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ABSTRACT 

A  three  step  method for obtaining  nearly  maximum like- 
lihood  ARMA  spectral  estimates is presented.  The  compu- 
tational  complexity of the  algorithm is comparable  to Yule- 
Walker  methods,  but  the  method gives asymptotically ef- 
ficient estimates.  The  implementation of the  algorithm is 
discussed, and numerical  examples  are  presented to illus- 
trate  its performance. 

I.  INTRODUCTION 

Spectral  estimation  is a topic  that  continually receives 
a great  deal of attention.  Of  the  many  techniques avail- 
able,  parametric  techniques,  and  in  particular  the use of 
an autoregressive  moving  average  (ARMA)  model  have  be- 
come  very popular.  Two  main  types of ARMA spectral es- 
timation  methods  have  emerged.  One  type  is  optimization- 
based,  and  includes  maximum likelihood (ML)  methods, 
prediction  error  methods,  and  various  nonlinear  least  square 
methods  [1,2].  These  procedures  can  sometimes  be  compu- 
tationally  intensive,  and suffer from  problems  associated 
with convergence to  false (local)  minima. The  other  main 
type of estimator is the class of Yule-Walker  based methods 
[2,3]. These  techniques  are  generally  much less computa- 
tionally  burdensome,  but can produce  estimates  with  poor 
accuracy  unless  special  steps  are  taken. 

This  paper discusses an ARMA spectral  estimation  pro- 
cedure  that combines the simplicity of Yule-Walker  based 
methods  with  the  accuracy of ML methods.  In  this al- 
gorithm,  initial covariance estimates  are  obtained,  and  an 
initial  estimate of the ARMA spectral  parameters  are com- 
puted.  These  initial  estimates  are  then used to correct  the 
covariance  estimates  to  improve  their  accuracy.  This  cor- 
rection  requires  only  linear  operations,  and the corrected 
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est,imates  give  asymptot,ically efficient, est.imates of their 
corresponding  spectral  parameters.  This  paper focuses on 
implementation  aspects; we develop a numerically  reliable 
version of the  algorithm,  and  present  simulation  examples 
to  illustrate  its  performance. 

11. AN ASYMPTOTICALLY  EFFICIENT 
ALGORITHM 

Consider  the following  ARMA  process of order (nu,nc): 

where e ( t )  is white  noise  with  zero mean  and  variance X2 
and 

We assume  that  the ARMA representation is minimal,  sta- 
ble,  and  invertible,  and  that  the  orders nu and nc are given. 

Next, we introduce  the following notation: 

+(z )  = rkz-k = the  spectral  density of y ( t )  (3b) 
03 

k=-co 

Here, E { - }  denotes  expected  value  and z is a complex vari- 
able.  It is well known that 

+ ( z )  = x2 G(z )C(z -1 )  
A ( z ) A ( z - I )  

The  problem of parametric  spectral  estimation  consists 
of first  parameterizing  the  spectral  density  function,  then 
estimating  those  parameters.  One  can  panmeterize + ( z )  by 
{X2 ,a l , .  . . ,a,,, c1,. . . ,cnC}. However, statistically efficient 
estimation of these  parameters is not  an  easy  task,  and 
nonlinear  optimization  routines  are  generally employed.  In 
this  paper  the  spectral  density is instead  parameterized by 
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8 = [ T o , .  . . , rnBlT n6' = nu + n e  
n 

(5) 

The ai coefficients are uniquely determined  from 6' by solv- 
ing 

or Ra = -r. Moreover, defining 

where a, = I ,  it readily follows from (l), (4), and (7) t,hat 

In the  algorithm  that follows, we  will derive a st,atis- 
tically efficient estimate of 6'. From 6' we  will obtain  the 
AR coefficient estimate using (6): and  the  spectral esti- 
mate  from (G)-(8). Thus,  the  problem of spectral  estima- 
tion  reduces  to  estimating  the  parameter vector 6' from  data 
measurements {y(f)}zl. For brevity, we present only t,lle 
needed results,  and refer the  reader  to [4] for details. 

