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An Efficient Industrial System for Vehicle Tyre

(Tire) Detection and Text Recognition

Using Deep Learning

Wajahat Kazmi , Ian Nabney, George Vogiatzis, Peter Rose, and Alex Codd

Abstract— This paper addresses the challenge of reading low
contrast text on tyre sidewall images of vehicles in motion.
It presents first of its kind, a full scale industrial system which
can read tyre codes when installed along driveways such as
at gas stations or parking lots with vehicles driving under
10 mph. Tyre circularity is first detected using a circular Hough
transform with dynamic radius detection. The detected tyre
arches are then unwarped into rectangular patches. A cascade
of convolutional neural network (CNN) classifiers is then applied
for text recognition. Firstly, a novel proposal generator for the
code localization is introduced by integrating convolutional layers
producing HOG-like (Histogram of Oriented Gradients) features
into a CNN. The proposals are then filtered using a deep network.
After the code is localized, character detection and recognition
are carried out using two separate deep CNNs. The results
(accuracy, repeatability and efficiency) are impressive and show
promise for the intended application.

Index Terms— Intelligent vehicles, deep learning, computer
vision, tyre (tire) sidewall, Optical Character Recognition (OCR).

I. INTRODUCTION

T
HIS paper describes a complete system for the detection

and recognition of codes printed on the tyre sidewalls

(outward plane of the tyre). The codes carry information about

the tyre brand, manufacturing plant and its age. For vehicle

users, especially fleet operators, this information is crucial

since it provides additional data for automated tyre condition

monitoring. But it is a challenging task because outdoor use

of tyres leads to wearing of the text due to material erosion,

dust, dryness and humidity. Above all, the text has a very low

contrast (black-on-black) which is at times challenging even

to human eye as depicted in Figure 3. In our survey, we could

not find any 2D color or grayscale image processing based

solution for this problem in an outdoor setting. All the previous

attempts were not encouraging enough to pursue this approach
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Fig. 1. Problem scenario and the proposed solution.

any further [1]. Therefore, all the industrial products available

to read tyre codes are either 3D scanner based system for use

in indoor and controlled inspection tasks [2]–[4] or hand-held

laser devices for both indoor and outdoor applications [5].

For reading embossed or engraved text, lighting becomes

important because the legibility of the text can be improved

through shadow casting. Given bidirectional light incident at

very acute angles, there is some success using low-level image

processing [6]. But it is not suitable for uncontrolled outdoor

situations such as depicted in Figure 1(a).

In this regard, the recent developments in deep learning-

based image classification and text recognition holds promise

for this problem. There has been a lot of work done in

text recognition in the wild using deep Convolutional Neural

Networks (CNNs) [7]–[10]. Deep CNNs are the state-of-the-

art and have surpassed the traditional approaches using hand

crafted features such that almost all the top-ranked results

in image processing use deep learning especially for text

recognition [11]. But no one seems to have addressed the

problem of recognizing embossed text in the wild.

In this paper, we address this problem using a combination

of standard computer vision/image processing, hand crafted

features and deep learning. We propose, to the best of our

knowledge, the first of its kind, tyre text reading system. Its

a five stage system (Figure 1(b)) with object illumination and

high frame-rate image acquisition, followed by tyre detection

and text reading using deep convolutional neural networks.

The system requires the vehicles to be moving under 10 mph,

which is suitable for installation at gas stations, parking

lots and entry/exit points of motorway toll booths. This is
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Fig. 2. Tyre radial coverage per camera and sample images.

an extension and thorough testing of our earlier work [12].

As an extension, we introduce a fully CNN based proposal

generator using low level features (HOG-CNN) and compare

it with HOG-MLP from our previous work as well as a well

known off-the-shelf proposal generator, the Edge Box [13].

Apart from discussing the classification architectures in detail

and explaining the rationale behind their design, we also do

extensive testing of the repeatability of character recogni-

tion and also compare them with a standard, off-the-shelf,

Optical Character Recognition engine (OCR), the Google

Tesseract [14].

The structure of this article is as follows. Sections II and

III describe the image acquisition setup, tyre detection and

unwarping, respectively. A novel proposal generator combin-

ing hand-crafted features within a CNN architecture for code

localization is described in Section IV. Code text detection

and reading are described in Section V. Results are discussed

in Section VI. Section VII concludes the paper.

