section. The C lan-
guage is very suitable for optimization because of the level
of control it allows. The compiler can be tuned to produce
efficient code in terms of computational time and mem-
ory requirements. Additionally there is a large set of tools
and technologies available to produce all kinds of parallel
code.

Interfaces and Applications

The pseudocode of the algorithm implementation,
FSL_delta, is provided in Fig. 1. Two different versions
are used to compute SLi for all the signals at time i. The
"generalized" version is used at the beginning and end of
the time series and takes into account boundary effects. It
works by narrowing the considered surrounding intervals,
changing wl, w2 and m as i approaches the edges of the
time series. This method is completely general in the sense
that it is able to cope with any i including those close to the
end of the time series. This version is particularly useful for
short datasets. A second "specialized" version is suitable
only for the middle part of the time series, where boundary
effects are not an issue. This is a specialized more efficient
method. Both methods have the same external interface and
the same internal structure.

The external interface allows to serially process any
amount of data in finite increments of any size, and for
any number of synchronized signals. This allows the time
i to monotonously grow at any rate, and with any constant
speed value. Therefore it can be applied to the processing of

2The BrainWave and the MATLAB versions also use the speed

parameter
3 http://ww w. mathworks. com

http://ww

FSL_delta(L,m,wl,w2,pref,speed,data[I] [K] , Ib,Ie,SL[K] [K])

{
/* Size of the se t of c lo ses t vec to rs */
N = [2 x (w2 - wl) x pref~\

/* Main time loop across data */

For each time instant i € [Ib...Ie] at step speed

/* First subloop */

For each channel X 6 K

I* Localize the recurrent dynamical states */

For each j e [±w2] g [±wl]

Calculate \Xi — Xi+j

/* On-the-fly time-embedding vectors access */

Remember the set of the N closest j's

I* Second subloop */

For each channel X 6 K

For each channel Y G K

I* Likelihood of simultaneous recurrent state */

nxY,i = count of simultaneous j's

in both closest sets

SL[X][Y]+ = nXY,i/N

/* To externally average SL along the time */

Return the number of time steps carried out

}

Fig. 1 Pseudocode of the FSL.delta method

pre-loaded data as well as to the processing of streams of
data, as in the case of real-time applications.

Internal Structure and Features

As Fig. 1 shows, to optimize computational time, the inter-
nal structure of the FSL_delta method does not literally
follow the phases described previously. For example, the
"construction of the time-delay embedding vectors" phase
is done implicitly. The raw data are accessed directly in
the right order as the state vectors components are needed.
Obviously, this eliminates the need to store the vectors
in memory. The "localization of the recurrent dynamical
states" phase can be done independently for each signal, and
the way it is done critically affects the computational effi-
ciency. To determine which are the "N" shortest distances
between the reference state vector and each one of the state
vectors in its surrounding intervals, all distances need to be
calculated. Only the N shortest distances need to be stored
which can be done with insertion sorting. There is no need
to determine e. All that needs to be temporarily stored is the
; relative position of the N closest vectors to i.

Optimization techniques try to avoid the repetition of
prior calculations. Values that may be needed later should
ideally be kept in memory for later reuse. Although we have
evaluated this through several alternatives, for the present
algorithm the results indicate that this does not constitute
an advantage given the computing power of current CPUs
and current compiler performance. The computation of the
"likelihood of simultaneous recurrent state between each

pair of signals" phase should be done after all the corre-
sponding sets of closest points have been computed for all
the signals. Each set contains only N relative ; positions
of the closest vectors, and by temporarily transforming it
into an indexable bytemap, the cross comparison between
signals is trivial and very fast.

As suggested by Stam et al. (2003), the Synchronization
Entropy (Hs), which gives the spatio-temporal variability of
synchronization, can be computed from the Synchronization
Likelihood (SL) at a negligible additional cost.

Finally, the "computation of SL across a time-interval"
is not done by the FSL_delta method. The number of
coincidences is accumulated in global data structures. The
averaging along the desired period of time is done externally
and can be done at any moment. In this way, we can com-
pute, not only the global SL, but also a partial SL for any
smaller time interval as defined by parameter T.

It should be noticed that the computations for differ-
ent values of i inside the FSL_delta method are mostly
independent. This allows for parallelization, as we will see
below.

