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Abstract. In view of the expected progress in cryptanalysis it is important to find alternatives for cur-
rently used signature schemes such as RSA and ECDSA. The most promising lattice-based signature
schemes to replace these schemes are BLISS (CRYPTO 2013) and GLP (CHES 2012). Both come with
a security reduction from a lattice problem and have high performance. However, their parameters are
not chosen according to their provided security reduction, i.e., the instantiation is not provably secure.
In this paper, we present the first lattice-based signature scheme with good performance when prov-
ably secure instantiated. To this end, we provide a tight security reduction for the new scheme from
the ring learning with errors problem which allows for provably secure and efficient instantiations. We
present experimental results obtained from a software implementation of our scheme. They show that
our scheme, when provably secure instantiated, performs comparably with BLISS and the GLP scheme.
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1 Introduction

Electronic signatures are essential for cybersecurity. For example, they provide authenticity
proofs for billions of software downloads daily on the Internet. In recent years, lattice-based
signatures such as BLISS [22] or the GLP [27] signature scheme have become an interesting
alternative to the schemes that are currently being used in practice, like RSA and ECDSA.
Providing such alternatives is very important in view of the expected progress in cryptanalysis
of RSA and ECDSA, in particular by quantum computers.

The lattice-based signature schemes BLISS and GLP have two important properties. They
have good performance, i.e., they can compete with RSA and ECDSA. Also, they are provably
secure: they allow for security reductions from lattice problems that are expected to be hard
even in the presence of quantum computers.

Provable security is a very strong security argument. In this paper, we go one step fur-
ther and present an R-LWE-based signature scheme which has a security property which we
consider to be even stronger: good performance with provably secure instantiation. By this
property we mean that the parameters are chosen according to the security reduction and
at the same time allow for good performance. This implies the following: suppose that pa-
rameters are constructed for a certain security level. By virtue of the security reduction these
parameters correspond to an instance of the ring learning with errors problem (R-LWE). Since
the parameters were chosen according to the security reduction, this reduction provably guar-
antees that our scheme has the selected security level as long as the corresponding R-LWE



instance is intractable. In other words, hardness statements for R-LWE instances have a prov-
able consequence for the security levels of our scheme. Currently, both BLISS and GLP do
not allow for good performance and provably secure instantiation at the same time. Choosing
parameters according to the security reductions for these schemes reduces their performance
significantly (see for example [10,16]).

We note that our scheme has another potential advantage over BLISS. BLISS uses Gaus-
sian sampling, which is generally assumed to be vulnerable to timing attacks [13, 19], while
GLP and our scheme use uniform sampling during signature generation which appears to not
have this vulnerability.

Our signature scheme is based on the design of Bai and Galbraith [9] and its optimizations
by Dagdelen et al. [19]. The reason why our scheme allows for good performance with provably
secure instantiation is that we are able to give a tight security reduction from the R-LWE
problem to our scheme. The proof of this result is an optimized adaption of the tightness
proof in [5] to the R-LWE setting which allows for better tightness bounds. To demonstrate
that our scheme has good performance, we present experimental results which are based
on a software implementation. These results show that our scheme, when provably secure
instantiated, performs comparably with BLISS and the GLP scheme without provably secure
instantiation.

Related Work. The first lattice-based signature scheme with tight security reduction is the
GPV signature scheme [26]. Its instantiations are provably secure, but not efficient. Most of the
recent lattice-based signature schemes [9,19,22,27,37] come neither with a tight reduction nor
with provably secure instantiation. The security of all those schemes was proven by applying
the powerful Forking Lemma [41], which inherently results in a non-tight security reduction.

Abdalla et al. [1] circumvent the Forking Lemma and use an approach inspired by the
proof idea introduced by Katz and Wang [31]. However, their tight reduction demands an
impractically large choice of the modulus. Recently, Alkim et al. [5] also used the approach
by Katz and Wang [31] to provide a tight security reduction from the learning with errors
problem over standard lattices (LWE) to an improved variant of the Bai-Galbraith signature
scheme [9, 19]. Instantiations of their scheme are provably secure, but they yield larger key
sizes and worse run times than the BLISS and GLP signature scheme.

Organization. After stating notations and definitions in Section 2, we describe the signature
scheme in Section 3. In Section 4, we analyze the hardness of R-LWE and we explain the
derivation of the parameter sets. Our implementation is described in Section 5. We give our
experimental results and compare them with BLISS and GLP in Section 6.

2 Preliminaries

2.1 Notation

Let k ∈ N. Throughout this paper we define n = 2k ∈ N. Let q ∈ N be a prime with q = 1
(mod 2n). We denote by Zq the finite field Z/qZ and identify an element in Zq with its
representative in

[
−dq/2e, bq/2c

]
, and we write (mod q) to denote the unique representative

in Zq. We define the ring R = Z[x]/(xn + 1) and denote the set of its units by R×. Further,
we define Rq = Zq[x]/(xn + 1), Rq,[B] = {

∑n−1
i=0 aix

i ∈ Rq | i ∈ [0, n − 1], ai ∈ [−B,B]} for
B ∈ [0, q/2], and Bn,ω =

{
v ∈ {0, 1}n | ||v||2 = ω

}
for ω ∈ [0, n]. We denote polynomials by
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lower case letters (e.g., p) and (column) vectors by bold lower case letters (e.g., v). Without
further mentioning, we use the symbol p to denote the coefficient vector of a polynomial p.
We denote matrices by bold upper case letters (e.g., M) and the transpose of a matrix M by
MT . We indicate the Euclidean norm of a vector v ∈ Rn by‖v‖. All logarithms are in base 2.

Rounding Operators. Let d ∈ N and c ∈ Z. We denote by [c]2d the unique representative
of c modulo 2d in the set (−2d−1, 2d−1] ⊂ Z. Let b·ed be the rounding operator defined as
b·ed : Z→ Z, c 7→ (c− [c]2d)/2d. We naturally extend these definitions to vectors and polyno-
mials by applying b·ed and [·]2d to each component of the vector and to each coefficient of the
polynomial, respectively. We abbreviate

⌊
v (mod q)

⌉
d by bved,q.

Algorithms and Distributions. If A is a randomized algorithm we denote by y ← A(x) the
output of A on input x and randomly chosen (internal) coins. For an oracle O we write AO
to indicate that A has access to that oracle. Let σ ∈ R>0. The centered discrete Gaussian
distribution Dσ on Z with standard deviation σ is defined as follows: for every z ∈ Z the prob-
ability of z is given by ρσ(z)/ρσ(Z), where ρσ(z) = exp(−z2

2σ2 ) and ρσ(Z) = 1 + 2
∑∞
z=1 ρσ(z).

We denote by d← Dσ the operation of sampling an element d with Gaussian distribution Dσ.
When writing v ← Dnσ we mean sampling each component of the vector v with Gaussian
distribution. To simplify the notation we indicate sampling all coefficients of a polynomial
a ∈ R with Gaussian distribution by a ← Dnσ as well. Similarly, for a finite set S we write
s ← U(S), or simply s ←$ S, to indicate that an element s is sampled uniformly at random
from S.

