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Abstract

A system of vector clocks is strongly consistent

and it captures the happened before relations among

events in the system. These clocks underlie solutions

to a number of problems in distributed systems includ-

ing, among others, detecting global predicates, debug-

ging distributed programs, causally ordering multi-

cast messages, and implementing a distributed shared

memory. In general, a data structure of size n, where

n is the number of processes in the system, has to be

maintained at each process and attached with each

message communicated in the system to implement

vector clocks. This is a considerable communication

overhead in large systems. A differential technique has

been proposed to reduce this required communication

overhead for static systems with FIFO channels.

In this study, the differential technique is improved

to further reduce the required communication over-

head. A protocol is proposed to maintain a virtual

network topology of a logical ring combined with mul-

tiple computation trees so that the differential tech-

nique can be applied to dynamic systems. When a

process leaves the clock maintained at this process is

taken over by another one in the system. At the time

a process joins the system, it will inherits the causal-

ity relations maintained at the process that creates the

new process. Correctness of the protocol and the clock

properties are proved as well.

Key words: vector clock, differential technique, dy-

namic system

1. Introduction

Ordering the events occurring in a distributed com-
putation is fundamental to reasoning, analyzing, and
drawing inferences about the computation [5, 9, 12].
Fidge [3, 4] and Mattern [10] independently proposed
vector clocks to capture Lamport’s happened before

relation [9], which expresses the ordering imposed by
the sequential execution of events at each process and
the message passing that takes place among processes
and is commonly used to order these events. Although
this mechanism has a limitation when vector times-
tamps are used to reconstruct a distributed computa-
tion where message overtaking may occur [6], it is
strongly consistent [12] and provides a way to pre-
cisely capture the whole causality relationships be-
tween events occurring in a distributed computation
[1, 4, 5, 10, 12]. Vector clocks have been applied to
many problems in distributed systems, such as detect-
ing global properties, debugging distributed programs,
ordering multicast messages, and implementing a dis-
tributed shared memory.

One drawback in the implementation of vector
clocks is the required communication overhead. When
a message is transferred an overhead of size n is added.
For a big system this overhead is considerable, espe-
cially when processes can be created and may termi-
nate dynamically because of the unlimited increase in
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the vector size with process creation. Although some
alternatives are available for vector clocks under cer-
tain constraints [7, 11, 14, 16], a data structure of size
n is necessary to capture the causal relationships be-
tween the events [2] in asynchronous systems.

One approach to reduce the communication over-
head is the “differential technique” which was dis-
cussed by Fidge [4] and developed by Singhal and
Kshemkalyani [12, 15] for systems with FIFO chan-
nels. Under this technique, when process pi sends a
message to pj only those components of the vector
clock at pi that have changed since last time pi sent
a message to pj are piggybacked with this message.
Hélary et. al [8] extended Singhal and Kshemkalyani’s
protocol for the systems without FIFO channels.

The differential technique can be improved by ob-
serving that some of the changed elements were mod-
ified because of a message receipt from pj and it is
therefore not necessary to transfer such changed ele-
ments to pj when a message is sent to pj .

Fidge [4, 5] and Richard [13] independently devel-
oped schemes to efficiently implement vector clocks
in dynamic systems. However their schemes are good
only for special purposes. If multiple processes are
leaving the system concurrently, some of the vector
clocks maintained at the leaving processes may be lost
permanently in both Fidge’s and Richard’s schemes.

In this study we extend the differential tech-
nique to implement vector clocks in dynamic sys-
tems. This implementation improves the Singhal and
Kshemkalyani’s technique so that the communication
overhead is further suppressed. A protocol for process
creation and termination is proposed and integrated
into the implementation so that the vector clock main-
tained at a leaving/terminating process will not be lost
in the case when multiple processes leave the system
or terminate concurrently.

2. System Model

A distributed system is modeled with a finite set
of processes running on geographically separated ma-

chines that are connected with a communication net-
work. The processes cooperate and coordinate through
message passing. All processes are not faulty. We as-
sume reliable asynchronous communications over the
network. Messages are reliably delivered to their cor-
rect destination processes in the order when they were
sent. Message delay is finite but unpredictable.

A distributed computation in such a system starts
with a nonempty set of processes, which are called ini-

tial processes. We assume that the initial processes are
connected with a logical ring and each of them knows
its neighbors. If the edges (pi, pj) and (pj , pk) exist on
the logical ring, then pi is called the up stream neigh-
bor and pk the down stream neighbor of pj . In the
progresses of the computation, new processes can be
created, external processes can join, and existing pro-
cesses can leave the system at any time. We assume
that at least one initial process exists until the com-
putation terminates. As the computation progresses,
a dynamic network topology of multiple trees will be
maintained in the system. Each of the trees is rooted
at an initial process. A protocol is superimposed
upon the computation to implement vector clocks. Let
SY S(t) = {p1, p2, · · · , pi, · · · , pn} be the process
set in the system at real time t, where n is the num-
ber of processes.