Description of the Different SL Implementations

We compare two different SL algorithm implementations,
the Fast SL implementation (FSL) described in this arti-
cle, and the original SL algorithm (Orig) as described in
Stam and Van Dijk (2002). The most similar version to the
original one we have had access to is a MATLAB script
called sync_sa.m, entitled "Synchronization Likelihood
Stand-Alone Calculator" and dated July 2003. As it is a
bit outdated, we also consider BrainWave,

4 the Java based
application for functional connectivity and network analy-
sis currently supported by the group of C.J. Stam. Whenever
possible we also consider a parallelization of the different
implementations.5

The different algorithms (Table 1 have been named after
the algorithm implementation (Orig or FSL), the computer
language used (MATLAB, Java or C) and the type of
parallelization applied and are the following:

Orig-Matl-MulTh: This is the s y n c s a . m MATLAB

script executed with the options "-nodesktop" and "-

nosplash" to reduce the memory footprint. Because MAT-

LAB uses the Intel Math Kernel Library internally, which

includes a multithreaded version of BLAS (Basic Linear

Algebra Subroutines), the elementary library functions

with vector arguments are multithreaded. Therefore this

constitutes a multithread execution.

Table 1 The different SL implementations evaluated in this article

Version name Algorithm implementation Language Parallelization

Orig-Matl-Seq

Orig-Matl-MulTh

Orig-Matl-parfor

Orig-Java-Seq

Orig-C-Seq

FSL-C-Seq

FSL-C-OMP

FSL-C-CUDA

The original

The original

The original

Supposedly the original

The original

Fast SL

Fast SL

Fast SL

MATLAB

MATLAB

MATLAB

Java

C

C

C

C

Sequential

Multithreaded

Multiple CPU cores

Sequential

Sequential

Sequential

Multiple CPU cores

Graphic processing units

Orig-Matl-Seq: This adds the option
"-singleCompThread" to the previous version to limit
MATLAB (and the underlying MKL library) to a sin-
gle computational thread. This version is consequently
executed sequentially.

Orig-Matl-parfor: This is an explicitly parallel version of
the sync . sa . ra script with only minimal changes. The
MATLAB p a r f o r sentence is used for the main parallel
loop and a matlabpool is opened to use multiple proces-
sors. The number of processors is limited to 8 by the
toolbox.

Orig-Java-Seq: This is the BrainWave's SL algorithm
implementation. The source code is not available, but the
application can be downloaded for free in a Java precom-
piled form. We assume that this implementation of the
SL remains similar to the original one. No parallelization
seems to have been implemented.

Orig-C-Seq: This is a C translation of the original algo-
rithm, resulting from rewriting the sync . sa . ra script in
the C language without modifying the algorithm. It is
used for comparing the MATLAB interpreted language
efficiency with that of a fully compilable language such
as C. All the MATLAB matricial operations were writ-
ten directly in C as nested loops, without using additional
libraries. Any possible code vectorization is automaticaly
done by the compiler.

FSL-C-Seq: This is a fully optimized sequential C code
implementation of the Fast SL suitable for compiler
vectorization as described before.

FSL-C-OMP: This is an adaptation of the sequential ver-
sion using the OpenMP standard6 (Dagum and Menon
1998) to take advantage of current shared memory com-
puter architectures to execute the code in parallel over
multiple local CPU cores. In a straightforward adapta-
tion, only the main time loop of the FSL_delta method
has been parallelized using OpenMP directives. Therefore,

6http://www.openmp.org

different time instants will be executed in parallel by dif-
ferent threads over the available CPU cores, but both
subloops will be executed one after the other by the
same thread. The first subloop has no dependencies
between channels. For the second subloop, the partial
result obtained by each thread must be accumulated, so
the access to the variable that contains the final results
must be synchronized using an atomic directive. The tem-
porary partial results are stored in local private variables.
The shared variable that contains the final results has
been replicated to avoid using critical regions as they
impose serialization in the access to these variables. At
the beginning these private variables were stored in the
stack, but sometimes the stack was overflowed due to the
size of these variables and the final solution has been to
use the heap, even if it is a less efficient solution.

FSL-C-CUDA: This version uses a completely differ-
ent and add-hoc reimplementation of the "specialized"
version of the FSL_delta method, using the CUDA-C
language to exploit the huge amount of low level paral-
lelism available in the current GPUs. The main difficulty
of programming a GPU is to correctly map the inher-
ent application parallelism onto the parallel hardware
available in the GPU, to optimize the access of the
computing threads to internal memory. The GPU board
attached to the PCI-X bus acts as a coprocessor, so only
the routines computationally more expensive are exe-
cuted on the GPU as so called kernels. While the main
part of the program and data remains in the host, the nec-
essary input and output data for the kernels need to be
transferred through the PCI-X bus. In our case, the spe-
cialized main time loop has been splitted into two parts,
each one being implemented as a different kernel. The
intermediate results of the first kernel are used in the sec-
ond one. These results are not transferred to the host, but
kept in the GPU memory for efficiency. The threads run-
ning the first loop do not need explicit synchronization,
as there are no dependencies between channels. In the
second loop, a reduction operation has been implemented

http://www.openmp.org

Synchronization Likelihood Speedup
For 50863 sample times and 148 channels

100000

10000

co
c
o
Ü

03

CD

E

o

1000 r

100

10

40984 39568

1.00

5184

1.04

19

Total T ime
Throughput

Speedup

12322

2101

3009

18< 865

7.91

.45

552

295

54.1

3.33

.61

342

21.9

13.6

10000

1000

- 100

10 * - r -

- 1

o
C) CD
CO
CO
CD
Q.