II. IMAGE ACQUISITION

The proposed setup is intended to be replicated to client

sites. Imaging hardware including cameras and light sources

will be installed at every site, one each for the left and the

right hand side of the vehicle. With several potential sites in

view, image acquisition is the most expensive bit of the entire

system. Therefore, for such an industrial system, hardware cost

becomes a major concern.

Keeping both the cost as well as the complexity of the task

in mind, the tyre imaging was split up across a dual-camera

arrangement (Figure 13). Each camera focuses on the upper

half of the tyre. Combined, they ensure full radial coverage as

shown in Figure 2. As the vehicle approaches the camera/light

assembly, the first camera captures the first radial half of the

tyre, while the second camera, the other half. This arrangement

reserves the field of view for the upper half of a tyre which

is in translation and rotation. It has two distinct advantages:

1) Focusing on the upper half only eases the design and

installation of the light source. 2) As the target object size is

reduced, cameras of half the required resolution can be used.

This option is several times more economical than using one

full (high) resolution camera.

Fig. 3. Tyre sidewall with code printed. Same tyre and position with only
changing illumination source position. Light angles (a) orthogonal or frontal
(b) oblique w.r.t the plane of the sidewall. The breakdown of the code is: DOT
(Department of Transport USA approved), A5 (manufacturing plant), EY (tyre
size, manufacturer specific), 018R (manufacturer-specific batch number) and
4808 (date of manufacture in WWYY format) [16]–[18].

Figure 3 shows that strong directional lighting at an acute

angle enhances the contrast and the legibility of the text. In this

regard, a specially designed light-reflector assembly was devel-

oped, targeting the upper half of the tyre of a moving vehicle.

The cameras are triggered when a vehicle approaches the

driveway. Images are acquired at 25 FPS (frames per second),

using industrial grade GigE cameras. Depending on the speed

of the vehicle, generally 5 to 10 images/axle are acquired at

this frame rate which ensures full radial imaging of the tyre

sidewall. In order to avoid motion blur, we used global shutter

cameras.

III. TYRE DETECTION AND UNWARPING

Acquired images have partial to semi sector of the tyre

in the field of view as shown in Figure 2. In order to read

the text, the tyres sectors must first be transformed into

straight rectangular patches. For this purpose, tyre circularity

is detected using Circular Hough Transform (CHT) [15] after

illumination normalization. CHT is used to detect the circular

junction of the hub cap and tyre (see Figure 4). But sometimes

the wrong circle is detected due to some other circularity (such

as a wheel arch or inner disc brake) being more dominant

(greater contrast in the image due to strong strobe lights).

In order to avoid this situation, all the images of each axle are

processed for n radii ranges in parallel threads. The number

of detected circles are collectively voted in a radius range

histogram. The dominant radius i.e. the one corresponding

to the bin with maximum votes is then selected as the tyre

radius. Once the junction of the hub cap and tyre are detected,

a second circle corresponding to the outer radius of the tyre

(Figure 4(b)) is chosen at a fixed offset from the first radius.

This is sufficient since the tyre code generally falls near the

inner radius.

After tyre detection, the radial image patch between the

inner and the outer radii is unwarped to a rectangular lattice

using a Polar-to-Cartesian mapping as shown in the scheme

in Figure 4(a). This not only unwarps the circularity, but also
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Fig. 4. Unwarping scheme with tyre’s inner and outer radii. Unwarping is
done using Polar-to-Cartesian mapping.

crops out only the necessary part of the image, which reduces

the computational burden on the subsequent stages.

The first three steps of the pipeline, namely, image acquisi-

tion, tyre detection and unwarping were implemented in C#.

Tyre detection and unwarping take about 500 ms/image on a

3.6 GHz Core i7 CPU.

IV. CODE DETECTION

In this section, a machine-learning based approach for

code detection and localization on the unwarped images

is discussed. The character sequence DOT (Department Of

Transport, USA) is used as an anchor. It means that the word

DOT must first be detected to narrow down the search space

as in most cases, it precedes the code. This stage has two

modules in cascade i.e. proposal (region of interest) generation

(Figure 6 (b)) followed by verification or code localization.