3. Implementation of Vector Clocks Using

Improved Differential Technique

As Hélary et. al [8] suggest, we assume that all of
the events executed in the system are relative events in
implementing vector clocks.

3.1. Data Structures

The following variables are defined at an arbitrary
process pi.

Parenti: the parent of pi. If pi is an initial pro-
cess, Parenti holds the ID of pi’s up stream neigh-
bor. Otherwise, Parenti holds the ID of the process
who created pi or accepted pi while pi was joining the
system.
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Childi: the children of pi. If pi is not an initial
process, Childi is a set of IDs of the processes that
were created or accepted by pi when they were joining
the system and its initial value is an empty set. For
an initial process pi, its down stream neighbor is also
included in Childi as its initial value.

Leavingi: a Boolean variable. When pi is termi-
nating, Leavingi is set to true; otherwise Leavingi

is set to false.
V Ci (Vector Clock): vector clock of pi. It is a set

containing a pair of (j, cj) for a process pj in the sys-
tem that has communicated with pi. The integer cj is
the scalar clock at pj in the pi’s point of view. For
convenience we use V Ci[j] to denote the value of cj

and V Ci(e) the vector clock V Ci right before event e

occurs. Initially V Ci = {(i, 0)}.
LUi (Last Updated): a set of the last updated

clocks. It contains a triple of (j, k, uj) for a process
pj in the system with uj equal to the value of V Ci[i]

when pi last updated V Ci[j]. The integer k identi-
fies the process to which the last update of V Ci[j] was
related. If this modification was done because of an
internal event or a message sending event at pi, then
k = i. If this modification was made because a mes-
sage receipt from ps, then k = s. We use LUi[j][0]

to denote the value of k and LUi[j][1] the value of uj .
Initially LUi = {(i, 0, 0)}.

LSi (Last Sent): a set of the last sent clocks. It
contains a pair of (j, sj) for a process pj in the system
with sj equal to the value of V Ci[i] when pi last sent
a message to pj . We use LSi[j] to denote the value of
sj . Initially LSi = {(i, 0)}.

TV Ci (Terminated Vector Clocks): vector clocks
of terminated processes. It is a set of vector clocks
that were maintained at terminated processes. Initially
TV Ci = ∅.

3.2. Protocol for Updating the Data Structures

In this study, messages fall into two categories:
(1) computation messages that are related to the dis-
tributed computation; (2) termination and creation no-
tification messages that are transmitted while a process

is terminating or being created. We consider only com-
putation messages in this subsection and the latter will
be discussed in the next subsection.

In the following exposition, a differential vector
clock of pi relative to pj is defined as a such vector
that contains a pair of (k, dk) for each process pk that
the value of V Ci[k] has been updated since last time
pi sent a message to pj and this modification was not
made because of a message receipt from pj . For sim-
plicity we use the term differential vector clock only if
the interpretation is clear from the context.

The protocol for a process pi to maintain its lo-
cal data structures is described as the following rules.
Each rule consists of certain actions pi must take right
before it executes a specific event.

Rule1 (R1): Right before an event is executed at
pi, pi sets V Ci[i] ← V Ci[i] + 1, LUi[i][0] ← i, and
LUi[i][1]← V Ci[i].

Rule2 (R2): When pi sends a message msg to a
process pj , pi updates V Ci[i], LUi[i][0], and LUi[i][1]

according to rule R1, constructs the set msg ·V C = ∅

as follows:
∀(k, ck) ∈ V Ci

if (LSi[j] < LUi[k][1]) ∧ (LUi[k][0] 6= j)

∧(k 6= j) then

msg · V C ← msg · V C ∪ {(k, V Ci[k])};
and attaches msg · V C to the message. Finally, pi

sets LSi[j] ← V Ci[i] before the message is sent. If
(j, sj) /∈ LSi, the operation LSi[j] ← V Ci[i] be-
comes LSi ← LSi ∪ {(j, V Ci[i])}.