E
Cfl
CO

)¿
1 .

^

en

—:
CO

2
1 CO

1 —

O
CO

o
- 1 —

""—'
Q.Q.
.c - I
o)-o
^
o

1—

a)
ni
Q.

en

Fig. 2 Fixed
algorithm

Orig Orig Orig Orig Orig FSL FSL FSL
Matl Matl Matl Java C C C C
Seq MulTh parfor Seq Seq Seq OMP CUDA

Implementation

dataset. Speed-up factor for the different implementations with respect to a non-optimized MATLAB implementation of the SL

using the shared memory (which is limited in size but
very fast, even if it is explicitly controlled by the pro-
grammer) and the registers (to reuse the data previously
read), accumulating the final partial results in a shared
variable that is sent back to the host at the end. But the
use of this reduction impose severe restrictions in paral-
lalelization, as synchronization barriers must be used to
ensure that results are correct. In the GPU each thread
is in a block and multiple blocks are ordered in a grid.
In this way the threads are organized in a logical hierar-
chy, which gets established when calling a kernel, when
the dimensions of the grids and blocks are specified. In
the first kernel, each block computes the embedding vec-
tors for a different channel, and each thread of this block
compute a different time-instant i. If there are more chan-
nels than blocks, each block computes several channels.
In the second kernel, the recurrent states are computed.
To compensate for the high latency of the global mem-
ory, Instruction Level Parallelism (ILP) is used ((Volkov
2010)). Both loops are unrolled to increment the avail-
able instructions that can be used to compensate for the

high latencies. To improve the coalesced access to global
memory the input data are transposed and aligned. To
avoid using bifurcations, the beginning and end of the
time series are not computed in the GPU, but elsewhere.
As the GPU executes the same instruction for each warp,
where a warp consists of a set of 32 threads, every bifur-
cation imposes the serial execution of each branch of the
bifurcation.

Computer Hardware and SL Parameters

The SL parameters used in all the calculations are: wl =
100, w2 = 410, L = 1, m = 10, Pref = 0.049, speed = 1.
These parameters determine the number of state vectors to
be considered: N = \2 x (410 - 100) x 0.0491 = 31, for
an Effective pref = 31/(2 x (410 - 100)) = 0.05.

In the case of the MATLAB calculations, the measures
were taken without using the user interface (nodesktop and
nosplash options) to avoid measuring the memory con-
sumed by the interface. The MATLAB version used was
R2012a 64-bit.

The calculations were carried out with double precision
floating point (64 bits), on a dual processor Intel Xeon
E5645 2.4 GHz with six cores each, totalling 12 cores with
hyperthreading.7

Memory requirements (Fig. 3) were defined as the max-
imum resident set size, that is, the maximum amount of
RAM memory used by the program during its execution.

For Fig. 6 the GPU used was a Nvidia GeForce GTX 580
with 512cores, 1.5 GB of memory and a memory bandwidth
of 192.4 GB/s.

The performance and memory requirements of the differ-
ent algorithm implementations are reported in Figs. 2 and 3.
A dataset with 148 channels and 50,863 samples per channel
was used (sampling rate=254 Hz, duration=3 min 20 sec).

Results

Evaluation of Implementations

Figure 2 shows the processing time taken by the different
SL implementations. A dataset consisting of 148 channels
and 50,863 samples was used. Two MATLAB versions, the
sequential (Orig-Matl-Seq) and the multithreading (Orig-
Matl-MulTh) version, and the BrainWave version (Orig-
Java-Seq) are quite slow, as they are able to process only
0.18, 0.19 and 0.61 Ksamples per second respectively. The
translation of the original implementation to C (Orig-C-Seq)
is much faster than these three versions, even if the same
algorithm is used, processing 3.58 Ksamples per second.
The main reason is that MATLAB is an interpreted lan-
guage while C produces a compiled code. The explicitly
parallel MATLAB version (Orig-Matl-parfor) has a speedup
of nearly 8 with respect to the original MATLAB imple-
mentation, which we use as a reference. This is close to
the nominal maximum of 8 cores imposed by the toolbox.
Nevertheless it is still very slow, as it is able to process
only 1.45 Ksamples per second. In contrasts, our sequential
reimplementation of the Synchronization Likelihood (FSL-
C-Seq) is able to process 54.1 Ksamples per second, being
295 times faster than the reference version. The GPU ver-
sion (FSL-C-CUDA) implemented with CUDA on Nvidia
graphic cards has a very high speedup factor of 1,865,
compared to Orig-Matl-Seq and 6.32 compared to FSL-
C-Seq, being able to process 342 Ksamples per second
using an inexpensive graphics card. The version for shared
memory computers (FSL-C-OMP) using OpenMP on a
computer with 12 cores, presents an even higher speedup of
3,009 compared to Orig-Matl-Seq and 10.2 compared to the

7When hyperthreading technology is in use, each real core simulates

two logical cores

sequential FSL (FSL-C-Seq), reaching 552 Ksamples per
second.