Lattices and Gaussian Heuristic. Let n ≥ k > 0. A k-dimensional lattice Λ is a discrete
additive subgroup of Rn containing all integer linear combinations of k linearly independent
vectors {b1, . . . ,bk} = B, i.e., Λ = Λ(B) = { Bx | x ∈ Zk }. The determinant of a lattice is
defined by det(Λ(B)) =

√
det (B>B).

Throughout this paper we are mostly concerned with q-ary lattices. Λ ∈ Zn is called a q-ary
lattice if qZ ⊂ Λ for some q ∈ Z. Let A ←$ Zm×nq . We define the q-ary lattices Λ⊥q (A) =
{x ∈ Zn | Ax = 0 (mod q)} and Λq(A) = {x ∈ Zn | ∃s ∈ Zm s.t. x = A>s (mod q)}.
Furthermore, for u ∈ Zmq we define cosets Λ⊥u,q(A) = {x ∈ Zn | Ax = u (mod q)}, i.e.,
Λ⊥q (A) = Λ⊥0,q(A). One can consider Λ⊥u,q(A) as a shifted lattice by a vector u, i.e., Λ⊥u,q(A) =
Λ⊥q (A) + y where y ∈ Zm is an integer solution of Ax = u (mod q).

Let S be a measurable set and let Λ ⊂ Zn be a lattice. The Gaussian heuristic approxi-
mates the number of lattice points in the set S by |S ∩ Λ| = vol(S)

det(Λ) .

2.2 The Learning with Errors Problem over Rings
Given the isomorphism Φq : Zn → Rq with (a0, ..., an−1) 7→ a0 + a1x + ... + an−1x

n−1,
Rq is isomorphic to Znq as a Z-module. Therefore, we can identify a polynomial a = a0 +
a1x + ... + an−1x

n−1 ∈ Rq with its coefficient vector a = (a0, . . . , an−1)T . We define the
rotation of a vector a = (a0, . . . , an−1)T to be the coefficient vector of ax ∈ Rq, i.e., rot(a) =
(−an−1, a0, . . . , an−2)T . Furthermore, we define the rotation matrix of a polynomial a as
Rot(a) = (a, rot(a), rot2(a), . . . , rotn−1(a)) ∈ Zn×nq . Polynomial multiplication of a, b ∈ Rq
is equivalent to the matrix-vector multiplication Rot(a)b in Zq. It can be easily shown that
a ∈ Rq is invertible, i.e., a ∈ R×q , if and only if rank(Rot(a)) = n.

We define the learning with errors distribution and the ring learning with errors problem
(R-LWE) in the following.
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Definition 1 (Learning with Errors Distribution). Let n, q > 0 be integers, s ∈ Rq,
and χ be a distribution over R. We define by Ds,χ the R-LWE distribution which outputs
(a, 〈a, s〉+ e) ∈ Rq ×Rq, where a←$ Rq and e← χ.

Since our signature scheme is based on the decisional R-LWE problem, we omit the definition
of the search version and state only the decisional learning with errors problem.

Definition 2 (Ring Learning with Errors Problem). Let n, q > 0 be integers and q = 2k
for some k ∈ N>0 and χ be a distribution over R. Moreover, define Oχ to be an oracle, which
upon input polynomial s ∈ Rq returns samples from the learning with errors distribution
Ds,χ. The ring learning with errors problem R-LWEn,m,q,χ is (t, ε)-hard if for any probabilistic
polynomial time (PPT) algorithm A, running in time t and making at most m queries to its
oracle, it holds that

AdvR-LWE
n,q,χ (A) =

∣∣∣∣Pr
[
AOχ(s)(·) = 1

]
− Pr

[
AU(Znq×Zq)(·) = 1

]∣∣∣∣ ≤ ε ,
where the probabilities are taken over the random choices of s ← U(Rq), the random choice
of the distribution Ds,χ, as well as the random coins of A.

The R-LWE assumption comes with a worst-case to average-case reduction to problems over
ideal lattices [38]. Furthermore, it was shown in [6] that the learning with errors problem
remains hard if one chooses the secret distribution to be the same as the error distribution.
We write R-LWEn,m,q,σ if χ is the discrete Gaussian distribution with standard deviation σ.

3 Description and Security of the Signature Scheme

In this section, we present our signature scheme and we prove it to be unforgeable against a
chosen-message attack—shortly ufcma-secure (cf. Appendix A, Figure 3)—as long as R-LWE
is computationally hard. We recall basic definitions and notations about signatures schemes
in Appendix A. We name our scheme ring-TESLA since it is based on the signature scheme
TESLA by Alkim et al. [5].

Our signature scheme is parametrized by the integers n ∈ N>0, ω, d, B, q, U , L, κ, and
the security parameter λ with n > κ > λ, by the Gaussian distribution Dσ with standard
deviation σ, by the hash function H : {0, 1}∗ → {0, 1}κ, and by the encoding function
F : {0, 1}κ → Bn,ω. The encoding function F takes the (binary) output of the hash function
H and maps it to a vector of length n and weight ω. For more information about the encoding
function see [27]. Furthermore, let a1, a2 ∈ R×q be two uniformly sampled polynomials which
are publicly known as global constants. They can be shared among arbitrarily many signers.

Key Generation. On input polynomials a1 and a2 the algorithm returns a key pair (sk, pk)
derived as follows. First, it samples three polynomials s, e1, e2 according to the discrete Gaus-
sian distribution. The elements e1 and e2 have to fulfill certain properties to ensure that
signatures are short and verified correctly. Those properties are checked during checkE, sim-
ilar to the procedure introduced by Dagdelen et al. [19]. The function maxk(·) takes as
input a vector and returns its k-th largest entry. The key polynomials e1, e2 are rejected if∑ω
k=1maxk(ei) is greater then L for at least one of e1 or e2. Otherwise e1, e2 are accepted

and the key generation algorithm returns the signing key sk = (s, e1, e2) and the verification
key pk = (t1, t2) = (a1s+ e1, a2s+ e2).
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KeyGen(1λ; a1, a2) :
1 s, e1, e2 ← Dn

σ

2 If checkE(e1) = 0 ∨ checkE(e2) = 0
3 Restart
4 t1 ← a1s+ e1 (mod q)
5 t2 ← a2s+ e2 (mod q)
6 sk← (s, e1, e2)
7 pk← (t1, t2)
8 Return (sk, pk)

Verify(µ; z, c′; a1, a2, t1, t2)
20 c← F (c′)
21 w′1 ← a1z − t1c (mod q)
22 w′2 ← a2z − t2c (mod q)
23 c′′ ← H

(⌊
w′1
⌉
d,q
,
⌊
w′2
⌉
d,q
, µ
)

24 If c′ = c′′ ∧ z ∈ RB−U :
25 Return 1
26 Else: Return 0

Sign(µ; a1, a2, s, e1, e2) :
9 y ←$ Rq,[B]