Hand-crafted features such as Histogram of Oriented Gra-

dients (HOG) have been successfully used for text detection

[19]–[21]. HOG combined with a Support Vector Machine

(SVM) classifier in a sliding window manner produced rea-

sonable results for DOT detection as well but given the size

of the image (500 × 2000 to 4000 pixels), it takes a few

minutes to scan the image. This time-scale is too long and

is unacceptable for industrial applications. Ideally, we would

like to have end-to-end results in less than a minute for CPU-

based processing. Deep learning based object detection with

fully connected layers as convolutional layers such as [22] or

ROI pooling before the fully connected layers such as Faster-

RCNN [23] and Mask-RCNN [24] after flexibility to process

variable size input images. But our images are much bigger in

size and using deep networks for proposal generation would

be too costly on a CPU. It would require a large-memory GPU

(12 GB or more), which increases the total system cost.

Therefore, in this paper, we propose a solution by combin-

ing hand-crafted features within a CNN-based classifier for

efficiently generating proposals. We use HOG features and

therefore call it HOG-CNN. Before we delve into the details,

it should be mentioned here that all the CNN training runs

discussed in this paper used Stochastic Gradient Descent with

back propagation in Matlab using MatConvNet library [25].

The text training data was synthetically generated whereas the

background class was extracted from real tyre images as shown

Fig. 5. (a) Synthetically generated data (b) real tyre patches (used for
background classes).

in Figure 5. Every network used one or more 50% dropout [26]

layers during the training to prevent over-fitting. Difference-

of-Gaussian (DoG) filtering was applied to the input data for

illumination normalization and edge enhancement.

A. Synthetic Data Generation

As the task involves reading text embossed on many dif-

ferent tyres in varying conditions of light, weather and wear,

we required a substantial amount of training data to achieve

good generalization. Gathering a large and annotated dataset

is a very costly and a time-consuming process. Therefore,

training data was synthetically generated using several dif-

ferent fonts and a text rendering engine. Initially, a black and

white text mask was created using various fonts in random

sizes. The mask was then incrementally smeared (adding

multiple copies or shifting the rendering position in a small

neighbourhood. This took place in varying directions (to

represent the revolving shadows) and lengths (to represent

different shadow lengths). The image mask was then merged

with tyre backgrounds to produce realistic embossed/engraved

text images as they should appear on the tyre sidewall. Figure 5

shows a sample set.

B. Proposal Generation for Code

For proposal generation, we used HOG features as input to

a CNN based classifier in two different ways. We both used

a unified architecture and extracted HOG features within a

CNN network (HOG-CNN) as well as extracted the features

externally and interfaced them to a CNN based Multi-Layered

Perceptron (MLP) appropriate for a multi-class task [27] (we

call it HOG-MLP). We also compared our proposal generators

with an off-the-shelf proposal generator, the Edge Box.

1) Low-Level Edge Based Proposal Generator: One of the

most popular low-level proposal generators is edge boxes [13].

It uses edge maps across the three channels of a color image.

Since we have grayscale images, we therefore composed a

three channel image by stacking the original, a histogram
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Fig. 6. (a) Tyre detected with centre outside the image boundaries. (a) Corresponding unwarped image with proposals for the code localization generated by
HOG-CNN at 3 scales i.e. original (W), 1.25% (Y) and 0.75% (b). The green bounding boxes in green are detected by the code localizer network. (c) Code
proposal scoremap generated at original scale. (d) Corresponding HOG feature visualization of the code anchor DOT. (e) Character detection and classification.

Fig. 7. Block diagram of network architectures (a) complete HOG-CNN
(b) externally computed VLFEAT HOG features with a multi-class MLP
(HOG-MLP). Dropout layers are omitted in the diagram. Both (a,b) employ
UoCTTI method. O is the number of orientations (9 (a) and 16 (b)), C is the
cell size (8 × 8 used in general), nC is the total number of classes. Parameter
memory for these networks is 1 to 3 MB.

equalized and a Difference of Gaussian image. We empirically

found out that such a combination works better than plain

greyscale image. Results are shown in Figure 8(a).

2) HOG-CNN: HOG-CNN was primarily inspired by the

work of [28] in which they used CNN layers to produce

HOG-like features, just to invert and recreate the original

images later. Instead, we plugged-in a fully convolutional

network at the end of HOG layers, which makes a complete

CNN architecture terminating at a cross-entropy loss layer as

shown in Figure 7 (a). Such a network is shallow with fewer

convolutional layers and channels than deep networks.

