
INFORMA TION SCIENCES 16, 137- 150 (1978) 137 

An Efficient Job scheduling Algorftbm 
for Mixed T unwound and Deadlhe Applications 

K. SUNDAR DAS 

LJnitwsi@ of Texas at San Antonio 
San Antonio, Texas 78285 

and 

TOBY J. TEOREY 

The Universi@ of Michigan 
Ann Arbor, Michigan 48109 

ABSTRACT 

Computer job scheduling is often performed with little understanding of the formal 
properties of the jobs being scheduled. One reason for this is that optimal solutions for job 
scheduling on computers are difficult to obtain if the job stream has mixed objectives, i.e., it 
consists of some jobs whose turnaround time has to be minimized and others whose deadlines 
must be met. A practical algorithm for scheduling mixed job streams on monoprogrammed 
computers, with potential application to a multiprogramming environment is presented. The 
algorithm takes into account variable cost rates for each job. Experimental results illustrate 
the efficiency of the algorithm in terms of both its proximity to optimal solutions and its low 
computational complexity. 

1. INTRODUCTION 

Operations research literature has given considerable attention to the prob- 
lem of scheduling a set of given jobs on either a single machine or multiple 

machines, each of which can execute at most one job at a time [l, 4, 6-101. 
Such scheduling algorithms are applicable to monoprogrammed computers. 

Furthermore, they consider only job streams whose costs are functions of 
either turnaround times or deadline requirements. Such job streams will be 
called homogeneous job streams. 

In contrast to this, data processing centers usually encounter mixed job 
streams, i.e., some jobs require the consideration of their turnaround times, 
while others require the consideration of their deadline times. It is the purpose 
of this paper to develop a job scheduling algorithm for mixed job streams. This 
algorithm, called the modified Wilkerson-Irwin (MWI) algorithm, is applicable 

aElse.vier North-Holland, Inc., 1978 0020-0255/78/08Ol37l3$01.75 



138 K. SUNDAB DAS AND TOBY J. TEOKEY 

to monoprogrammed computers operating in a batched environment. The 
motivation for developing the algorithm, however, grew out of the need to 
improve job scheduling on multiprogrammed computers. The feasibility of this 
algorithm for multiprogrammed computers has also been proposed [5]. 

Section II presents a cost function for scheduling situations in general. 
Section III presents a review of the literature, and Sec. IV describes the MWI 
algorithm and presents its computational complexity. Section V discusses the 
results of experiments designed to investigate the optimization solution proper- 
ties and computational speed of the MWI algorithm. 

Job Scheduling Terminology 

Batched jobs may be broadly classified into the categories of 

(1) deadline jobs, and 
(2) turnaround jobs. 

Deadline jobs are those which should not be delayed beyond their specified 
deadline times, e.g., payroll jobs. Deadline jobs may further be broken down 
into periodic and non-periodic deadline jobs. Periodic deadline jobs are those 
whose deadlines and processing requirements are known well in advance, and 
are usually known as production jobs. Non-periodic deadline jobs have 
deadlines but are submitted with little or no advance notice, e.g., test jobs for a 
proposed production system. 

Turnaround jobs are those which are submitted on a request basis and must 
be processed as soon as possible for the analyst’s perusal. Turnaround jobs 
typically have shorter turnaround time than deadline jobs. 

Figure 1 illustrates the various queues of jobs in a computer system at any 
point in time. Q, represents the job mix, i.e., jobs currently in some phase of 
execution, and hence can contain jobs belonging to any category. The size of 
Q, is 1 in a monoprogrammed computer system. Qz is the set of jobs which are 

lOPERATING SYSTEM 

PERIODIC 
DEADLINE JOBS 

NON-PERIODIC DEADLINE TIME SHARING 
5 TURNAROUND JOBS JOBS 

Fig. 1. Streams and queues of jobs. 