10 v1 ← a1y (mod q)
11 v2 ← a2y (mod q)
12 c′ ← H

(
bv1ed,q , bv2ed,q , µ

)
13 c← F (c′)
14 z ← y + sc
15 w1 ← v1 − e1c (mod q)
16 w2 ← v2 − e2c (mod q)
17 If [w1]2d , [w2]2d /∈ R2d−L ∨z 6∈ RB−U :
18 Restart
19 Return (z, c′)

Fig. 1: Specification of the signature scheme ring-TESLA

Signing Algorithm. During signing a message µ ∈ {0, 1}∗, first a polynomial y is sampled
uniformly random in Rq,[B] and the polynomials vi = aiy (mod q) for i = 1, 2 are computed.
Afterwards, µ and the rounded values of v1 and v2 are hashed to c′ = H(bv1ed,q , bv2ed,q , µ)
and encoded to c = F (c′). Further on, the polynomial z = y + sc ∈ R is computed. Now,
rejection sampling is applied. To this end, two polynomials wi = vi − eic (mod q) for i = 1, 2
are computed and it is checked whether the d least significant bits in the bit representation of
w1, w2 are small enough, i.e., [wi]2d ∈ R2d−L for i = 1, 2. If this is satisfied and z ∈ Rq,[B−U ],
the signature (z, c′) is returned. Otherwise, the signing algorithm discards (z, c′) and restarts.

Verification Algorithm. The verification algorithm upon input a message µ and a signature
(z, c′) first computes the encoding c = F (c′). Afterwards, the polynomials w′i = aiz−tic ( mod
q) for i = 1, 2 are computed. The algorithm returns 1 if c′ = H

(⌊
w′1
⌉
d,q ,

⌊
w′2
⌉
d,q , µ

)
and

z ∈ Rq,[B−U ] are both satisfied; otherwise, it returns 0.

3.1 Security Reduction

In this subsection we prove the signature scheme ring-TESLA presented in this paper to be
unforgeable against a chosen-message attack (ufcma), described in Figure 3 in Appendix A,
as long as the learning with errors problem over rings is computationally hard. In our security
reduction we follow an idea introduced by Katz and Wang [31] that can be summarized at
follows: assume there exists an algorithm A that forges a signature given a valid public key,
i.e., an LWE tuple. In contrast, given a random key A forges a signature only with very small

5



probability. Hence, the security reduction distinguishes whether its own challenge tuple is an
LWE tuple or not by the different behavior of the algorithm A.

Theorem 1. Let n, ω, d,B, q, U, L, and σ be arbitrary parameters satisfying the constraints
described in Section 4. Assume that the Gaussian heuristic holds for lattice instances defined
by the parameters above. For every ufcma-adversary A that runs in time tA, asks at most qs
and qh queries to the signing oracle and the hash oracle, respectively, and forges a valid sig-
nature of the signature scheme ring-TESLA with probability εA, there exists a distinguisher D
that runs in time tD = tA+O(qsκ2 + qh) and breaks the R-LWEn,2,q,σ problem (in the random
oracle model) with success probability

εD ≥ εA

(
1− qsqh2(d+1)2n

(2B + 1)nqn

)
− qh2dn(2B − 2U + 1)n + (28σ + 1)3n

q2n .

Proof sketch. We show how to turn any successful forger A against the signature scheme
ring-TESLA into a distinguisher D for the R-LWE problem. The distinguisher obtains two
R-LWE samples from its sampling oracle Oχ(s) (cf. Definition 2) and embeds them into a
public key pk. Thus, D simulates the ufcma game (cf. Figure 3, Appendix A). When A
returns a forgery (µ, σ), D checks whether σ is a valid signature for message µ under key pk:
if so, it outputs 1 as a guess that Oχ(s) presented two R-LWE tuples, otherwise it outputs 0.
To derive the explicit relation between D and A’s success probabilities εD and εA as indicated
in the theorem statement, we show that (i) D provides a good simulation of the ufcma game
for A. In particular, we show that the simulated signatures look like genuine ones. And we
prove, (ii) D’s simulation does not abort too often. Formal proofs of both facts, (i) and (ii),
require several technical lemmas that we state and prove in Appendix B. For proving fact
(i), we observe that D simulates signatures σ = (z, c′) by choosing z and c′ uniformly at
random from appropriate spaces. By applying rejection sampling (cf. Lemma 1, Appendix B)
and the fact that c′ is the output of a random oracle, we show that simulated signatures are
statistically indistinguishable from genuine ones. Concerning fact (ii), we first note that D’s
signing simulation needs to program the random oracle H, which may lead to inconsistencies
in case one of A’s signature requests results in programming a hash value H(x) for which x
was already queried. Such an occurrence causes a premature termination of the simulation.
Applying Lemma 2, we prove that the latter happens only with small probability. We give a
full proof of Theorem 1 and of the above-mentioned lemmata in Appendix B. ut

As described in [23, Section 3.3], the probability that a polynomial chosen uniformly random
in Rq is in the subset of multiplicative invertible elements of Rq is given by Pr

[
a ∈ R×q

]
=(

1− 1/q
)n
, where the probability is taken over random choices of a←$ Rq. This probability

is overwhelming for our choices of q and n in the signature scheme presented in this paper.
Thus, it is justified to sample the polynomials a1 and a2 uniformly random in R×q instead of
Rq as defined in the R-LWE problem.

Relation to Former Security Reductions. The scheme ring-TESLA is based on the signature
scheme by Bai and Galbraith [9] with a tight security reduction by Alkim et al. [5]. Es-
sentially, we convert the scheme by Bai and Galbraith to a scheme over ideal lattices. Our
security reduction follows the proof strategy of [5]. We emphasize that lifting the security
statements for the original (lattice-based) scheme to our (ideal lattice-based) scheme is not
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trivial. For example, it is unclear whether distributions remain the same when lemmata are
applied on rotation matrices instead of matrices chosen uniformly random; in some cases
even improvements can be made. Indeed, we could sharpen the bound given in [5, Lemma 2].
Our corresponding result is stated in Lemma 3. Moreover, we formulate and prove a similar
lemma to [9, Lemma 3] for ideal lattices and we state explicitly which property related to
the Gaussian heuristic is necessary to prove the statement. Likewise, Bai and Galbraith make
use of the Gaussian heuristic in their corresponding proof. The methods used in our security
reduction resemble those formalized by Abdalla et al. [1]. Abdalla et al. define four properties
of identification schemes for which they give a black-box-transformation to signature schemes
with tight security reduction. Applying their black-box-transformation to a lattice-based sig-
nature scheme led to inefficiently large parameters as stated by the authors [1]. Hence, we
prove unforgeability of ring-TESLA more directly—without passing through an intermediate
identification scheme—by following the proof technique introduced by Katz and Wang [31].
This yields practical instantiation as we show in Section 4.