HOG has two widely used implementations, i.e. the original

one by [29] and UoCTTI by [30]. CNN-based HOG extraction

layers of [28] were numerically equivalent to [31] UoCTTI,

so we used the latter. As explained by [28] for extracting HOG

features using a stack of convolutional filters, a directional

filter was applied in K = 2× number of orientations (O). The

kth directional filter is given by:

Gk = Gx u1k + G y u2k where uk =

⎛

⎜

⎝

cos
2πk

K

sin
2πk

K

⎞

⎟

⎠
, (1)

and the gradients in x and y are:

G y = GT
x , and Gx =

⎡

⎣

0 0 0

−1 0 1

0 0 0

⎤

⎦ (2)

The directional filter casts the projection of the input along

direction vector uk as g Euk . After directional filtering, HOG

binning was performed by the following activation function:

hk = ||g||

�

1 i f g Euk > ||g|| cos
π

K
0 otherwi se




. (3)

In HOG feature extraction, the binned gradients are pooled

into cells which are then combined in 2 × 2 blocks. This

was done through a stack of linear filters. After normalization

(l2 norm), the blocks were decomposed back to the cell

structure and the values were clamped at 0.2 (i.e. max{x, 0.2}).
In UoCTTI HOG, directed gradients were voted for twice the

number of orientations (hdo) within the range [0, 2π) along

with one set of undirected gradients (huo). So a total of 3×O

channels were used in HOG-CNN.1

Hence, for an input image of 60(H ) × 130(W ), the CNN-

based HOG produced a feature map of 7 × 16 × 27 for 8 × 8

cell size and 9 orientations. As in OverFeat [32], we added

randomly initialized fully connected (FC) convolutional layers

with a mask size of 7×16×27× . . . (equal to the output size

of the previous layer) in order to create a fully convolutional

1http://www.vlfeat.org/api/hog.html
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network. This was followed by a 50% dropout and another

FC layer as shown in Figure 7 (a). Dropout is a regularization

technique which prevents overfitting through simply skipping

some neurons [26].

Training such a network can be tricky as few layers were

predefined while the final classifier was randomly initialized.

In our case, it was trained on the dataset (more than 500K

images in total with DOT class synthetically generated). Train-

ing set contained a DOT and a background class containing a

mixture of non DOT text, edges and plain backgrounds. A total

of 80-90 training epochs were deemed sufficient. Since the

network is shallow with sparse filters, it could be efficiently

trained even on a CPU.

3) HOG-MLP: For HOG-MLP, HOG features were

extracted using VLFEAT library [31] and were fed into a

CNN-based multi-class MLP (HOG-MLP) (Figure 7 (b)).

In VLFEAT HOG, gradients are binned for 3 × O + 4

texture components [33]. Therefore, for an input image size of

60(H ) × 130(W ), an 8 × 8 HOG cell size and 12 orientations

(40 components), the first layer in the network was 8×16 ×
40×. . .. The cell size and the number of orientations were cho-

sen to achieve best possible detection accuracy. It was trained

on a 11 class (nC = 11) dataset of more than a million images

containing 7 synthesized DOT classes for round/square/thin

and broad fonts, clear and diffused appearance, long and short

shadows, single and double spacing between the characters

etc along with 4 background classes divided among plain

backgrounds and textures.

A second HOG-MLP proposal generator was constructed

with cell size = 8× 8, O = 16 (making up a total of 52 com-

ponents), nC = 4 (i.e. DOT, plain background, edge/texture,

non-DOT text) shown in Figure 7 (c). The outputs of both the

HOG-MLPs were mapped to a binary classification (DOT/non-

DOT). For both of these networks, satisfactory results were

obtained after training for 30-50 epochs. Just like HOG-

CNN, these sparse networks could also be efficiently trained

efficiently on a CPU.

Comparison: In order to detect variations in the perceived

font sizes either due to change in the engraved font size

or distance between the car and the camera, images were

scanned at three scales (1.25, the original size and 0.75) for

proposal generation. The non-maximum overlapping bounding

boxes of the proposals were suppressed (NMS) using box area

intersection-to-union ratio compared to a fixed threshold.2 The

filtered proposals were then passed onto the next stage of

the cascade to finally localize the code and reject the false

positives.

As the text was of very low contrast, for proposal gen-

eration, low-level feature-based approaches such as Edge

Boxes were found to be unsuitable. The reason was that the

strong edges from other segments of the tyre with or without

text, as shown in Figure 8 (a), usually dominate.

It was observed that the machine learning based proposal

generators were comparable though HOG-CNN was slightly

better generating fewer proposals and hence generalized the

2Tomasz Malisiewicz https://github.com/quantombone/exemplarsvm/tree/
master/internal

Fig. 8. Comparison of code proposal generation. (a) Edge Boxes [13].
(b) HOG-CNN binary classifier. (c) HOG-MLP 10-way classifier mapped to
a binary output (O = 12). (d) HOG-MLP 4 way classifier mapped to a binary
output (O = 16). For color code of the boxes, refer to Figure, 6.