EFFICIENT JOB SCHEDULING ALGORITHM 139 

to be scheduled to join Q, at some future time. Q2 can further be broken down 
into Qi and Q;, where Q; is the set of deadline jobs and Q; is the set of 
turnaround jobs. Q, is the queue of periodic deadline jobs. 

The scheduling of jobs from Q, to Q, will be considered here. This process 
will be known as job s&x&ding or initiation. The decision to choose a job or set 
of jobs to join Q, from Q2 occurs at either the exit of a job from Q, or the 
arrival of a job to Qz. Thus for a given set of jobs at a decision time, the job 
scheduling algorithm presented here mimmizes a cost function based on 
tardiness and turnaround times. Turnaround time, tardiness and other time 
relationships are defined below. 

Start time of a job is the time at which it is initiated into the mix. 
Completion time of a job is the time at which a job along with its output is 

completed. 
Deadline of a job is the time at which its output is due. 
Turnaround time of a job is the time between its submission and completion. 
Tardiness of a job is the amount of time by which its completion time 

exceeds its deadline, if it does; otherwise it is zero. 

Figure 2 shows the relationships between the various times for a given job i. 
As can be seen, the wait time and elapsed time of a job are defined in terms of 
the abovementioned times. 

COMPUTER SYSTEM ENVIRONMENT 

The following assumptions are made regarding the environment in which 
the computer system operates. 

(1) The computer system is monoprogrammed, operating in a batched 
mode. 

(2) The job stream is mixed in terms of individual job objectives. 

Submission time Start time 
of job i of job i 

Deadline 
of job i 

Completion time 
of job i 

Job 
entry 

TA, = Tardiness of job i 

W, - Wait time of job i -Ei=Elapscd time of job i t 

. 5 = Turnaround time of job i 

Fig. 2. Timing relationships for jobs. 

. 



140 K. SUNDAR DAS AND TOBY J. TEOREY 

(3) There are no precedence relations among jobs. 
(4) The execution of a job is not suspended in order to facilitate the 

initiation of a new job (no pre-emption). 

DESIRABLE PROPERTIES OF JOB SCHEDULING ALGORITHMS 

Job scheduling algorithms considered here should have the following prop 
erties. 

(1) The sequence of jobs produced by the algorithm should yield an optimal 
solution to the chosen cost function. 

(2) The computational complexity should be low. 
(3) It should be able to schedule mixed job streams. 
(4) It should be able to schedule job streams in which the costs per unit 

tardiness and turnaround time are unequal. 
(5) It should be applicable to multiprogrammed job streams with dynamic 

arrival patterns. 

II. A COST FUNCTION FOR SCHEDULING MIXED JOB STREAMS 

We now develop a unified cost function for mixed deadline and turnaround 
job streams. 

Let 

t0 -epoch of initiation or decision, 
Qz(t) -job queue at time t, i.e., the set of jobs ready to be initiated at time t, 
n =number of jobs present at ta. 

The job scheduling algorithm chooses a set of jobs from Q2(fo) at lo to 
minimize the total cost function, Z,(l,H,): 

+ 5 pvI-Ij[ 1- qxpx, 
j-1 ‘0 

where 

TA, 

T 

cri 

=tardiness of job i, 

= turnaround time of job i, 

-cost per unit tardiness of job i, if it is a member of the deadline 
category of jobs, 



EFFICIENT JOB SCHEDULING A~O~TH~ 141 

G -cost per unit turnaround time of job i, if it is a member of the 
turnaround category of jobs, 

M = total number of resources (e.g., CPU, main storage), 

ui(X) = utilization of resourcej at time x, 
1 - z+(x) =~su~~tion of resource j at time x, 
WH, = weight (cost) attached to disutilization of resource j, 

&I = time required to complete n jobs, 
Q;(?a, H,,) = the set of deadline jobs that are initiated from time to through H,,, 
Q;l(t,, H,) = the set of turnaround jobs that are initiated from time to through 