4 Selecting Parameters

The reductionist approach to prove security of a given cryptosystem essentially consists in
building an efficient reduction that turns any successful adversary against the cryptosystem
into one that solves some computationally hard problem. The hardness of breaking the cryp-
tosystem and of solving the underlying problem are often expressed asymptotically. When a
scheme is to be deployed in the real world, however, for a security analysis to be realistic
it is essential that run times and success probabilities are estimated in a more explicit way.
Moreover, given a (concrete and) tight security reduction, the security of the scheme is about
the same as the hardness of the underlying computational assumption when the scheme is
instantiated according to the reduction. In contrast, if only a non-tight reduction is available,
larger security parameters shall be used in order to achieve a specific level of security. As
a consequence, it is often hard to tell whether a provably secure scheme with a non-tight
reduction effectively provides the claimed level of security and performance.

In this section, we propose our choice of provably secure parameters for different levels of
bit-security for the signature scheme presented in this paper and we explain how we estimate
the hardness of the ring learning with errors problem.

4.1 Derivation of Parameters for Different Security Levels

The security reduction given in Section 3 provides a tight reduction to the hardness of R-LWE
and bounds explicitly the forging probability with the success probability of the reduction.
More formally, let εA and tA denote the success probability and the runtime of a forger A
against our signature scheme and let εD and tD denote analogous quantities for the reduc-
tion D presented in the proof of Theorem 1. We can write the explicit relations εD ≥ c1εA+c2
and tD ≤ c3tA + c4, where c1, c2, c3, c4 are constants which are fixed for a concrete instanti-
ation of the signature scheme. We say that R-LWE is n-bit hard if tD/εD ≥ 2n; similarly, we
say that the signature scheme is m-bit secure if tA/εA ≥ 2m.

Given an explicit security reduction and the assumed bit-hardness of R-LWE, we can
compute the bit-security of the signature scheme. In our case, we instantiate the signature
scheme such that the constants c1, c2, and c3 are roughly equal to 1. Thus, the bit-hardness of
the R-LWE instance is the same as the bit-security of our signature instantiated as described
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below. To ensure both correctness and security of our signature, the following dependencies
must hold.

Let λ be the security parameter. We choose a hash function H : {0, 1}∗ → {0, 1}κ with
κ > λ to ensure that the hash function gives at least a bit-hardness of λ. We instantiate
the hash function for our parameter sets with SHA-256. Furthermore, security relies on the
encoding function F : {0, 1}κ → Bn,ω. Following Bai and Galbraith [9], we require F to be
close to an injective function. That means that the probability of mapping two different values
to the same output is smaller than or equal to 2−λ. We choose ω such that 2κ ≥ |Bn,ω| = 2ω

(n
ω

)
.

To use efficient polynomial multiplication, i.e., the number theoretic transform (NTT) in the
ring Rq, we restrict ourselves to a polynomial degree of a power of 2, i.e, n = 2k for k ∈ N.
Choosing the Gaussian parameter σ, we can compute the system parameters to give a concrete
instantiation of ring-TESLA with λ-bit security.

To apply rejection sampling (see Lemma 1, Appendix B), we choose U = 14
√
ωσ and

B ≥ 14(n − 1)
√
ωσ. The rejection probability is given by M =

(
2(B−U)+1

2B+1

)n
. We select the

rounding value d to be larger than log(B) and such that the acceptance probability in the first
part of Step 17 in Figure 1 is greater than or equal to 0.4, i.e., (1−2L/2d)2n ≥ 0.4. The bound
L is important during the key generation as well as during the sign procedure. We choose L
such that we reject only very few of the possible key pairs in checkE. For example, we achieve
an acceptance probability of almost 100% in KeyGen and an acceptance probability of 0.34 in
Sign for parameter ring-TESLA-II. At last, the modulus q has to be greater than or equal to(

2(d+1)2n+κ

(2B)n
)1/n

and greater than or equal to 4B. The theoretical size of the secret key is given
by 3ndlog(14σ)e bits. The public key is represented by 2ndlog(q)e bits and the length of the
signature is ndlog(2B − 2U)e + κ bits. Given the concrete instantiations in Table 1, we get
a signature size of 1,488 byte, a public key size of 3,328 byte, and a secret key size of 1,920
byte for parameters chosen such that the signature scheme is 128-bit secure. In Table 1 we
also propose instantiations for 80 bit of security. For comparison, we depict our signature and
key sizes together with the corresponding values of BLISS [22] and the GLP [27] signature
scheme in Table 2.

Table 1: Parameter sets for our signature scheme in comparison; the hardness of the LWE
instance is defined by the dimension n, the modulus q, and the Gaussian parameter σ; deriva-
tion of L, ω,B,U, d is explained in Section 4.1; pk and sk denote the public and private key,
resp.

Parameter selection

Parameter Security n σ L ω B U d q
Set (bit)

ring-TESLA-I 80 512 30 814 11 221 − 1 993 21 8399873
ring-TESLA-II 128 512 52 2766 19 222 − 1 3173 23 39960577

Acceptance prob. pk Size sk Size Signature Size
KeyGen Sign (byte) (byte) (byte)

ring-TESLA-I 80 0.5 0.23 3,072 1,728 1,418
ring-TESLA-II 128 0.99 0.34 3,328 1,920 1,488
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4.2 Hardness Estimation of the R-LWE Problem

Since the introduction of the learning with errors problem over rings [38], it is an open ques-
tion whether the R-LWE is as hard as the LWE problem. Recently, the cyclic structure of ideal
lattices has been exploited by Garg et al. [25], by Campbell et al. [15], by Cramer et al. [18],
and by Elias et al. [24]. However, up to now, these novel results are not known to be di-
rectly applicable to most of the proposed ideal-lattice-based signature schemes. Hence, as
the R-LWE problem can be seen as an instantiation of the LWE problem, we estimate the
hardness of R-LWE via state-of-the-art attacks against LWE. We explain four basic attacks
on LWE: the embedding approach, the decoding attack, the algorithm by Blum, Kalai, and
Wassermann [12], and the Arora-Ge-Algorithm [7]. We briefly describe the algorithms next.
The most efficient practical approaches to solve LWE are the embedding approach and the
decoding attack.

During the decoding attack, an LWE instance (A,As + e) is seen as an instance of the
bounded distance decoding problem (BDD). The idea of the attack is to reduce the lattice
by algorithms such as the BKZ algorithm [17] first, and to find the closest lattice vector to a
target vector via the nearest plane algorithm by Babai [8] (or improved variants such as by
Linder and Peikert [35] or Liu and Nguyen [36]) afterwards. The closest vector corresponds
to As of the LWE instance, such that the secret can be easily discovered.

The embedding approach is to solve an LWE instance by reducing it to an instance of the
(unique) shortest vector problem. There are different ways to define a lattice that contains
the error term of an LWE instance (e.g., [3, 9, 11]). In the end, the short error term is found
as a shortest vector of the constructed lattice via basis reductions such as BKZ [17] and
LLL [17,34], or directly via sieving algorithms [33,39] or enumeration [4]. Recent results [14,
30, 42] exploit the cyclic structure of ideal lattices to improve sieving algorithms. However,
the improved sieving algorithms are still slower than the enumeration approach on instances
currently used for signatures.