Figure 3 shows the memory requirements of the dif-
ferent implementations for the same dataset, with 148
channels and 50,863 samples. The explicitly parallel MAT-
LAB version (Orig-Matl-parfor) requires significantly more
memory, 58 % more, than the sequential MATLAB ver-
sion. All the MATLAB implementations seem to use
large amounts of memory in the form of auxiliary matri-
ces of size proportional to the input data. This mem-
ory allocation is present for as long as the process
is running. BrainWave (Orig-Java-Seq) is more memory
efficient.

FSL-C-Seq is an autonomous program which highly opti-
mizes the use of the memory. In fact, it has been designed
to be able to process a data stream. It does not require load-
ing all the data into memory, but just the necessary data to
compute the distances in the surrounding double inclusion
interval around each time point. All our versions (FSL-
C-Seq, FSL-C-OMP and FSL-C-CUDA) require less than
1 % of the memory needed by the sequential MATLAB
version, Orig-Matl-Seq, and are not limited by the dataset
length as they only load into memory the data required
to compute the distances needed for each time point. The
FSL-C-OMP version only needs marginally more memory
than the FSL-C-Seq version, as it uses private variables for
the working threads. The CUDA version differs from the
other ones in that it not only uses system memory but also
video card memory. For this particular dataset 79MB of
system memory plus 146MB of video card memory were
used.

Scalability of Implementations

Next, we explore the scalability of the three novel imple-
mentations. First the scalability of the sequential version,
FSL-C-Seq, is analyzed by gradually increasing the amount
of data and/or the number of channels. Then, the scalability
of the two parallel versions, using CUDA (FSL-C-CUDA)
and OpenMP (FSL-C-OMP), is characterized using FSL-C-
Seq as reference.

The previous dataset, with 148 channels and 50,863
samples per channel (sampling rate=254 Hz, duration=3
min 20 sec) is denoted with as an asterisk in Figs. 4,
5 and 6. Figures 4, 5 and 6 show the scalability of
the sequential, OpenMP parallel and GPU parallel ver-
sion respectively, with the amount of data increasing from
4K to 1024K and the number of channels ranging from
4 to 1024. To calculate the speedup factor, Fig. 4 uses
as reference the smallest dataset with 4 channels and
4K data. The reference used in Figs. 5 and 6 is the
sequential version with the same number of channels and
samples.

Synchronization Likelihood Memory Consumption

For 50863 sample times and 148 channels

100000 -

a> 10000

00

o
E

CD

"CD
-I—<

o

1000 -

100

10

Total Memory
Memory Efficiency 84127

121860 115485
95226 - 100000

27512

17366 17365

4739

89.5 „ , , 7 9 . 1 |
65.2 I I

- 1000

100

10

Orig
Matl
Seq

Orig
Matl

MulTh

Orig
Matl

parfor

Orig
Java
Seq

Orig

C
Seq

FSL
C

Seq

FSL
C

OMP

FSL
C

CUDA

Implementation

Fig. 3 Memory requirements for the different implementations for a given dataset

CO

10000 -S 9.
Q .

CD
CO

o
c
CD

'o
i t
LU

o
E
CD

Figure 4 shows how the Sequential FSL version scales as
a function of the number of samples per channel and num-
ber of channels. The speedup factor on the y-axis is defined
as the ratio of number of processed samples per time unit for
a given dataset to the same quantity for the reference dataset
with 4 channels and 4K samples per channel. The fact that
the lines are roughly constant indicates that sequential ver-
sion scales linearly with the number of samples per channel.
In contrast, the speedup factor decreases with increasing
number of channels as the algorithm complexity in the sec-
ond sub-loop (Fig. 1) is quadratic with respect to the number
of channels.

The sequential MATLAB implementation, Orig-Matl-
Seq, scale also linearly with respect to the number of
samples per channel. The difference is that it scales linearly
also with respect to number of channels. This analysis
clarifies the behaviour of the OpenMP and CUDA parallel
versions.