Since the utilization of the resources in a monoprogrammed computer is not 
dependent upon the sequence in which the jobs are initiated, the disutilization 
term in Eq. (1) is constant, Therefore, we need only minimize 

Using the relationships of Fig. 2, we rewrite Zz(ta, H,,) as 

Z2(b f&J = 2 cT,XllaX[O,COi-Di] 
i E Qi(tK) 

+ x Ci[ ~(fO)+coi-fO]~ (3) 
iE Qi’(bH.) 

where Vi(&,) is the time job i has waited until time te. 
Since I: IE ogcf*H,) Ci wi(te) is constant over the period (fe,H,), it is suffi~ent 

to minimize the function 

&tfoJIn) = r, CTi~X[O,COi-Di] 
iEQi(Mk) 

+ 2 CiEMX[O,COf-to], (41 
iE QiYcH.) 

because COi - to is always non-negative. 
If the deadline of all turnaround jobs is defined as to at the decision epoch 

f* we may rewrite Z&r,, W,) as the general function 



142 

where 

K. SUNDAR DAS AND TOBY J. TEOREY 

G= C, 1 CTi if iEQ;(f,,,HJ, 

I if iE Q;‘(t&,), 

Di(t,) = 
Di if i E Q;(t&H,,), 
to if iEQ;‘(t,H,). 

The complicated function of Bq. (1) has been reduced to the simpler one of 
Eq. (5) which is simply the sum of weighted tardiness of jobs [6, 8, 91. Note 
that the resource allocation problem has been specifically left out. This is 
because the computer system is monoprogrammed, and hence there is only one 
job competing for resources at the time of initiation. It is assumed that all jobs’ 
resource requirements are less than or equal to that of the system’s capacity. 

III. CURRENT JOB SCHEDULING ALGORITHMS 

Special cases of Eq. (5) are easily recognized in the operations research 
literature. The scheduling algorithm that minim&s the weighted sum of 
turnaround times only is a simple one: schedule jobs in ascending order of 
Ei/Ci, where E, is the elapsed time of job i and Ci is the cost (weight) per unit 
turnaround time of job i. 

An optimal rule for scheduling deadline jobs only is not so simple, however. 
Elmaghraby [6] and Lawler [8] developed algorithms which yielded optimal 
solutions for job streams with deadline jobs only and variable (unequal) costs 
per unit tardiness. Elmaghraby’s algorithm involved branch and bound tech- 
niques, whereas Lawler’s involved combinatorial methods. Both solutions have 
a computational complexity of the order 2”. Emmons [7] and Srinivasan [lo] 
have given a means of obtaining an optimal solution when the cost per unit 
tardiness of all jobs is equal to one. Emmon’s algorithm can be modified for 
cases when the cost per unit tardiness is not equal to one, i.e., variable cost 
rates. 

Wilkerson and Irwin developed a heuristic algorithm for deadline jobs only, 
with equal cost per unit tardiness [ 1 I]. Baker and Martin studied the properties 
of this algorithm with respect to the above algorithms using statistical tech- 
niques [2]. They found the Wilkemon-Irwin algorithm to be favorable in terms 
of near-optimality and computational complexity. Recently, Petersen devised a 
heuristic algorithm for job streams comprised of deadline jobs only but with 
variable cost rates [9]. This was demonstrated to yield optimal solutions in 
almost all job streams he considered. Petersen also demonstrated that a 
number of quick heuristics, such as ordering jobs in ascending order of 
deadline, yielded very poor solutions. 



EFFICIENT JOB SCHEDULING ALGORITHM 143 

The heuristic algorithms discussed so far in the literature are not applicable 
to mixed job streams. The algorithms amenable to extensions are the Petersen 
and Wilkerson-Irwin algorithms. The extension of Petersen’s algorithm in- 
volves the incorporation of turnaround jobs only. The extension of Wilkerson- 
Irwin algorithm involves the incorporation of (1) turnaround jobs and (2) 
unequal costs per unit tardiness and turnaround time. The extended Wilker- 
son-Irwin algorithm is called the modified Wilkerson-Irwin (MWI) algorithm. 