Further, there are two non-lattice approaches to solve LWE, namely the attack based on
the algorithm by Blum, Kalai, and Wassermann (BKW) [12] and the algorithm by Arora and
Ge [7]. Both algorithms require a (very) large number of LWE samples to be applied efficiently.
Although the number of required samples was crucially reduced, for both BKW [20,29,32] and
the Arora-Ge algorithm [2], our proposed instances give far less LWE samples than required
for the attacks. Hence, we only take the decoding attack and the embedding approach into
account when estimating the bit-security of our instances.

We estimate the hardness of our chosen LWE instances based on [3, 9, 35]. We propose
parameters for two different levels of security: 80-bit security (ring-TESLA-I) and 128-bit
security (ring-TESLA-II). The embedding attack yields 166 bit of security and the result of
the decoding attack is a bit security of 139 on the instances in ring-TESLA-II.

5 Software Implementation

The implementation of the proposed scheme targets the Intel Haswell micro architecture. We
perform benchmarks on a machine with an Intel Core i7-5820K (Haswell) CPU at 3300MHz
and 16GB of RAM. In our software we use the benefits of AVX2 instructions, where multi-
plication, addition, and subtraction instructions have one cycle throughput for eight doubles.
The software is compiled with gcc-4.7 with optimization code. The experimental results are
obtained by using gcc-4.7 with “-Ofast” optimization since it enables all “-O3” optimizations
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together with turning on “-ffast-math”. This optimization helps us to reduce the timing re-
sults significantly. The performance of our implementation mainly depends on the number of
rejections during Sign and KeyGen and on the time a single polynomial multiplication takes.
The derivation of the number of rejections is explained in Section 4.1. We optimized the time
for multiplication by choosing the most suitable multiplication algorithm for different cases
as it is explained below.

Polynomial Multiplication. In the presented scheme two types of polynomial multiplication
occur: standard and sparse polynomial multiplication. For standard polynomial multiplication
we use the number theoretic transform (NTT) since NTT performs polynomial multiplica-
tion with a quasilinear complexity, i.e., O(n logn). Thus, the parameter sets are selected in
such a way that NTT is applicable, i.e., q = 1 (mod 2n), where n is a power of 2. In our
implementation, we store the integer in double format in a word. Then, after arithmetic op-
erations in NTT, it is expected to fit in a double, i.e., log(log(n)q) + log(q) < 54. To avoid
an overflow one needs to make extra reduction operations when using ring-TESLA-II because
log(q) is represented by 26 bits. This, of course, results in a drawback of the performance.
NTT with extra modulo q reduction would need almost 28383 cycles for n = 512 and ω = 19
as chosen in ring-TESLA-II. Without extra reductions, the average cycle count of NTT devel-
oped for ring-TESLA-I is 10625. Barrett reduction is preferred over reducing the coefficients
because of the modular structure. The hybrid approach of using NTT and sparse polynomial
multiplication requires more inverse NTT operations since sparse polynomial multiplication
is applicable only in the integer domain.

Input: array d = [i1, ..., iω], poly a(x) =
∑n−1

i=0 aix
i, poly b(x) =

∑n−1
i=0 bix

i; with
ai ∈ Zq, bi ∈ {0, 1}, d[k] = ik such that bik = 1
Output: poly c(x) = a(x)b(x)

1 Set all coefficients of c(x) to 0
2 for i = 0, ..., ω − 1:
3 for j = 0, ..., n− 1:
4 cj+d[i] ← cj+d[i] + aj
5 for i = 0, ..., n− 1
6 ci ← ci − ci+n (mod q)
7 Return c(x)

Fig. 2: Sparse Polynomial Multiplication

Recall that the weight of c, i.e., the number of 1’s, is ω. Then, the multiplication operations
in the signature generation phase (Step 14, 15, and 16: sc, e1c, and e2c) and in the signature
verification phase (Step 20 and 21: t1c and t2c) can be considered as sparse polynomial
multiplications because of the number of nonzero elements in c. In order to speed up, we use
the sparse polynomial multiplication given in Algorithm 2. The complexity of Algorithm 2
depends on the nonzero coefficients of b(x). Note that polynomial multiplication is performed
by using only additions if one of the multiplicands is sparse. The required number of additions
and subtractions is (ωn+ n). The last for-loop is designed for polynomial reduction modulo
xn + 1. There is only one reduction modulo q of the coefficients. This improves the runtime
and complexity. Sparse multiplication requires almost 3650 cycles.
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We place our implementation of ring-TESLA in public domain. It can be found under
https://www.cdc.informatik.tu-darmstadt.de/cdc/personen/nina-bindel.

6 Performance Analysis

We performed our benchmarks on a machine with an Intel Core i7-5820K (Haswell) CPU
at 3300MHz and 16 GB of RAM, while disabling Turbo Boost and hyper threading. In our
measurement we considered two parameter sets: ring-TESLA-I and ring-TESLA-II with 80 and
128 bits of security, respectively. Our benchmarks are averaged3 over 10,000 runs of Sign and
Verify. We summarize benchmarks for our proposed parameter sets and state-of-the-art ideal-
lattice-based signature schemes in Table 2. We emphasize once more that our parameter sets
are the only ones in Table 2 which are chosen according to the given security reduction, cf.
Section 4. Nevertheless, we achieve good performance with respect to time and space. In the
following, we compare sizes and run times for 80 and 128 bits of security.

Table 2: Comparison of our results with the software implementations of the signature
schemes BLISS [21, 22] and GLP [19, 27, 28]. To indicate the considered platforms Intel Core
i5-3210M (Ivy Bridge), Intel Core i7-5820K (Haswell), and Intel Core 3.4 GHz we use shortcuts
A, B, and C, respectively. Sizes of signatures, signing and verification keys are indicated in
Bytes. We abbreviate ’Decisional Compact Knapsack problem’ by DCK. In the benchmarks
of GLP we include the improvements by Dagdelen et al. presented in [19]. In the benchmarks
of BLISS we include the improvements by Ducas presented in [21].

80-bit security GLP [19,27,28] ring-TESLA-I
(this paper)

Assumption DCK R-LWE
CPU A B
Signing key size 256 1,728
Verification key size 1,536 3,072
Signature size 1,186 1,568
Sign cycle counts 452,223 370,880
Verify cycle counts 34,004 94,124

128-bit security BLISS [21,22] ring-TESLA-II
BLISS-I BLISS-II (this paper)

Assumption R-SIS, NTRU R-LWE
CPU C B
Signing key size 2,048 2,048 1,920
Verification key size 7,168 7,168 3,328
Signature size 1,559 1,514 1,568
Sign cycle counts 351,333 582,857 510,981
Verify cycle counts 102,000 102,000 167,791

3 Sometimes benchmarks are given as the median instead of the average value. Due to the rejection sampling,
taking the median value of our experiments would be overly optimistic for Sign.
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For low security of 80-bit, key and signature sizes of GLP-I are smaller than those of our
proposed parameters. Our run time of Sign is a factor of 1.19 faster than GLP. As Table 2
indicates, the software implementations of ring-TESLA and of the GLP signature scheme are
optimized for micro architectures.