Figure 5 shows the scalabitly of the Open MP imple-
mentation. As seen in the figure, the amount of data has
much less influence on the performance than the channel

number, as could be expected after the results of the sequen-
tial scalability analysis. They are two different regimes. If
the number of channels is small the maximum speedup is
not achieved because there is not enough processing demand
for all the cores. In this case, increasing the amount of data
improves the speedup factor as it increases the amount of
processing to be carried out by the underlying hardware.
When the number of channels increases the speedup is
limited by the number of cores.

Figure 6 shows the scalability of the CUDA parallel FSL
version with on GPU GeForce GTX 580 with respect to the
sequential version. The behaviour of this version is quite dif-
ferent from that the OpenMP version, as the amount of data
greatly influences the performance. If there are few sam-
ples per channel the speedup as the amount of processing
assigned to each GPU core is small. For larger number of
samples per channel the speedup factor increases especially
for an intermediate number of channels. For a large number
of channels the speedup decreases as the data structures that
the algorithm uses are rather large and no longer fit into the
small data caches of the GPUs.

Self scalability of the FSL-C-Seq implementation

-^ 1.2
w
CD
C
c
TO

O

• a

c
TO
W

a)
Q.

E
TO

CD
co
Ó
_ j
CO

a.
T3
CD
CD
a.

CO

1.1

1 -

0.9 -

0.8

0.7 -

« 0.6
o

0.5

0.4

e e -e
-e
-o

#channels

— i 1 1 1 1 1 —

4K 8K 16K 32K 64K 128K

#samples per channel

Fig. 4 Scalability of the Sequential FSL implementation for different dataset sizes

256K 512K

Computation of the Partial SL

The ability to obtain and store not only the global SL but
also a partial SL (using the new parameter T) allows study-
ing the dynamics of the system by observing how the SL
indices evolves over time. Figure 7 shows, for the same
real dataset of 148 channels and 50,863 samples used in
Fig. 2 and 3, examples of partial SL matrix for the averaging
periods 1,16, 256 and 4096, and the global SL matrix. Each
matrix pixel shows the averaged SL between each two chan-
nels over the period. We observe a consistent pattern that
becomes fuzzier as the period (T) of the partial SL becomes
bigger.

As our implementation also computes the Synchroniza-
tion Entropy (Hs) (Stam et al. 2003), the Fig. 7 also
shows on the background the average, standard deviation,
maximum and minimum values of the Hs as a func-
tion of the averaging interval. As the averaging period
becomes bigger, the averaged SL values are presum-
ably more precise, but the higher frequency information
is lost.

Validation of the Implementation

We tried to keep the Fast SL algorithm as compatible as
possible to the original algorithm. One difficulty is that
the original publication does not specify how calculations
should be carried out at the beginning and end of the data
series. So our FSL implementation is not only different
from the original one due to the introduced simplifications,
optimizations and the parallelization of the code, but also
because the beginning and end of the data series may be
treated differently.

This is the only reason why the FSL results are
slightly different to those of the original implementa-
tion. In fact the FSL_delta "specialized" version (the one
applied to the central segment of the data) produces
exactly the same numerical results than the sync . sa . ra
MATLAB script used as representative of the original
algorithm.

Some kind of validation is necessary to verify that the
results of FSL remain equivalent to those of the original
implementation. To our knowledge there is no reference

http://sync.sa.ra

9 -

jo 11
cu
c
c
en

" 1 0

•a
c
co
w

JU
o .
E
co
w

CU
CO

ó
_ j
CO

5 -

Scalability factor of the FSL-C-OMP implementation
in comparison with the FSL-C-Seq implementation

Q.

•a
cu
cu
Q.

co ^ J 1 1 1 1 1 r
32K 64K 128K

#samples per channel

Fig. 5 Scalability of the OpenMP FSL implementation for different dataset sizes with respect to the sequential version

data set to validate the Synchronization Likelihood algo-
rithm with. So we opted for reproducing analysis of a Henon
system as in the Fig. 1 of Stam and Van Dijk (2002), as
it is well described, easy to reproduce and summarizes a
broad spectrum of cases since the degree of synchronization
is changed smoothly.

Figure 8 shows the results obtained with FSL for this
example. Each of the two curves consists of 101 points rang-
ing from a Coupling Strength between 0 and 1. Represented
is the average and standard deviation of the SL between 2
time series containing 4096 samples each. The calculation
was repeated 10 times for different realizations generated
from different seeds. A total of 8,273,920 samples were
processed in 66 seconds.

This plot matches exactly the shape obtained in Stam and
Van Dijk (2002). The number of points considered for the
present figure is 10 times larger than for the original one.
The difference between our results and those given by the

original implementation can be measured as an accumulated
relative difference8 of 0.391 % for the "Identical, B = 0.3"
curve and 0.451 % for the "Non-Identical, B = 0.1" curve.