The optimal and computational complexity properties of the extended 
algorithms are studied by means of a simulation in Sec. V. 

IV. THE MODIFIED WILKERSON-IRWIN ALGORITHM 

Since H. is the time to complete n jobs in Eq. (5), the job cost objective 
function can be written as 

Z= i Cimax[O,COi- D,(to)]. (6) 
i-l 

Let n, be the number of deadline jobs and n2 be the number of turnaround 
jobs, so that nl ++=n. Recall that t0 is the decision epoch. The MWI 
algorithm is as follows: 

1. 

2. 

3. 

4. 

5. 

Schedule the n2 turnaround jobs in increasing ratio E,/C,, where Ei is the 
stand alone elapsed time of job i. Schedule the n, deadline jobs after the 
turnaround jobs in increasing order of their deadlines. Let 4 be the job in 
the jth position. 
If n2 = n, the algorithm terminates. If n2 =O, set i* = 1 and j* -2. If 
O<n2<n, set i+=n2 andj+=n,+l. 
get 1. = lo+ Xl;-i’ E$. Note that r, = to if i* = 1. Compare jobs in positions i+ 
and j’ at r. by applying the MWI rule (see the Appendix). If it is 
preferable to schedule the job in j+th position before the one in i+th 
position, we say a jump has occurred. If a jump has occurred, go to step 5; 
otherwise go to step 4. 
If j*= n, the algorithm terminates. Otherwise, set i+ =j*; j’ =j* + 1 and 
repeat step 3. 
If a jump has occurred, make an exchange of jobs so that the job that was 
formerly in position j* is now in position i+ and vice versa. If i+ - 1, go to 
step 4; otherwise set i* = i* - 1, j* = j* - 1 and repeat step 3. 

The algorithm is illustrated by means of an example. Let there be a total of 
5 jobs, 2 of which are turnaround jobs. Without loss of generality, let us label 
the turnaround jobs in increasing order of the ratio of elapsed time to unit cost 
of turnaround, Ei/Ci, and the others in increasing order of their deadlines. 



144 K. SUNDAR DAS AND TOBY J. TEOREY 

Thus, the initial configuration of n = 5 and n2 = 2 appears as in Fig. 3 with 
Ei/ Ci < Ez/ Cz and 03 < 04 < Ds. 

In step 3 of the algorithm, a comparison of jobs 2 and 3 is made. Let us 
assume that no exchange is necessary, i.e., a jump has not occurred. Applying 
step 4, a comparison between jobs 3 and 4 is now required. Let us say a jump 
has occurred. The configuration then appears as in Fig. 4. According to step 5 
a comparison between jobs 2 and 4 is necessary. Let us again say a jump has 
occurred, in which case the configuration appears as in Fig. 5. The next 
comparison is between jobs 1 and 4, and let us say no jump occurs at this 
point. Thus, we see that each jump generates a “backward look” at jobs in the 
lower order positions. Finally, we compare jobs 3 and 5. Let us say no jump 
has occurred and therefore the sequence in Fig. 5 is the final MWI algorithm 
sequence. This example may also be understood by means of Table 1, where 
the jobs being compared, the position i* and j*, and the starting and ending 

Position 

Job index 

Fig. 3. Initial sequence for modified Wilkerson-Irwin algorithm. 

Position 1 2 3 4 5 

Job index 0 0 C9 0 0 

Fig. 4. Intermediate sequence of modified Wilkerson-Irwin algorithm. 

Position 1 2 3 4 5 

Job index 0 @ @ 0 @ 

Fig. 5. Intermediate sequence of modified Wilkerson-Irwin algorithm. 