For medium security of 128-bit the instantiation of our scheme gives smallest key sizes.
Signature sizes are comparably good. We emphasize that we report the signature size used in
the publicly available software implementation of BLISS-I and BLISS-II 4. Those sizes differ
from the theoretical signature sizes presented in [22], which are 700 and 625 bytes for BLISS-I
and BLISS-II, respectively, because signatures are not compressed in the BLISS software. To
our knowledge, there is no implementation of BLISS available that compresses the signature
sizes. The signature size of ring-TESLA are also obtained from our implementation.
The time-optimized implementation of BLISS-I by Ducas [21] is only a factor of 1.45 faster
than our implementation. We note that our signature scheme uses uniform sampling dur-
ing Sign. In contrast, BLISS uses Gaussian sampling, which might be vulnerable to timing
attacks [13,19]. Up to now, available implementations of BLISS do not protect against timing-
attacks. It would be very interesting to compare our implementation with an optimized and
timing-attack-protected implementation of BLISS.

In summary, our signature scheme has good performance compared to state-of-the-art
ideal-lattice-based signature schemes, while it is instantiated provably secure. Hence, when
real world security matters our presented scheme is a very interesting choice.
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A Extended Definitions and Security Notions

A.1 Syntax, Functionality, and Security of Signature Schemes

A signature scheme with key space K, message spaceM, and signature space S, is a tuple Σ =
(KeyGen, Sign,Verify) of algorithms defined as follows.

– The (probabilistic) key generation algorithm on input the security parameter 1λ returns
a key pair (sk, pk) ∈ K. We write (sk, pk) ← KeyGen(1λ) and call sk the secret or signing
key and pk the public or verification key.

– The (probabilistic) signing algorithm takes as input a signing key sk, a message µ ∈ M,
and outputs a signature σ ∈ S. We write σ ← Sign(sk, µ).

– The verification algorithm, on input a verification key pk, a message µ ∈ M, and a
signature σ ∈ S, returns a bit b: if b = 1 we say that the algorithm accepts, otherwise we
say that it rejects. We write b← Verify(pk, µ, σ).

We require (perfect) correctness of the signature scheme: for every security parameter λ, every
choice of the randomness of the probabilistic algorithms, every key pair (sk, pk)← KeyGen(1λ),
every message µ ∈M, and every signature σ ← Sign(sk, µ), Verify(pk, µ, σ) = 1 holds.

We target the standard security requirement for signature schemes, namely unforgeability
under chosen-message attack (ufcma). The corresponding experiment involving an adversary

14



A against a signature scheme Σ is depicted in Figure 3. Since we prove security of the
scheme presented in Section 3 in the random oracle model, we reproduce a corresponding
ufcma experiment which grants A access to a random oracle H. Given the experiment, we
say that a signature scheme Σ is (t, qs, qh, ε)-unforgeable under chosen-message attack if every
adversary A which runs in time t and poses at most qs queries to the signing oracle and qh
queries to the random oracle has advantage

Advufcma
Σ (A) = Pr

[
Exptufcma

Σ,A = 1
]
≤ ε .

Exptufcma
Σ,A (1λ) :

1 (sk, pk)← KeyGen(1λ)
2 (µ∗, σ∗)← A(1λ, pk)OSign(·),H(·)

3 If Verify(pk, µ∗, σ∗) = 1 ∧ µ∗ /∈ QS :
4 Return 1
5 Else: Return 0

If A queries OSign(µ) :
6 QS ← QS ∪ {µ}
7 σ ← Sign(sk, µ)
8 Return σ to A

Fig. 3: Security experiment of unforgeability under chosen-message attack for an adversary A
against a signature scheme Σ = (KeyGen,Sign,Verify) in the random oracle model (i.e., all
parties including A have access to a public function H with uniformly distributed output).

B Security Reduction of our Signature Scheme

In this section, we provide the full proof of Theorem 1. To this end, we state and prove a
number of auxiliary statements. First, we recap the rejection sampling. We use the lemma as
stated by Lyubashevsky in [37, Lemma 4.6].

Lemma 1 (Rejection sampling). For n > 0 let X be a probability distribution on Zn and
let Y be a probability distribution on V ⊂ Zn with density functions fX : Zn → (0, 1) and
fY : V → (0, 1). Furthermore, let {Zv}v∈V be a family of probability distributions with index
v ∈ V and density functions fZv : Zn → (0, 1), such that for almost all v ∈ V there exists
M ∈ R such that

Pr
[
M · fZv(z) ≥ fX(z)

]
≥ 1− 2−n, (1)

where the probability is taken over random choice of z ← X. Then the output distributions of
the following two algorithms are statistically close:

1. pick v ← Y, z ← Zv, output (z, v) with probability min
(

fX(z)
MfZv (z) , 1

)
.

2. pick v ← Y, z ← X, output (z, v) with probability 1
M .

The next theorem and proof are inspired by [9, Lemma 3].

Lemma 2. Let n, d,B, and q be as in Theorem 1 and let a1, a2 ∈ R×q . Furthermore, assume

that L ∩
[
−2d+1, 2d+1

]2n
≤ 2(d+2)2n/qn holds for the lattice L = {v ∈ Z2n | v = Aw (mod
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q), for w ∈ Zn} for instances as in Theorem 1. Then for all y1 ∈ Rq,[B] and y2 ←$ Rq,[B] we
have

Pr
[
bAy1ed,q = bAy2ed,q

]
≤ 2(d+1)2n

(2B + 1)nqn ,

where the probability is taken over random choices of y2. In particular we have |{bAyed,q |
y ∈ Rq,[B]}| ≥

(2B+1)nqn
2(d+2)2n .

Proof: Let y1 ∈ Rq,[B]. We show that we can upper bound the size of the set S = {y2 ∈
Rq,[B] | bAy1ed,q = bAy2ed,q} by

2(d+1)2n

qn , which implies the statement of the theorem, since

Pr
[
bAy1ed,q = bAy2ed,q

]
= |S|∣∣∣Rq,[B]

∣∣∣ = |S|
(2B + 1)n ,

where the probability is taken over y2 ←$ Rq,[B]. We define M = {y1 − x | x ∈ S} and
N = {Ax ( mod q) | x ∈M}. It holds |M | = |S|. Furthermore, since A has trivial kernel (over
Zq), M ⊆ Rq,[2B], and q

2 > 2B it holds that |N | = |M |. Hence, it suffices to bound |N |. We
claim that N ⊆ [−2d+1, 2d+1]2n. In order to see this, let x = A(y1 − z) (mod q) with z ∈ S
be an arbitrary element in N . Then by definition of S we have bAy1ed,q = bAzed,q and thus
bxed+1,q = bAy1 −Azed+1,q = 0, which means x ∈ [−2d+1, 2d+1]2n.
In addition, by definition N is a subset of the lattice L. Therefore, N ⊆ L ∩ [−2d+1, 2d+1]2n

and thus by the assumptions of the theorem we obtain |N | ≤
∣∣∣L ∩ [−2d+1, 2d+1]2n

∣∣∣ ≤ 2(d+1)2n

qn .
�

In the security reduction of Theorem 1 we need to bound the probability that for uniformly
chosen polynomials a1, a2, t1, t2 there exist polynomials s, e1, and e2 with “small” entries such
that ais+ ei = ti (mod q), for i = 1, 2. In the following lemma we make this bound explicit.