Fig. 9. Code localization network architecture. Every convolution layer was
followed by a rectified liner unit (ReLU) layer as well as a 50% dropout layer
from the 4th convolution layer onwards. Parameter memory 496 MB.

data more than HOG-MLP 10-way classifier (Figure 8 (b,c)).

Both HOG-CNN and HOG-MLP have a very high recall rate

(100% in Figure 17). Figure 8 (d) presents the best proposal

generator with HOG-MLP (O = 16, nC = 4) and a 4 way

classification with the least false positives. Though with many

closely matching classes, HOG-MLP was simpler to train.

A sample of training classes is shown in Figure 10.

On comparison between the three proposal generation

approaches, the scan times by the HOG-CNN and HOG-MLP

for an image of 500 × 3000 pixels) were around 550 and

250 ms respectively on an Intel Core i7 3.6 GHz CPU (see

Figure 14), whereas by using for the edge box approach,

the code shared by the authors 3 took just under 7 secs to

generate proposals over three scales (Figure 8(a)).

C. Code Localization

To finally localize the code from the filtered code propos-

als, a deep network similar to [7]’s 90K dictionary network

3https://github.com/pdollar/edges
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Fig. 10. Sample classes used in the code proposal generator. DoG Images
(a) DOT classes based on font and sizes (b) background classes (c) random
noise, blurring and affine deformations injected during training.

Fig. 11. Architecture of text detector network. Every MaxOut layer was
followed by a 50% dropout layer.

(Figure 9) was used. Training set for this network con-

tained multiple DOT and background classes (800K images

in 10 classes: 7 DOT classes from Section IV-B.3 and 3 back-

ground classes for plain background, edges/texture and non-

DOT text). The classification results were then mapped to a

binary output. As a result, a lot of false positives among the

proposals were being rejected and only a few strong candidates

were retained (the green boxes in Figures 6(b) and 8). False

positives seeping through at this stage (non-DOT green boxes)

were addressed through text recognition, the subsequent stages

of the cascade.

V. CODE READING

Code reading consists of two stages, text detection and

recognition. The code patch of the image is first pre-processed

to crop it down to the text height using low-level filtering.

Bilateral filtering is done optionally in order to smooth out

any unwanted background texture. Then the patch height is

resized to 40-50 pixels in accordance with the text detection

network’s stride (number of pixels skipped between to con-

secutive detection windows on the input image).

A. Text Detection

The code characters are detected using the network shown

in Figure 11. Since the text has very low contrast with

respect to the background, a dense prediction mechanism is

required. In fully convolutional networks, max-pooling layers

downsample the image which increases the network stride.

Removing max pooling layers will allow dense (pixel by pixel)

predictions but will enormously increase the parameters space

which will have its toll both on the efficiency and accuracy.

Fig. 12. Architecture of Character recognition network. Every Convolution
layer was followed by a ReLU layer. From the 2nd Conv layer onwards,
a 50% dropout layer was added after every conv layer. P(w|x) represents the
probability of each class and @(bg) is a superset of all background classes.

Fig. 13. Sidewall text reader with dual camera/light housing towers in
operation (courtesy CNET.com)).

Regularization techniques such as DropOuts in combination

with MaxOut activations are helpful in improving the accuracy

[34], [35]. Therefore, as shown in Figure 11, Maxout layers

were used in this architecture. We observed that if a ReLU

precedes Maxout layers, the network converges quickly to a

minimum.

Training was done on a 700K image dataset with text class

synthetically generated (section IV-A). The background class

was extracted from actual tyre patches. It contained simple

edges, ridge patterns, cast or die shapes (sometimes used to

emboss text on tyres) and a plain background. The output

was mapped to a binary class probability i.e. Text/non-Text.