The set msg · V C is the differential vector clock of
pi relative to pj and is attached to the message msg.
The condition LUi[k][0] = j indicates that V Ci[k]

was modified due to a message receipt from pj , while
LSi[j] < LUi[k] means that V Ci[k] has been updated
since last time pi sent a message to pj . In addition,
we do not need to transfer V Ci[j] to pj because pj

has already known this. Therefore msg · V C is con-
structed to contain the elements of V Ci that have been
updated since last time process pi sent a message to
pj except (1) this modification was made because of a
message receipt from pj and (2) the element V Ci[j].
Note that this exception is an improvement over Sing-
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hal and Kshemkalyani’s implementation [12, 15].
Rule3 (R3): When pi receives a message msg

from process pj , pi extracts msg · V C from the
message. Then pi executes the actions that are de-
scribed in Table 1. First, V Ci[i] is incremented by
one and LUi[i][0] and LUi[i][1] are updated. Then
V Ci[k], LUi[k][0], and LUi[i][1] are modified if msg ·

V C[k] > V Ci[k] holds. LUi[k][0] contains the ID of
the message sender and LUi[k][1] is set to the updated
value of V Ci[i] if V Ci[k] gets modified. Immediately

Table 1. Actions for pi upon a message
receipt from pj

V Ci[i]← V Ci[i] + 1;
LUi[i][0]← i;
LUi[i][1]← V Ci[i];

∀(k, ck) ∈ msg · V C
if msg · V C[k] > V Ci[k] then

V Ci[k]← msg · V C[k];
LUi[k][0]← j;
LUi[k][1]← V Ci[i];

after taking those actions specified in the rules, process
pi timestamps the corresponding event with the value
of V Ci, which can be used to keep track of causal-
ity relationships between the distributed events. If the
logged events will be checked one by one in the or-
der as they have been logged, then only the differences
from the last logged timestamp need to be stored.

3.3. Process Creation and Termination

To join a system, an external process sends a join-
ing request message to an existing process, the latter
may accept this external process according to certain
prescribed rules that will not be explained here. Af-
ter a process is created or accepted, this new process
will inherit the current value of the local data struc-
tures maintained at the process that creates or accepts
the new one. When a process pi terminates, the cur-
rent value of its local data structures will be taken

over by the process that created or accepted pi or by
one of its ancestors. This is done by running a pro-
cess creation and termination protocol described in Ta-
ble 2. We assume that an initial process pi starts with
Leavingi = false.

As shown in Table 2, when a process pi creates a
new process or accepts an external process pj , pj be-
comes a child of pi and the current value of V Ci is
sent to pj . Process pj inherits the current value of
V Ci, LUi, and LSi from pi. Since pj is created by
pi, pi becomes the parent of pj . TV Cj is set to an
empty set because pj is a new process and therefore
no termination has been reported yet to pj .

The procedure for a process to terminate is a lit-
tle more complex. Before a process pj terminates, it
transfers the current value of V Cj , TV Cj , and Childj

to pj’s parent through a Transfer message and noti-
fies pj’s children their new parent by sending them a
NewParent message. Note that TV Cj contains the
vector clocks that were maintained at those processes
who have reported termination to pj . Upon know-
ing that pj is leaving, pj’s parent, pi, takes over the
causality dependence transferred from pj by recording
this information in pi’s local data structure TCVi if
pi is not leaving. Then pi sends an acknowledgment
back to pj . Process pj terminates when it receives
an AckTransfer message from its parent. The com-
plexity of this procedure arises from the situation in
which while pj is leaving its parent may also be leav-
ing. This situation is learned by pj when it receives
a NewParent message from its current parent. In
this case pj will send a Transfer message again to
its new parent and notify its children their new parent.
These actions repeat until pj receives an acknowledg-
ment for its Transfer message from its parent and
then terminates.

4. Correctness Arguments

In this section we will prove the properties of vec-
tor times that are useful in capturing causality relation-
ships between distributed events.
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Table 2. Actions for process creation and termination
Process Creation:

When pi creates or accepts pj , do the following:
Childi ← Childi ∪ {j};
send a message Init(V Ci, LUi, LSi) to pj ;

When pj receives a message Init(V Ci, LUi, LSi) from pi, do the following:
Parentj ← i;
Childj ← ∅;
Leavingj ← false;
V Cj ← V Ci ∪ {(j, 0)};
LUj ← LUi;
LUj [j][0]← j;
LUj [j][1]← 0;
LSj ← LSi ∪ {(j, 0)};
TV Cj ← ∅;

Process Termination:
//We assume Parentj 6= j, otherwise pj cannot terminate.
When pj terminates, do the following:

Leavingj ← true;
send a message Transfer(TV Cj ∪ {V Cj}, Childj) to process Parentj ;
∀k ∈ Childj , send a message NewParent(Parentj) to process k;

When pi receives a Transfer(TV C, Child) message from pj , do the following:
if (Leavingi = false) ∨ (Leavingi = true ∧ Parenti = j ∧ i < j) then

TV Ci ← TV Ci ∪ TV C; //pi is not allowed to terminate if
Childi ← Childi ∪ Child; //pi and pj are the only two initial
send an AckTransfer() message to pj ; //processes and i < j to ensure that
if Leavingi = true then //at least one initial process exists.