TABLE 1 

Sequences of the Modified Wilkerson-Irwin Algorithm 

Pass Comparison 
No. of jobs i*ti* J~P 

starting Ending 
SWpllCe SeqUelbXS 

1 293 293 no 

2 394 394 yes 
3 2,4 2,3 y= 
4 194 192 no 

1,2,3,4,5 1,2,3,4,5 

1,2,3,4,5 1,2,4,3,5 
12435 ,>,, 1,4,2,3,5 
1,4,2,3,5 1,4,2,3,5 

5 395 4,s no 1,4,53,5 1,4,z3,5 



EFFICIENT JOB SCHEDULING ALGORITHM 145 

sequences of jobs of each “pass” of the MWI algorithm are shown. A “pass” of 
the MWI algorithm is defined to be the application of steps 3 through 5 of the 
MWI algorithm. 

COMPUTATIONAL COMPLEXITY 

The lower bound for the number of job comparisons occurs when no jumps 
are made. This lower bound is n - nz if nz is not equal to zero, and n - 1 if n2 is 
equal to zero. The upper bound results when a jump occurs at every compari- 
son. The result for this bound is given in the following theorem. 

THEOREM. The upper bound for the number of comparisons in the modified 
Wilkerson-Irwin algorithm is 

(n - n2)(n + n2 - 1)/Z (7) 

where 

n = total number of jobs, and 
n2 = number of turnaround jobs. 

Proof. Consider the case when n2 =O. In general, consider the exchange 
between the jobs in positions j and j + 1. If a jump occurs, a maximum of j - 1 
“backward looks” is generated, and j takes on values of 1 through n - 1. Thus, 
the upper bound for the number of computations has the summation ZyZ:[ 1 + 
(j- l)], which is equal to n(n - 1)/2. When n2 is not equal to zero, the 
summation is Z;,in;i,j, which is equal to (n - nd(n + n,- 1)/2. 

Thus, the lower bound is of order n and the upper bound of order n2. For 
n > 5 the upper bound is considerably better than the branch and bound 
algorithm, which has an upper bound of order 2”. 

V. EXPERIMENTAL INVESTIGATIONS AND CONCLUSIONS 

Let Z*(t,J be the optimal value of the objective function [Eq. (6)], and 
Z(t,,A) be the value of Eq. (6) for the solution yielded by algorithm A. Then 
the degree of optimality of algorithm A is defined to be 

z*(h) x lot) 

DW)=Z(t,A) * (8) 

As mentioned earlier, the calculation of the optimal solution needed to obtain 
Z*(t,) is very time consuming and prohibitively expensive. A comparison was 



146 K. SUNDAR DAS AND TOBY J. TEOREY 

therefore made between the MWI algorithm and phase 2 of Petersen’s reorder- 
ing algorithm* [9] which yielded optimal solutions in almost all cases. Since 
Z*(ta) is not explicitly obtained, the relative degree of optimality of an 
algorithm instead of its degree of optimality is relevant. The relative degree of 
optimality of an algorithm is defined as 

RDO(A) = Z(2, P2) x 100 

Z(tc,A) (9) 

where Z(t,, P2) is the value of the objective function for the solution yielded by 
phase 2 of Petersen’s algorithm. 

A simulation experiment was designed to compare the MWI algorithm and 
phase 1 of Petersen’s algorithm. The comparison was made for the measures of 
relative degree of optimal@ and computational speed. The input parameters 
to the experiment are: 

(1) q, the proportion of deadline jobs. 
(2) Mean elapsed times of deadline and turnaround jobs. Let these be- Ed 

and F, respectively. 
(3) Distribution of elapsed times for deadline and turnaround jobs. 
(4) Distribution and means of cost for deadline and turnaround jobs. 