It  is well-known that  the  standard unbiased sample co- 
variances 

1 Ar-k 
r k  = __ y ( t ) y ( t  - k )  k = 0, I , .  . . (9) 

N - k t=1 

are consistent. est,i~nates,  but  are  in  gmeral  not efficient 
estimates,  and  can have very bad  accuracy; see e.g. [5]. A 
more  accurate  estimator is given by the following three-st,ep 
algorithm: 
Step 1: Compute  an  initial B vector  using (9) 
Step 2: 

a) Find C using ? in (6) or by solving an  overdetermined 
set of Yule-Walker equations. 

b) Find b using ti and F in  (7). 

c)  Form z ,  Wlz, W z z  where: 

z = [ Z l , Z Z , . . . ,  Z,,,I* 
na na 

z k  = k aj Fna+nc+k-i-j 
i=o j z o  

Step3: 
a) Compute k using B in  (7). 
b) Compute ?, using 6 and B in (7). 
e> Compute 4 using i and 6 in (8). 

Note that, Wzz is a  banded,  symmetric Toeplit,z mat,rix 
with  the  bandwidth 2nc + 1, and  that [LVlZ]ij = 0 for j > 
n c  - nu + i. Thus,  computation of the  updated  estimate 
can  be carried out  in a computationally efficient manner. 
In  fact,  the  computation of z ,  a ,  and p requires  simple 
multiplication  and  addition  steps. And since Wz2 is banded 
and  Toeplitz, WG'z can  be  computed in an efficient manner 
using the  method  in [6] or [7]. 

The  estimate 0 in (10) has  the following properties [4]: 
PI: B is a minimum variance estimate  in  the class of all 
estimators which are based  on the  sample covariances 
{Fo,. . . Under the  Gaussian hypothesis it is a 
large-sample  approximation of the ML estimate of 6' which 
uses the  sample covariances as  a  data  statistic. 

P2: Let P& denote  the  asymptotic (for N -+ m) covariance 
matrix of m8. Then 

where P:R is the  Cram&-Rao lower bound  (CRLB) for the 
covariance matrix of any consistent estimator of 8 under 
the  Gaussian  hypothesis. 
P3: Let P:z denote  the  asymptotic covariance mat,rix of 
mli, and let PER denote  its  CRLB  matrix  under  the  Gans- 
sian  hypothesis.  Then 

Pzz 2 PZztl and  lim Pzz = PgR 

Explicit  expressions for P&, P&, PtZ,  and P& may be 

n z t m  

found  in [4]. 

111. IMPLEMENTATION OF THE 
ALGORITHM 

The  properties  obtained for the above algorithm  are 
asymptotic  (as N + m) results.  The derivations of those 
results rely on consistency properties  to show that  certain 
matrices  are  invertible, or that  stable polynomial estimates 
result. For finite N ,  these  propoerties may not hold,  and 
the  performance of the  algorithm may  not approximate  its 
large  sample  properties. Specific problems which arise are: 

ps = the coeff. of zs in [ b k z k I z  The  result of these effects is that  the  statistical  properties 
of the  estimates do not  improve monotonically as nz is in- 
creased, unless N is very large.  The "best" value of nz to 
use varies widely with data  length  and  the ARMA process 
parameters. 

k=-nc  

d) Compute  the  updated  estimate 

" -  
6' = 8 - TV~ZWG'Z 
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To improve t,he robustness of the algorit,llm for small 
N ,  the  algorithm was augmented  in two places. First,  the 
computation of WG’z includes  a  singularity  test  and cor- 
rection. Specifically, if a reflection coefficient in  the inverse 
computation (see [SI) is  too close to  one,  it is truncated  to 
1 - e. This  step requires at. most n z  extra multiplies  is  t,he 
algorithm  in [7] is used to  compute WA’z. 

Second,  the  computation of a ,  in  Step 2 is replaced  by: 

e If A(z-’) has  unstable  roots, replace it by A(z-’)  
where zi; = &;(l - S ) i  for  some b > 0 

Compute 6 k  by 6, = i k ( 1  - 6)2nc-k. 

o Compute w12 using bk and i i k .  

In our simulations S = 10/N, was used, but  it was found 
that  an  increase or  decrease of b by an  order of magnitude 
did  not significantly affect the  results.  The change in  the 
b sequence  is a first order  approximation which attempts 
to keep the residues of the poles unchanged.  This  step 
is also  computationally efficient; the Levinson algorithm 
is used to check for stability of A(z-’)  (requiring 0 ( n a 2 )  
computations),  and zi and b can be computed using 2nc + 
na + 1 multiplies. 