In addition, in order to also validate our algorithm
with empirical data, we applied the SL to a freely avail-
able dataset of Magnetoencephalography (MEG) record-
ings available from the Human Connectome Project. This
dataset includes high quality MEG scans from 14 healthy
adults (all members of monozygotic twin pairs) collected
at rest. The sampling rate was 2034.51 Hz. The scanner
had 248 magnetometer channels and 23 reference chan-
nels (for more details about the dataset, see "HCP MEG
Scan Protocol Details" in the Human Connectome Project

Accumulated Relative Difference of two curves (a and b) for values

V i n P points:

ARD :£Va- Vil/E (Va + V6)/2

_cn
CD

cc
.c
o

cc
en
0)

o.
E
cc
en

£
CT
CD

CO
I

O
I

_ l
CO

CD
CD
Q .

CO

7 -

6 -

3 -

5 *

1 -

Scalability factor of the FSL-C-CUDA implementation
in comparison with the FSL-C-Seq implementation

32K 64K 128K

#samples per channel

256 K

Fig. 6 Scalability of the CUDA FSL implementation for different datasets

webpage). Three of these MEG recording were employed to
validate our algorithm. We download the raw, unprocessed
MEG data in 4D Neuroimaging format corresponding to
three subjects. Subsequently, and prior to functional connec-
tivity analysis (SL analysis), the three records were visually
inspected by an experienced investigator, excluding visible
blinks, eye movements or muscular artifacts from the data.
For each of the three subject, 5 epochs free of artifacts of
4096 points (of around one second in lenght) and 248 chan-
nels, of resting state activity were selected. Subsequently,
the SL algorithm was applied to the 5 extracted artifact-free
epochs for each of the three subject. The SL was calculated
for each of the 5 one-second epochs with 248*247/2 chan-
nel pairs for each subject. The SL algorithm was calculated
in two ways: a) using the FSL implementation and b) using
the SL implementation available in the Brain Wave software
package. For all channel pairs and epochs, the relative dif-
ferences in SL values between both methods (a) and b))
never exceeded 1 %.

Discussion

The novel SL algorithm implementation described in this
paper has the following features. 1) Boundary segments
are processed adaptively so that SL is computable from
short time series. 2) Computations can be done with par-
tial data segments only, without the need to load the whole
dataset into memory, which allows for data streaming and
processing of datasets of unlimited size. 3) The Synchro-
nization Entropy (Hs) and the partial SL can be computed
efficiently.

In the present work we have shown that optimizing
the implementation of the algorithm used to estimate a
connectivity measure, the SL, can increase the processing
speed and decrease the amount of required memory by
orders of magnitude. The combined effect of redesigning
the algorithm and porting it from MATLAB to C increases
speed by a factor of approximately 300 with respect
to the originally published implementation. If one adds

Synchronization Entropy vs. Partial SL period

5.0

4.5

Hs distribution
Error Bar i—i—i

Maximum —x—
Minimum ---•*---

- • x

I
3.5

3.0 -

2.5

x-..

. - *
-* - - '

- * • - - '

.*--
--*-

- -5K-

4 16

- 1 —

64 256 1024

Period (#samples)

— i 1 r

4096 16384 50863

Fig. 7 Partial SL as a function of the averaging period

parallelization, the combined speedup factor is around 3,000
with 12 cores, and around 2,000 using an inexpensive GPU,
a GeForce GTX 580 with 512 cores (Fig. 2). Likewise the
optimization yields a decrease of a factor of approximately
200 in the amount of memory needed to perform the com-
putations (Fig. 3).

The computational time for the novel sequential imple-
mentation increases linearly with the number of sam-
ples (Fig. 4). The novel parallel implementation, with an
OpenMP architecture, speeds-up processing by a factor
approximately equal to the number of processors (Fig. 5).
On the other hand, if the more affordable CUDA architec-
ture is employed, the speed-up processing is also of an order
of magnitude for the considered representative case, but the
scaling with the number of sensor pairs is less efficient than
with OpenMP (Fig. 6). Additionally, CUDA programming
and maintenance is complex.

To summarize, as shown in Figs. 2 and 3, the new FSL
implementation is much faster and memory efficient than
the original version and it is therefore our recommended
option. Which type of parallelization is advantageous to use
depends on the hardware available.

Therefore, both the new algorithm and the paralleliza-
tion of the implementation, provide a huge increase in the
efficiency of the computation of the SL. This should allow
the undertaking of more ambitious connectivity analyses
than the ones afforded by the current implementations. At
present, the connectivity analysis is one of the most com-
putationally costly steps of electromagnetic signal analysis.
The current work presents a new optimized implementation
which should widen the applicability of this type of anal-
ysis. The amount of time needed to compute the SL for a
typical single participant recording with the original imple-
mentation (Fig. 2) is approximately 10 hours. If we take
into account that we may need to do this analysis for 10-50
participants times 3-4 experimental conditions, and this may
have to be repeated several times as we refine our analysis,
we start to appreciate the computational burden imposed by
the speed of the original implementation on the analysis. An
increase in speed of 2 or 3 orders of magnitude is therefore
very welcome.