The text detector produced bounding boxes centered around

regions with the highest probabilities of text being present.
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Fig. 14. Timings comparison (CPU:Corei7 4790 3.6 GHz 16 GB RAM vs GPU:GTX-1080 8GB GPU RAM) for obtaining end-to-end results from unwarped
images. Shown are the average times of 50 images ranging in size from 500 × 1600 to 500 × 4500 (depending on the tyre size and position) with an average
size of 500 × 3000. NOTE: Image acquisition, tyre detection and unwarping time is not included (which is approx. 500 ms/image). Scanning a 500 × 3000
image with the deep code localizer network only (section IV-C) takes more than 20 ms on the CPU. (a) HOG-CNN end-to-end network trained with back
propagation (total time CPU: 3.8 secs/image, GPU: 1.0 secs/image) (b) HOG-MLP (O=12, nC=10) with externally extracted HOG features (total time CPU:
5.15 secs/image, GPU: 1.2 secs/image). In GPU mode, only the CNN networks are processed on the GPU.

Non-maxima suppression was applied (section IV-C) to the

detected boxes to filter down the proposals. We could have

used a character classifier for text detection as well. But, in our

experiments, we observed that a dedicated classifier for text

detection performed better.

B. Character Recognition

Detected text locations were used to crop characters which

were then fed into a character classifier network based on [7]’s

90K dictionary network as shown in Figure 12. This network

has classes for numerals 0-9, capital alphabets A-Z (excluding

I, Q, S and O which are not used in the tyre codes) and seven

background classes, making a 39-way classifier which was

mapped to 33 classes (32 character and 1 background class).

The model was trained on our synthetic character dataset of

around 700K images.

VI. RESULTS AND DISCUSSION

As this is an industrial system, both accuracy and efficiency

are important. We will discuss both in detail.

A. Experimental Setup

Data was collected from the complete system installed at

one of the sites as shown in Figure 13. The data collection was

not planned. Rather in the absence of a benchmark to compare

against, a subset of images representative of the weather

and the tyre conditions was shortlisted and processed for

assessment. As it can be observed in the figure, the installation

imposes certain restrictions on movement of the vehicles, such

as their speed and orientation w.r.t to the cameras. This not

just helps in improving the overall performance of system but

also reduces the cost of the cameras/light units by limiting

the speeds to under 10 mph. Higher vehicle speeds are not

an impediment for the algorithm but rather for the image

acquisition system and hence would raise the cost of the

camera units by an order of a magnitude. The algorithm is

designed to process still images without significant motion

blur. Once such images are acquired, the sidewall text reader

should be able to process the images as usual.

B. Accuracy

Accuracy is dependent on the data sample being analysed.

The training error of every classifier in the cascade was under

5%. But since the training data is in part synthetic, even

with regularization, models may still tend to overfit which in

turn compromises the performance on real images. To some

extent this tendency has been avoided by injecting random

noise and affine deformations during training as shown in

Figure 10 (c).

As argued before, in the absence of a benchmark for tyre

text recognition, it is difficult to quantify accuracy which

is subjected to light conditions, weather (dry/wet), object’s

(tyre’s) condition / material / age / wear & tear. We therefore

assessed the accuracy on nine representative images which

depict very well the possible situations. Figure 17 (a) show

increasing complexity of text legibility from images 1 to 6.

Images 7 to 9 are even difficult for human observers.

Figure 17 (b) shows the accuracy graph which is calculated

for every code image as:

Accuracy = {Total number of characters - Number of

misclassifications (including background detected as text)}/

Total number of characters. —– (eq. 1)

The code proposal generator is less likely to miss any

region containing characters DOT (100% recall), as it responds

strongly to a central O (Figure 6 (c)), especially with scanning

done at three scales. Therefore, DOT has been successfully

detected in all of the sample images in Figure 17 (100% recall)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 15. Tyre detection results: Different vehicles with varying height and
tyre radius and centre both inside/outside the image frame.

Fig. 16. Tyre detection results: Same vehicle travelling across the field of
view with tyre centre outside the image frame (processing time 500 ms/image
on Corei7 3.6 GHz CPU).

and thus this makes the code detection, a fairly robust part of

the cascade. Text detection and recognition, on the other hand

may suffer because of the above mentioned conditions. From

1 to 5, the text recognition accuracy is 80% or above which

includes very tiny font (image 1), damp (image 3) and dark

(image 4). Image 5 is an extremely dark tyre with poor contrast

and texture. Therefore, number 0 and 8 were misclassified as D

and 3 along with J as I in 2JFR (still 80% accuracy). In image

6, the characters are generally diffused with the last half of

the code segment badly effaced or rubbed off. Even then, only

two date digits were misread (1613 as 121_) along with two

ghost detections (background as Y and die shape as C) and

an overall accuracy of 73% was achieved.