In the actual experiment to was set to 0, the elapsed times of deadline jobs 
were distributed uniformly between 15 and 35, the elapsed times of turnaround 
jobs were distributed uniformly between 1 and 29, the costs of deadline jobs 
were uniformly distributed between 10 and 15, and the costs of turnaround 
jobs were uniformly distributed between 5 and 10. The job sets consisted of 8, 
10, 12, 15 and 20 jobs, while q took on values of 0.2, 0.4, 0.6, 0.8 and 1.0. 

To determine the accuracy of Petersen’s algorithm, optimal solutions to 
selected job sets were obtained using the branch ‘and bound technique of 
Elmaghraby [6]. The average computational time of the branch and bound 
algorithm for these was in the range of 15 seconds (IBM 360/67). In these 
cases, phase 2 of Petersen’s algorithm yielded optimal solutions. However, the 
branch and bound algorithm did not converge to an optimal solution after 30 
seconds of CPU time for a few job sets of 12 jobs. 

Table 2 displays the relative degree of optimality and computational com- 
plexity of the MWI and Petersen’s algorithms. Note that by definition, the 
RDO of phase 2 of Petersen’s algorithm is 100%. Under the heading “Relative 

‘Petersen’s algorithm consists of three phases, which are composed of certain basic 
reordering operations. Petersen tested 197 problems, the problem sizes of which ranged from 
ten to forty jobs. The completion of phase 2 yielded optimal solutions for 195 of these 
problems. One 20 job solution was non-optimal by 1.0% and one 40 job solution was 
non-optimal by 3.2% at the end of phase 2. 



EFFICIENT JOB SCHEDULING ALGORITHM 147 

Degree of Optimal@” there are two columns for each algorithm-one with a 
prime and one without a prime. The average RDG’s for the columns with the 
prime are calculated as follows. For each job set in the row, the average is first 
calculated over the subset of jobs for which the RDG is less than lOO?& These 
averages are then averaged over the number of job sets for that row and 
entered in Table 2. The averages for the columns without the prime are taken 
over all jobs, regardless of RDG. The difference between the RDG’s for the 
columns with and without the prime for a given row yields a measure of the 
variability of the RDG for that row. 

It is seen that in most cases phase 1 of Petersen’s algorithm yields a 
better relative degree of optima@. The maximum difference of the RDG 
between MWI and phase 1 of Petersen’s algorithm is 0.54%, and that between 
MWI and Phase 2 of Petersen’s algorithm is 0.79%. The ratio of the computa- 
tional time for phase 1 of Petersen’s algorithm and the MWI algorithm is at 
least 150 for problem sixes larger than 10; the ratio between phase 2 and the 
MWI algorithm is even greater. In view of these considerations, the MWI 
algorithm is to be preferred. 

In conclusion, it has been demonstrated that the modified Wilkerson-Irwin 
algorithm, which is applicable to monoprogrammed computers with mixed job 
streams and variable cost rates, provides near-optimal solutions with reason- 
able computational speed. A related study by Das [5] provides experimental 
evidence that the MWI algorithm can be effectively used for job scheduling in 
multiprogrammed computers. 

APPENDIX-THE MODIFIED WILKERSON-IRWIN RULE 

Phase 1 of Wilkerson and Irwin’s original algorithm (in which C, = 1 for all 
i) is based on a decision rule applied to a set of jobs which have been arranged 
in increasing order of due dates. The decision rule is as follows: When 

TABLE 2 

Experimental Results of hfWI and Petersen Algorithms 

Relative degree of optimality CPU Times (msec) 

Petemen Petersen 
Pm. No. of 
size co~gurations MWI Mwr Phase1 Phasel’ MWI Phase1 Phase2 

8 25 99.833 97.910 99.682 %.12O 67.12 212.16 651.20 
10 25 99.826 99.015 99.678 95.975 63.32 556.32 1595.28 
12 25 99.513 96.042 99.812 99.267 73.32 1056.88 3631.20 
15 25 99.254 97.2% 99.785 98.924 92.4 2972.52 10798.12 
20 9 99.210 98.578 99.606 99.291 114.89 13924.56 62338.44 



148 K. SUNDAR DAS AND TOBY J. TEOREY 

comparing jobs i andj at time t, schedule the job with the earlier due date first 
unless t + maX(Ei,Ei) > m&Q,Di), in which case schedule the shorter task 
first. 