It was experimentally  found  that  the revised a ,  sequence 
significantly improved  the  robustness of t.he algorithm mainly 
when N was small  and n z  was large; otherwise the poles 
A(z-’) were not large  enough  in  magnitued to produce  an 
a,  sequence that grew t,oo fast,. The check in t,he W;’z 
computation  had a much smaller effect on the  statistics of 
the  parameter  estimates  in  relation  to  the a, check. 

IV.  SIMULATIONS 

We have tested  this  algorithm on a variety of numerical 
examples using  several ARMA models; we show results of 
a  typical  example  here. We have generated  data  from  the 
ARMA(4,4)  model with coefficients: 

a1 = 0.1 a2 = 1.66 a3 = 0.093 aq = .8649 
C I  = 0.0226 cz = 0.8175 ~3 = 0.0595 cq = 0.0764 

This ARMA process  is the  same  as  in [8] and references 
therein.  Experiments were conducted by forming 200 Monte- 
Carlo  estimates  from  simulated  data,  and  computing  the 
average value of N times  the  sums-squared  error (SSE) of 
various parameter  estimates. Bias and variance were also 
computed,  and  in all cases the bias term was negligible 
compared  to  the variance; thus  the SSE plots here are es- 
sentially normalized  variance plots. 

Figure 1 shows N6SE of the AR coefficient iil as a func- 
tion of n z  and for varying data  lengths  (the n z  = 0 point 
is the Yule-Walker estimate  estimate &). As expected,  the 
experimental SSE’s more closely approximate  the  theoret- 
ical (asymptotic)  result as N increases. Also, it can be 
seen that  the SSE’s stay fairly constant  up  to  a  ‘thresh- 
old’ value of n z ,  after which the SSE’s become very large. 

This t,hresllold valne increases wi1.h inrreasing N .  T~I I IS ,  if 
good estimation of AR coefficients is  needed,  any value of 
n z  in  the  range 3-9 provides  similar (and  near  minimum) 
estimation variances. 

For large values of N ,  the  spectral  estimates also ex- 
hibit  behavior  that closely matches theory. Of interest is 
the  characteristics of the  algorithm when N is relatively 
small. To this  end,  Figure 2 shows ten  candidate  spectral 
estimates  obtained  from N = 200, but using different val- 
ues of 72.2. Figure 3 shows N times t,he st,andard  deviation 
of 200 estimates for differing n z .  It  can  be seen that  the 
standard  deviation of the  estimator decreases substantially 
when  the  three  step  algorithm is  used. 

Other  experiments  included using an  overdetermined 
Yule-Walker equation set inst,ead of the  minimal  one  in ( 6 ) .  
The  results were improved for short  data  lengths,  but  the 
improvement diminishes for larger N .  

V. CONCLUSIONS 

We have  presented  an asympt,otically  stat,istically effi- 
cient linear  estimator for ARMA processes. The  estimat,or 
is  based on a  three  step  algorithm which obtaines  statisti- 
cally  efficient estimates of the first nu + nc  autocovariaIlces 
of the process; these coefficients can then be t,ransformed  to 
ARMA coefficients, or into  a  spectral  estimate.  The algo- 
rithm is computationally very efficient, requiring two more 
Toeplitz equation solut,ions and a s n d l  number of addi- 
tioIla1 multiplies over the  standard Yule-Walker estimator. 

Simulations  demonstrate  t,hat as increases,  the  exper- 
imental  parameter variances more closely match  theoretical 
variances. When N is large, very good agreement with  the- 
ory is noted. For smaller data  lengths ( N  = 200 in the 
example  shown), special numerical conditioning steps  are 
added  to  the original algorithm; even in  this case signifi- 
cant  improvement  in  estimator variance  can be obtained. 
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Figure 1: A comparison of N t,imes the sum-squared 
error of a1 for various data lengths. 
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Figure 2: Ten  overlapped  spectral  estimates  using  vary- 
ing nz,  each from 200 data  poids. 
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Figure 3: Sample  estimate (from 200 realizations) of 
times  the  standard  deviation of the spect,ral evt,imat,es 

for N = 200 and various n z .  
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