Figure 17 (a) images 7 to 9 show situations in which the text

legibility is reduced due to rain water (image 7 and 9) creating

undesired reflections and scintillation off the tyre surface or

muddy water splash (image 8) creating unwanted texture, both

of which change the appearance of the text. Deep networks

for the text recognition can be improved by including such a

data in the training but it may compromise the performance

on good text. Therefore, in these cases, we do not attribute

the error in text detection/misclassification to be a fault of

the text recognition system. The appearance can vary within

a large variance depending on the amount of water on the

tyre and the angle of the text w.r.t the light source. In these

examples, the accuracy varies from 73% down to 14% which

is quite understandable as, for example, code image 9 even

beats the human eye. Due to this increased unpredictability,

we mark such cases difficult.

As now we have an estimate of accuracy, lets assess the

repeatability of the system on legible (non-difficult) cases.

C. Repeatability

Another reliable measure of performance in such cases is

repeatability. This means, how consistent are the results if

the same tyre passes in front of the system multiple times.

Figure 18 shows such a code reading repeatability test.

Please note that based on the availability of drivers/vehicles,

the number of drive-overs (driving past the imaging system)

is not consistent. The drive-overs took place in uncontrolled

manner on different dates with varying light/weather

conditions and driving patterns. Each drive-over contributes

one code patch displayed in the figure. Sub-figures (a, b,

c, d) show fairly consistent and accurate detections across

the drive-overs and only when the tyre moves away from the

light source (b: last three detections) the text diffuses into the

background, producing text detection and classification errors.

(d) is a case with tiny font as in Figure 17 (b). However,

(e) and then particularly (f) are tyre examples with strong

background textures producing ghost detections (detecting

characters that are not actually there) as well as missing or

misclassifying the detected ones. Mean accuracies per drive-

over are displayed in (g). These tests show an average accuracy

of 86%. Drive-over accuracy is calculated as per eq. (1) in

Section VI-B.

Looking at these figures, we can infer that owing to the

contrast reduction and/or increase in the background texture,

the performance does suffer. But the performance still seems

quite robust and repeatable given such a challenging task.

Further tuning the same classifiers for addressing some of

the problems such as characters with little separation will

make it respond to unwanted shadows and shapes. However,

there is still room for improvement since a single wrong

reading of a character can mislead the brand, size or date

of manufacturing to a widely different one. One major source

of such an error is a fixed window size for text detection as

the unwanted background texture may prevent accurate text

height estimation. In order to address this problem, bounding

box regression techniques and end-to-end training of both text

detector and character recognizer will be required [8], [10].
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Fig. 17. (a) Nine different unwarped tyre images with varying degree of contrast and complexity. HOG-MLP proposals are represented in white, yellow
and blue boxes for three scales i.e. original size, 1.25% and 0.75%. Code boxes verified by deep network are in green. 1) Tiny font size but a clean tyre
[DOT 09 RP 56]. 2) Clean tyre with low background texture [DOT XA BK L757 0613]. 3) Damp but clean tyre with low background texture [DOT XJ
C3 R255 1515]. 4) Low background texture with clean but dark surface [DOT CP8P P3XO 0616]. 5) Very dark tyre rubber with noticeable background

texture [D D OT DMBL 2JFR 5013]. 6) Worn out tyre with effaced or rubbed off characters DOT JJ8K Y HMBL C 1613. 7&9) Soaked wet tyres DOT

A540 JCMR 1216 & DOT 7GJR R3V 0517. 8) With muddy water stains adding a strong texture [DOT 7GT5 H N9J 4 1414]. NOTE: Characters in
are background misclassified as text. Missed or misclassified characters appear in italics. (b) Corresponding character recognition accuracies. (c) Comparison
between CPU and GPU processing times (Core i7 3.6 GHz vs GTX-1080).

D. Tyre Manufacturer Information Retrieval

Tyre DOT codes are allotted by USA Department of Trans-

port (D.O.T) and it spans across the tyre manufacturers of the

entire globe. Only D.O.T has a complete database, which can

be checked for individual codes [37]. Some freelancers have

accumulated a DOT code database as well, which provides

a better overview. Following the breakdown of DOT code

as described in the caption of Figure 3 (b), only the first

two characters and then the date part is important and can

be tracked from a central database. Other characters are
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Fig. 18. Code reading repeatability assessment with six different tyres driving past the system multiple times (driveovers). (a) Clear text in each driveover
(mean accuracy 95%). (b) Strong shadows can also mislead character recognition and background texture can produce ghost detections (mean accuracy 90%).
(c) Vehicle gradually moving away from the light source diminishing the contrast which leads to missed characters (mean accuracy 85%). (d) Tiny font
size and narrow spacing produces challenge for text recognition networks (mean accuracy 86%). (e,f) Increasing background texture poses problem for text
recognition for such a low contrast text (mean accuracies 80% and 78%, respectively). Average accuracy of the 6 sets is 86%. NOTE: DoG images. Incorrect
detections/classifications are underlined in red whereas @ sign denotes background class.