The following rule holds in the case when not all Ci’S are 1 and is a 
generalization of the Wilkerson-Irwin rule. A complete derivation of this rule is 
given in [5]. 

MWI RULE. If we let i and j be two jobs such that Di is less than or equal 
to Dj, then at time t we schedule the job i first if either of the following 
conditions hold: 

(1) t +max(E,,Q < max(Di, Di>= Dj and one of: 

(a) t+Ei+E,<Dj; 
(b) t+Ei>Di and t+Ei+l$>Dj and 

t+Ej-Dj Ei Ej 

ci 
+c;--pO; 

(C) t+E,<Di and t+Ei+l$>Dj 
t+Ej-Dj t+Ei+Di Ei 4. 

Ci - q +c-p. 

(2) t+mM(Ei,E/)>maX(Di,Dj)=Dj and one of: 

Ei 4 
(a) t+Ei>Di; t+E,>Dj and c-q ~0; 

(b) Ei>&; t+E,<Dj and 
t+Ej-Dj E;:_ Ej 

G +c, q<O; 

(C) Ei<l$; t+Ei<Di and 
3_ 4. t+Ei-Di 
c, q - q <O. 

Otherwise schedule jobj first. If the costs per unit tardiness of job i andi are 
set to 1, this reduces to Wilkerson and Irwin’s original decision rule. 

The authors would like to express their gratitude to Professors Kenneth R 
Baker and Clifford C. Petersen for their assistance in this research effort. 

REFERENCES 

1. 
2. 

3. 

K. R. Baker, Introduction to Sequencing and Scheduling, Wiley, 1974. 
K. R. Baker and J. B. Martin, Experimental comparison of solution algorithms for single 
machines tardiness problem, NucuI Res. Logist. Quurt. 21(l): 187-199 (Mar. 1974). 
F. Baskett, K. M. Chandy, R MU& and Fernando G. Palacios, Open, closed and 
mixed networks of queues with different classes of customers, J. Assoc. Conput. Mu& 
22(2) : 248-260 (Apr. 1975). 



EFFICIENT JOB SCHEDULING ALGORITHM 149 

4. W. Conway, L. Maxwell and W. Miller, Theory of Scheduling, Addison-Wesley, 1967. 
5. K. Sundar Das, A scheduling methodology for computer operatious, Ph.D. Dimertatiou, 

Department of Industrial aud Operations Eugiueeriug, Univ. of Michigan, Amt Arbor, 
Mlch., 1977. 

6. S. E. Ehuagrabhy, The one machine sequencing problem with delay costs, J. Indurniui 
Engineering 19(2) : 105-108 (Peb. 1968). 

7. H. Emmons, Due machine sequenciug to mmimize certain functions of job tardiuess, 
Operation Rex 17(4) : 701-715 (July 1969). 

8. E. L. Lawler, On scheduling problems with deferral costs, A4unugetneti Sci. 9(4) : 280- 
288 (July 1%3). 

9. C. Petersen, Solving sequeucing problems through reordering operatious, AIZE Transac- 
tions 5( 1) : 68-73 (Mar. 1973). 

10. V. Sriulvasan, A hybrid algorithm for the one machiue sequeuclug problem to miuimke 
total tardiuess, Nmxrl Res. Logist. Quart. 18(3): 317-327 (Sept. 1971). 

Il. L. J. Wllkerson aud J. D. Irwin, Au improved method for scheduling independent tasks, 
AZIE Transactions 3(3) : 239-245 (Sept. 197 1). 

Receiwd h4qy 1978 