With the present developments, a connectivity mea-
sure among more channel pairs can be calculated without
the analysis becoming computationally prohibitive. Also a

CO

T3
O
O

ce
N

CO

0
0

Variation of Synchronization Likelihood with coupling
strength between identical and non-identical systems.

Identical, B=0.3 i—i—i
Non-Identical, B=0.1 n

Unldirectlonally coupled Henon systems

xi+1 = 1 .4 -x r+ 0.3*ui
ui+1 = xi
yi+1 = 1.4 - (C*xi + (1-C)*yi)*yi + B*vi
vi+1 = yi

0.2 0.4 0.6

Coupling strength (C)

Fig. 8 Reproduction of Henon figure from Stam and Van Dijk (2002)

0.8

higher temporal and spatial resolution can be afforded. Fur-
thermore, it should be feasible to use permutation testing in
a wider set of circumstances than previously. Also the fact
that speed has been greatly improved makes real-time anal-
ysis of the signals, with its potential for, for example, brain
computer interfacing, within reach. An added advantage of
the implementation here described is that they are much
less memory demanding. This makes previously unfeasible
analyses of long duration datasets, like those obtained from
some epilepsy studies, treatable. In addition, it should now
possible to calculate the SL between a large number of time-
series, such as those corresponding to source-reconstructed
time-courses of EEG/MEG data.

Future work could include the application of these opti-
mization strategies to other connectivity measures where
applicable, and the testing and adaptation of these new algo-
rithms for real-time applications such as brain computer
interfacing.

In conclusion, connectivity analyses represent a key
ingredient in current neuroimaging signal processing. One

of the most widely used indices is generalized synchro-

nization, which is one of the types of analysis which is

more computationally costly. The current work presents

a new optimized implementation which should widen the

applicability of this approach.

Information Sharing Statement

The source code for FSL (RRID:nif-0000-00305) is avail-

able under the Lesser GNU Public License (LGPL). The

tarball is hosted by the Center for Biomedical Technol-

ogy (CTB) under the HERMES project (RRID:nlx_l 55770,

http://hermes.ctb.upm.es/resources/FSL/). Anonymous read

access to the source code is enabled.

Acknowledgments This research was supported in part by the
Spanish Ministry of Economy and Competitiveness (National project
TEC2012-38453-C04 and Grant PSI2010-22118).

http://hermes.ctb.upm.es/resources/FSL/

References

Acharya, A., Kar, S., Routray, A. (2010). Phase synchronization based
weighted networks for classifying levels of fatigue and sleepiness.
In 2010 international conference on systems in medicine and

biology. IEEE (pp. 265-268).

Ahmadlou, M., Adeli, H., Adeli, A. (2012). Fuzzy Synchronization
Likelihood-wavelet methodology for diagnosis of autism spectrum
disorder. Journal of Neuroscience Methods, 1-7.

Bajo, R., Maestú, F., Nevado, A., Sancho, M., Gutiérrez, R., Campo,
P., Castellanos, N.P, Gil, P., Moratti, S., Pereda, E., Del-Pozo,
F (2010). Functional connectivity in mild cognitive impair-
ment during a memory task: implications for the disconnection
hypothesis. Journal of Alzheimer's Disease : JAD, 22(1), 183—
193.

Betzel, R.F, Erickson, M.A., Abell, M., O'Donnell, B.F, Hetrick,
W.P, Sporns, O. (2012). Synchronization dynamics and evidence
for a repertoire of network states in resting EEG. Frontiers in

Computational Neuroscience, 6, 74.

Buldú, J.M., Bajo, R., Maestú, F , Castellanos, N., Leyva, I., Gil,
P., Sendiña Nadal, I., Almendral, J.a., Nevado, A., Del-Pozo, F ,
Boccaletti, S. (2011). Reorganization of functional networks in
mild cognitive impairment. PloS one, 6(5), e!9584.

Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical
networks. Science (New York, N.Y.), 304(5679), 1926-9.

Buzug, T., Pawelzik, K., von Stamm, J., Pfister, G. (1994).
Mutual information and global strange attractors in Taylor-
Couette flow. Physica D: Nonlinear Phenomena, 72(A), 343-
350.