manufacturer specific. The first two characters carry detailed

information about the manufacturing plant of the tyre. We used

the predictions in Figure 17 with Harringer DOT code database

[36] to assess the accuracy of the information on the tyre

level. The results are reported in Table I. From among the

9 tyres in Figure 17 (a), 7 manufacturers and their plants were

correctly identified. Only 2 among the three difficult cases

marked red in the figure could not be retrieved correctly.
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TABLE I

DOT CODE INFORMATION OF TYRES IN FIGURE 17 (A) AS RETRIEVED BY OUR SYSTEM FROM [36]. OUT OF 9, ONLY 2 TYRE MANUFACTURERS WERE

IDENTIFIED WRONG (TYRE NUMBER 7. AND 9. IN THE FIGURE) WHICH ARE ALREADY MARKED AS DIFFICULT CASES

E. Comparison With OCR

Optical Character Recognition (OCR) generally performs

well when there is a clear contrast against the background,

such as scanned images of documents, for example, black

over white text. In case of vehicle tyres, as argued earlier and

shown in Figure 3 (a) (b), light angles are important in order to

enhance the text against its similar background by projecting

shadows. Even after this, the background only diminishes

slightly (see Figures 3 (b)) which is not a sufficient contrast for

OCR. Our experiments with standard OCR, such as Google’s

Tesseract OCR engine, produced very discouraging results

as either a few incorrect characters or nothing at all was

detected. Pre-processing of images to completely remove the

background such as proposed by Panetta [6] is neither practical

(requires strobe to flash at 90o to the plane of the sidewall)

nor useful (results are not stable or repeatable).

F. Efficiency

For an industrial system, with an end user waiting for

results, efficiency is crucial. GPUs (Graphical Processing

Units) are extensively being used in deep learning-based

systems. But deploying GPUs means scaling up the total

system cost as well as its complexity as extra power may

be required while operation under hot weather may still be

another hurdle. With an increasing demand and every site

requiring two units (one each for the right and the left hand

side of the vehicle), keeping the overall cost low is a key

attribute. Thus a CPU based system is ideally sought. It can

be observed in Figure 6 that the interesting part of the tyre is

a relatively small segment of the image. Scanning the entire

unwarped image (average size 500 × 3000 pixels) with the

deep network of Figure 9 takes more than 20 secs on a Corei7

3.6 GhZ CPU (required parameter memory 496 MB), which is

sought by networks proposed by [8], [10], [38]. Our cascade of

HOG-CNN (required parameter memory 1 to 3 MB) followed

by a deep scan of proposals thus generated reduced this total

time to around 3 sec (see Figure 14). It is an improvement

by an order of magnitude in terms of efficiency (almost 95%

speedup), as well as a significant reduction in the total system

cost and complexity, without any apparent compromise on

the accuracy. With this, the end-to-end results for processing

an image for tyre detection and unwarping (C#), and then

scanning a resultant 500 × 3000 pixel unwarped image at

three different scales followed by detecting and reading the

code (MATLAB) takes on average 3 to 5 secs on the above

mentioned CPU. On a GTX-1080 GPU, this time is between

1 to 2 secs (see Figure 14).

VII. CONCLUSION

In this paper, we presented a complete pipeline for detecting

and reading tyre codes of a moving vehicle using roadside

cameras. The article also presented a novel technique for

efficient proposal generation by combining HOG with CNN

based classifier. Using state-of-the-art deep learning models

and fully convolutional networks, a robust and efficient archi-

tecture was presented. Although, in the given problem, there is

no benchmark to compare the performance against, the image

results show that it is quite effective and accurate. There

is still room for further improvement, especially in the text

detector. Making it robust to both weak characters as well as

for closely spaced fonts will improve the over all accuracy of

the system. Other aspects for further investigation are multi-

scale text detection tied to a bounding box regressor and a

separate date classifier within an end-to-end framework than

in a cascade.
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