Leavingi = false;
else ignore this message;

When pi receives a NewParent(Parent) message from pj , do the following:
Parenti ← Parent;
if Parenti = i ∧ i > j ∧ Leavingi = true then

clean up all local variables and terminate;
else if Leavingi = true then

∀k ∈ Childi, send a message NewParent(Parenti) to process k;
if Parenti = i then

Leavingi ← false;
else

send a message Transfer(TV Ci ∪ {V Ci}, Childi) to process Parenti;
When pi receives an AckTransfer() message from process Parenti, do the following:

clean up all local variables and terminate;
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Lemma 4.1 When process pi receives a computation

message msg from pj , the differential vector clock

msg · V C contains all of the elements of V Cj whose

value may be greater than that of the corresponding

elements of V Ci at the moment when the message was

sent.

Proof This follows directly from the rules described
in R1, R2, and R3 for maintaining the data struc-
tures at each process, constructing a differential vec-
tor clock, and the requirement to attach the differential
vector clock to the message from pj to pi.

When pj sends a message to pi, the condition
V Cj [k] > V Ci[k] could hold if and only if V Cj [k]

has been updated since last time a message was sent
from pj to pi or since pj was initiated if pj has never
sent a message to pi. In addition, if this modifica-
tion was made because of a message receipt from pi,
then the condition V Cj [k] > V Ci[k] will not hold
according to rule R3 because in this case the condi-
tion V Cj [k] ≤ V Ci[k] must be satisfied. In other
words, the elements of V Cj that may satisfy the con-
dition V Cj [k] > V Ci[k] include only those of them
that have been modified since last time pj sent a mes-
sage to pi and the modification was not done because
of a message receipt from pi.

Theorem 4.2 Let e and e′ be two events, e→ e′ ⇐⇒

V C(e) < V C(e′).

Proof This follows directly from Lemma 4.1 and and
the proofs by Fidge [4] and Mattern [10].

Theorem 4.3 When a process pj is created or ac-

cepted by pi, pj inherits the current value of V Ci at

the moment pi creates or accepts pj .

Proof This follows directly from the process creation
protocol described in Table 2 and the assumption of an
FIFO channel.

Theorem 4.4 When a process pj terminates, another

process pi in the system will take over the current value

of V Cj at the moment when pj terminates.

Proof This follows directly from the process termina-
tion protocol described in Table 2 and the assumption
of FIFO channels

5. Efficiency Analysis

As proposed by Singhal and Kshemkalyani [15],
we define the efficiency of the proposed technique as
the average percentage reduction in the size of vector
clock related information to be transferred with a mes-
sage as compared to when sending the entire vector.
The following terms are defined for this purpose:

Ap: The average number of entries in a differen-
tial clock that are transferred with a message using the
proposed technique.

As: The average number of entries in a vector
clock that are qualified for transmission with a mes-
sage when the technique proposed by Singhal and
Kshemkalyani [15] is used.

According to the rules to construct the differential
clock for transmission in a message, the following in-
equality holds.

Ap ≤ As. (1)

The modification of an element of V Ci is made only
because of (1) an internal event or a message send-
ing event at pi, (2) a message receipt from a process
other than pj , and (3) a message receipt from pj . In
Singhal and Kshemkalyani’s proposal, all of the mod-
ifications are included in the differential vector clock,
while the proposed technique includes only the modifi-
cations made in the first two cases. Equation (1) proves
the improvements of our implementation over Singhal
and Kshemkalyani’s protocol [15].

In addition, the following inequality holds.

Ap ≤ n (2)

Bs: The number of bits to code the value of V Ci[j].
Bp: The number of bits that are needed to code a

process ID. Assuming that a process ID is represented
with an integer number, then Bp = log2n.

When a vector clock is attached to a message, the

Conf. on Parallel/Dist. Proc. Tech. & Appl. | PDPTA'06 + RTCOMP'06 | 598



elements of this vector need to be identified even if
the entire vector is transferred. The number of bits
for each entry of the vector is (Bp + Bs) and it is the
same as when the entire vector is transferred in a dy-
namic system. Therefore the efficiency of the differ-
ential technique (E) is defined as follows:

E =

(

1−
(Bp + Bs)×Ap

(Bp + Bs)× n

)

× 100%

=

(

1−
Ap

n

)

× 100%. (3)

From equation (3) we know that the differential tech-
nique is always beneficial because of equation (2).

6. Conclusions

We have developed a differential technique to im-
plement vector clocks in dynamic systems. The
implementation is an extension of Singhal and
Kshemkalyani’s protocol [12, 15] and is theoretically
more efficient than their protocol in reducing the re-
quired communication overhead. Correctness of the
proposed technique has been proved.

When a process pj is created or accepted by pi,
pj inherits pi’s vector clock with the value when pi

creates or accepts pj . When a process pk terminates,
some process in the system will take over pk’s vector
clock with the value when pk terminates. These ac-
tions of inheritance and takeover are guaranteed even
when several processes terminate concurrently.
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