Lemma 3. Let n, m, q, and σ be chosen as in Theorem 1. Furthermore, let a1, a2 ←$ R×q
and t1, t2 ←$ Rq. It holds that

Pr
[
∀i ∈ {1, 2}∃s, e1, e2 ∈ Rq,[kσ] : ais+ ei = ti (mod q)

]
≤ (2kσ + 1)3n

q2n ,

where the probability is taken over random choices of a1, a2, t1, and t2.

Remark 1. By [37, Lemma 4.4] we know that ∀ k > 0 and z ← Dσ it holds that Pr
[
|z| > kσ

]
≤

2e−k2/2. Hence, the probability that all coefficients of s← Dn
σ and e1, e2 ← Dn

σ are in [−kσ, kσ]
is at least

(
1− 2e−k2/2

)3n
. That means, for k = 14 the probability

(
1− 2e−k2/2

)3n
≥ 1−2−λ

is overwhelming for our parameter choice given in Table 1.

Proof: [Lemma 3] Define A =
(
Rot(a1) Rot(a2)

)T
and t =

(
t1 t2

)T
. Since the polynomials

a1, a2, t1, t2 are chosen uniformly random (and hence the coefficients are chosen uniformly
random) the probability can be bound by the ratio of the number of possible vectors As + e
with s ∈ [−kσ, kσ]n and e ∈ [−kσ, kσ]2n, and the number of possible vectors for t ←$ Zmq ,
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i.e.,

Pr [ ∃ s, e1, e2 ∈ Rq,[kσ] such that ais+ ei = ti (mod q) for i = 1, 2 :
a1, a2 ←$ R×q , t1, t1 ←$ Rq]

≤ |{As + e | s ∈ [−kσ, kσ]n and e ∈ [−kσ, kσ]2n}|
|{t ∈ Z2n

q }|
.

It holds that

|{t ∈ Z2n
q }| = q2n,

|{As |s ∈ [−kσ, kσ]n}| = |{s ∈ [−kσ, kσ]n}| ≤ (2kσ + 1)n,
|{e ∈ [−kσ, kσ]2n}| ≤ (2kσ + 1)2n.

Thus,

|{As + e|s ∈ [−kσ, kσ]n and e ∈ [−kσ, kσ]2n}| ≤ (2kσ + 1)n(2kσ + 1)2n

= (2kσ + 1)3n.

�
In the security reduction of Theorem 1 we use the fact that if the reduction D is given two
randomly chosen challenge tuples (a1, t1) and (a2, t2) then the forger A can produce a valid
signature only with small probability. To prove this we utilize the following lemma and its
corollary.

Lemma 4. Let n, d, B, σ, and q be as in Theorem 1, and let δ ∈ Q>0. Furthermore, let
L = {z̄ ∈ Zn | Az̄ = u (mod q)} be a lattice and assume that |L ∩ [−δ, δ]n| = (2δ + 1)n/qn.
Then for all v1, v2 ∈ Rq, c′ ←$ {0, 1}κ with F (c′) = c, a1, a2 ←$ R×q , and t1, t2 ←$ Rq it
holds that

Pr
[
∀ i = 1, 2 ∃ z ∈ Rq,[δ] : baized,q = vi + bticed,q (mod q)

]
≤ 2dn(2δ + 1)n

q2n ,

where the probability is taken over random choices of c′, a1, a2, t1, and t2.

Proof: Recall that the rounding operator b·ed essentially drops
component-wise the least d bits of each coefficient. Thus, we can upper bound the proba-
bility in the theorem statement by the probability that there exists a z ∈ Rq,[δ] such that
aiz = vi + bticed,q (mod q), for i = 1, 2, multiplied by the factor of 2dn. This is because there

are at most 2dn possible values for
(
a1z a2z

)T
such that baized,q = vi + bticed,q (mod q), for

i = 1, 2, and the map defined by
(
Rot(a1) Rot(a2)

)T
is injective. It remains to show that for

all v1, v2 it holds that

Pr
[
∀ i = 1, 2 ∃ z ∈ Rq,[δ] : aiz = vi + tic (mod q) with F (c′) = c

]
≤ (2δ + 1)n

q2n , (2)
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where the probability is taken over random choices of c′ and a1, a2, t1, t2. Define u =
(
u1 u2

)T
with u1 = v1 + bt1ced,q and u2 = v2 + bt2ced,q. Furthermore, let A =

(
A1 A2

)T
with

A1 = Rot(a1) and A2 = Rot(a2). Then Equation 2 is the same as

Pr [∀ i = 1, 2 ∃ z ∈ [−δ, δ]n : Aiz = vi + bticed,q (mod q)]

≤ (2δ + 1)n

q2n , (3)

where the probability is taken over random choices of c′, a1, a2, t1, t2.
Since a1, a2 ←$ R×q it holds that rank(A1) = rank(A2) = n. Hence, rank(A) = n. Thus,
there exists a unique z̄ ∈ Znq such that A1z̄ = u1 (mod q). We prove Equation (2), by
pointing on two things: first, due to the injectivity of the matrices A1 and A2, the probability
that A2z̄ = u2 (mod q) is bounded by 1/qn. Secondly, the probability that z̄ is in [−δ, δ]n
can be bounded by (2δ + 1)n/qn as we show next: assume that A2z̄ = u2 (mod q). Define
the set S⊥u = {z̄ ∈ [−δ, δ]n | Az̄ = u (mod q)}. The matrix A defines the following shifted
lattice ∆⊥u,q(A) = {z̄ ∈ Zn | Az̄ = u (mod q)}, with det(∆⊥u,q(A)) = det(∆⊥0,q(A)) = qn. By
assumption, we can bound the number of elements in S⊥u by

|S⊥u | = |∆⊥u,q(A) ∩ [−δ, δ]n| = (2δ + 1)n

qn
.

Thus, the probability that z̄ is in [−δ, δ]n can be bounded by (2δ + 1)n/qn.
�

We reformulate the lemma to obtain the following corollary useful for the proof of our main
theorem.

Corollary 1. Let n, d, B, σ, and q be as in Theorem 1, and let δ ∈ Q>0. Then, for ∀ v1, v2 ∈
Rq and c′ ←$ {0, 1}κ, a1, a2 ←$ R×q , and t1, t2 ←$ Rq it holds that

Pr
[
∃ z ∈ Rq,[δ] : vi = baized,q − tic (mod q) for i = 1, 2 and F (c′) = c

]
≤ 2dn(2δ + 1)n

q2n ,

where the probability is taken over random choices of c′,a1, a2,t1,t2.

At last, we give the proof of Theorem 1.
Proof: Let A be an algorithm that runs in time tA, makes qh hash queries and qs signing
queries, and forges a valid signature with probability εA. We show how to build a distin-
guisher D, that runs A internally, solving R-LWEn,2,q,σ in time tD and with probability εD as
in the theorem statement. To win the R-LWE game, D simulates the ufcma-experiment for A.
Since A expects a public key as input, D gets two R-LWE challenge tuples (a1, t1) and (a2, t2)
and hands pk = (a1, a2, t1, t2) over to the forger. Then, it answers hash and signing queries
as follows.