Calméis, C , Hars, M., Holmes, P., Jarry, G., Stam, C.J. (2008). Non-
linear EEG synchronization during observation and execution of
simple and complex sequential finger movements. Experimental

Brain Research, 190(A), 389^00.
Castellanos, N.P, Paúl, N., Ordóñez, V.E., Demuynck, O. Bajo,

Campo, P., Bilbao, A., Ortiz, X, Del-Pozo, F , Maestú, F (2010).
Reorganization of functional connectivity as a correlate of cog-
nitive recovery in acquired brain injury. Brain: A Journal of

Neurology, iJ3(Pt 8), 2365-2381.

Dagum, L., & Menon, R. (1998). Openmp: An industry-standard api
for shared-memory programming. IEEE Computational Science &

Engineering, 5(1), 46-55.
David, P., Cosmelli, P., Friston, K.J. (2004). Evaluation of differ-

ent measures of functional connectivity usinga neural mass model.
Neurolmage, 21(2), 659-73.

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal
communication through neuronal coherence. Trends in Cognitive

Sciences, 9, 474^80.
Friston, K.J. (1994). Functional and effective connectivity in neu-

roimaging: A synthesis. Human Brain Mapping, 2, 56-78.

Guggisberg, A.G., Honma, S.M., Findlay, A.M., Dalai, S.S., Kirsch,
H.E., Berger, M.S., Nagarajan, S.S. (2008). Mapping functional
connectivity in patients with brain lesions. Annals of Neurology,

63, 193-203.

Montez, X, Linkenkaer-Hansen, K., Van Dijk, B.W., Stam, C.J. (2006).

Synchronization likelihood with explicit time-frequency priors.

Neurolmage, 33, 1117-1125.

Niso, G., Bruña, R., Pereda, E., Gutiérrez, R., Bajo, R., Maestú,

F , Del-Pozo, F (2013). HERMES:towards an integrated tool-

box to characterize functional and effective brain connectivity,

ISACM. In International Society for the Advancement of Clinical

Magnetoencephalography, (p. 38453).

Pereda, E., Quiroga, R.Q., Bhattacharya, J. (2005). Nonlinear multi-

variate analysis of neurophysiological signals. Progress in Neuro

biology, 77(1-2), 1-37.

Pijnenburg, Y.A.L., V D Made, Y, Van Cappellen Van Walsum, A.M.,

Knol, D.L., Scheltens, P., Stam, C.J. (2004). EEG synchronization

likelihood in mild cognitive impairment and Alzheimer's disease

during a working memory task. Clinical Neurophysiology, 115,

1332-1339.

Posthuma, P., de Geus, E.J.C., Mulder, E.J.C.M., Smit, D.J.A.,

Boomsma, D.I., Stam, C.J. (2005). Genetic components of

functional connectivity in the brain: the heritability of syn-

chronization likelihood. Human Brain Mapping, 26(3), 191-

8.

Singer, W. (1999). Neuronal synchrony: a versatile code for the

definition of relations?. Neuron, 24(1), 49-65,111-25.

Singer, W. (2013). Cortical Dynamics Revisited. Trends in Cognitive

Sciences, (pp. 1-11).

Stam, C.J., Breakspear, M., van Walsum, A.-M.v.C, van Dijk, B.W.

(2003). Nonlinear synchronization in EEG and whole-head MEG

recordings of healthy subjects. Human Brain Mapping, 19(2), 6 3 -

78.

Stam, C.J., De Haan, W., Daffertshofer, A., Jones, B.F, Manshanden,

I., Van Cappellen Van Walsum, A.M., Montez, X, Verbunt, J.P.A.,

De Munck, J.C., Van Dijk, B.W, Berendse, H.W, Scheltens, P.

(2009). Graph theoretical analysis of magnetoencephalographic

functional connectivity in Alzheimer's disease. Brain: A Journal

of Neurology, 132, 213-224.

Stam, C.J., & Van Dijk, B.W. (2002). Synchronization likelihood:

an unbiased measure of generalized synchronization in multi-

variate data sets. Physica D: Nonlinear Phenomena, 163, 236-

251.

Xakens, F (1981). Detecting strange attractors in turbulence.

Dynamical systems and turbulence Warwick 1980, 898, 366-

381.

Xheiler, J. (1986). Spurious dimension from correlation algorithms

applied to limited time-series data.

Xononi, G., Sporns, O., Edelman, G.M. (1994). A measure for brain

complexity: relating functional segregationand integration in the

nervous system. Proceedings of the National Academy of Sciences

of the United States of America, 9 i (l l) , 5033-7.

Várela, F , Lachaux, J.-p., Rodriguez, E., Martinerie, J. (2001). Xhe

brainwave- Phase synchronization and large-scale integration.

Nature reviews. Neuroscience, 2.

Volkov, V (2010). Better performance at lower occupancy. Proceed-

ings of the GPU technology conference, GTC, 10.