Hash queries: When a given query was already asked D returns the corresponding answer
consistently, otherwise it chooses a fresh c′ ∈ {0, 1}κ uniformly at random, registers this value
together with its input, hence returns c′ to A.

18



Signing queries: Upon a signature request on a message µ, D simulates a signature (z, c′)
on µ by implementing the following steps: it chooses uniformly random c′ ←$ {0, 1}κ, a
polynomial z ←$ Rq,[B−U ], and computes c = F (c′). It then computes polynomials wi =
aiz − tic (mod q), for i = 1, 2, and checks whether |[wij ]2d | < 2d−1 − L for all j ∈ {1, . . . , n},
i.e., it checks if the d least significant bits of every coefficient of w1 and w2 are smaller than
2d−1 − L; if not, then D repeats the whole process starting with choosing new values c′ and
z. Moreover, if the hash oracle H was queried before on (bw1ed,q , bw2ed,q µ), then D aborts
the simulation. Otherwise, D defines c′ = H(bw1ed,q , bw2ed,q , µ) and returns (z, c′).

Eventually A outputs a forgery (z̃, c̃′) on a message µ̃ for which it did not ask a signature to
the signing oracle. Now D checks validity of the forgery: If Verify(pk, µ, (z̃, c̃′)) = 1 it returns 1,
else it returns 0. We show that the responses to hash and signing queries provided by the
simulation D are indistinguishable from the random oracle’s and signing oracle’s responses.
The reduction emulates a random oracle via lazy sampling, hence its answers are truly random
as long as some given hash value was not already set. However, in the latter case the reduction
aborts. It remains to show that (i) the distributions of the simulated signatures and the ones
produced by the signing algorithm (Figure 1) are statistically close and that (ii) the simulation
does not abort too often.

(i)We apply Lemma 1 to show that the distribution of z ∈ Rq,[B−U ] computed by the signing
algorithm in Figure 1 is statistically close to the uniform distribution onRq,[B−U ]. To apply
Lemma 1 we take X to be the uniform distribution on Rq,[B−U ] with U = 14σ

√
ω and

B = 14σ
√
ωn as in Table 1. Furthermore, Zv is the uniform distribution on the polynomials

with coefficients in [−B,B]n + v. That means, z ← Zv can be written as z = v+ y, where
y ←$ Rq,[B]. Each element v is a polynomial with coefficient representation v = Sc
with entries Gaussian distributed with standard deviation σ

√
ω. Hence, the coefficients

of v are bounded by 14σ
√
ω with overwhelming probability. By definition of the density

function fX and fZsc Equation 1 holds with overwhelming probability for 1/M = 1/e ≈(
2(B−U)+1

2B+1

)n
. Hence, the hypothesis of Lemma 1 are fulfilled.

(ii) Assume that the sign simulation samples an additional value y uniformly at random
in Rq,[B]. Furthermore, the simulation programs not only c′ = H(bw1ed , bw2ed , µ) but
also c′ = H(ba1yed , ba2yed , µ). Sampling y does not influence (z, c′). It is clear that
the probability of aborting during the orginial sign simulation is upper bounded by the
abort probability during the sign simulation with the changes just described. The latter
probability is the same as finding a collision. Hence, by Lemma 2, the probability that
D will abort during the simulation of A’s environment is upper bounded by qs(qh +
qs) 2(d+1)2n

(2B+1)nqn .

It remains to show how to lower bound D’s distinguishing advantage in the R-LWE game
with A’s forging advantage against the scheme Σ. Assume w.l.o.g. that A asks the query
(ba1z̃ − t1c̃ed,q , ba2z̃ − t2c̃ed,q , µ̃) to the hash oracle. In the following, we distinguish between
two cases: both t1 and t2 follow the R-LWE distribution—i.e, t1 = a1s + e1 (mod q) and
t2 = a2s+ e2 (mod q)—or they are sampled uniformly at random in Rq.
1st case, t1 = a1s+ e1 and t2 = a2s+ e2: The only possibilities that D outputs 0 are that
D aborts when answering a signing query or that the algorithm A does not output a valid
forgery. The latter occurs with probability 1−εA. As described in Appendix B, the probability
that D aborts during the simulation is qh 2(d+1)2n

(2B+1)nqn . Thus, D returns 1 with probability at
least εA

(
1− qsqh 2(d+1)2n

(2B+1)nqn
)
.
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2nd case, t1, t2 ←$ Rq: By Remark 1, Appendix B, we can bound the coefficients of the
polynomials s, e1, e2 by 14σ with overwhelming probability. By Lemma 3 the probability
that there exist polynomials with coefficient representation s ∈ [−14σ, 14σ]n and e1, e2 ∈
[−14σ, 14σ]n such that ti = ais + ei (mod q) with ti ←$ Rq, for i = 1, 2, is smaller than
or equal to (28σ + 1)3n/q2n. Assume t1, t2 are not of this form. By the assumption that a
hash query on (ba1z̃ − t1c̃ed,q , ba2z̃ − t2c̃ed,q , µ̃) is made by A, where (c̃′, z̃) is A’s forgery on
message µ̃, it suffices to show that for every hash query c′ = H(v1, v2, µ), v1, v2 ∈ Rq, posed
by A we can bound the probability that there exists a polynomial z such that (z, c′) is a
valid signature on µ. That means, it is enough to show that for v1, v2 ∈ Rq we can bound
the probability that for c′ ←$ {0, 1}κ there exists z ∈ Rq such that ||z||∞ ≤ B − U and
vi = baiz − ticed,q (mod q), i = 1, 2. By Corollary 1 the probability that such a polynomial
z exists is smaller than 2dn(2(B−U)+1)n

q2n . Thus, the probability that A forges a valid signature

can be bound by qh 2dn(2(B−U)+1)n
q2n . Hence, we can upper bound the probability that D returns

1 by qh 2dn(2(B−U)+1)n
q2n + (28σ+1)3n

q2n .

Finally, AdvR-LWE
n,q,χ (A) = εD ≥ εA

(
1− qsqh2(d+1)2n

(2B+1)nqn

)
− qh2dn(2B−2U+1)n

q2n − (28σ+1)3n

q2n .

It remains to show that A’s runtime tA and D’s runtime tD are close. As D executes A
as a subprocedure, we have tD ≥ tA. The overhead for D is due to the extra steps needed to
emulate the unforgeability game for A, i.e., two oracle queries to get challenge tuples (a1, t1)
and (a2, t2), plus the time necessary to answer hash and signing oracle queries. We already
showed that the distributions of the signatures simulated by D and those obtained using the
actual signing algorithm are statistically close; thus, when emulating the signing procedure
D rejects a pair (c′, z) with the same probability as when running algorithm Sign line 18 is
executed. More precisely, simulating the signing process essentially consists of a number of
polynomial multiplications, on average O(κ2) per query, which leads to the approximative
bound tD ≈ tA +O(qsκ2 + qh). �
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