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Abstract

We describe an approach to construct approximation basis functions for
meshless methods, which is based on the concept of a partition of unity.
The approach has the following properties: (i) the grid consists of scattered
nodes, (ii) the basis reproduces exactly complete linear polynomials, (iii)
only the values of the approximated function at the nodes are used as
unknowns, (iv) the construction of the basis is only slightly more expensive
than the Shepard constant-precision method, and finally, (v) the method
is applicable in any number of spatial dimensions.
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Introduction

The partition of unity (PU) approach to the construction of interpolations and
approximations has been known for a long time, although perhaps not explicitly
recognized as such. The methods of Shepard1, McLain2,3, Franke and Nielson4

are all in this category. In recent years, the partition of unity method (PUM) has
received increased attention especially due to the work of Babuška and Melenk5–7

and Duarte and Oden8–10. The element-free Galerkin method as introduced by
Belytschko, Lu and Gu11 also generates a partition-of-unity basis (the nodal
functions are constants). The main reasons for the upsurge of interest are the
potentially meshless character of methods based on these approximations, and
their good approximation properties. The criteria of when a method can be
classified as “meshless” are not well established in the literature. We consider
a method as meshless if the approximation basis is constructed on arbitrarily
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overlapping supports of scattered nodes, without recourse to a partition of the
domain into non-overlapping subdomains of the finite element type.

The PUM can be concisely described as follows. Let the union of compact,
overlapping sets ΩI be a cover of the domain Ω, and construct PU functions
ωI(x) subordinate to this cover. On each set ΩI construct an approximation
space VI(x), which should be able to locally capture the solution. The global
approximation space is then defined as a blend of the local approximation spaces
through the PU functions, V =

∑
I ωI(x)VI(x).

To implement the PUM there are two issues to be resolved. First, how to con-
struct the PU functions ωI(x), and second, how to design the local approximation
spaces VI(x). If a meshless character of the approximation is important, the PU
can be constructed in a well-known way from weight functions WI(x) defined on
the sets ΩI : ωI(x) = WI(x)/

∑
Wk(x). These partition of unity functions are

identical with the Shepard basis1.
The local approximation spaces can be tailored to the known properties of

the solution6, or they can be polynomial spaces generated by a Taylor series
expansion of the solution. In many cases, a polynomial is a good choice for the
local spaces. The order of the polynomial space should be chosen judiciously.
For example, for second order partial differential equations in elasticity at least a
linear polynomial should be reproduced exactly. This is the so-called consistency
condition, which is related to the patch test of Strang and Fix12. For the Taylor
series approximation space, this leads to degrees of freedom which correspond to
the derivatives of the solution. This may be undesirable, because it may well lead
to numerical difficulties due to the conditioning of the global matrices. Therefore,
local spaces VI(x) in which the coefficients are all nodal values of the solution
can be advantageous. Such spaces have been proposed by Babuška and Melenk6

in 1-D in the form of Lagrange interpolation polynomials. The extension of this
idea to two and more dimensions is difficult.

In this paper, we present an approach to the construction of a linear PU basis.
We use the Shepard functions as the PU. In contrast to other PU methods, we
design the nodal functions so that the degrees of freedom are exclusively the
values of the approximated function at the nodes (or their equivalents if the non-
interpolating Shepard basis is used). The benefits of this approach include better
conditioning of the discrete equations and easier handling of essential boundary
conditions in applications to PDE’s. Furthemore, compared to moving least
squares approximations, the construction of the present basis is quite fast.

The outline of the paper is as follows: In Section 1 we review the Shepard’s
method, which is used as the partition of unity. We list the properties of the
weight functions, and the characteristics of the functions ωI(x). Section 2 then
deals with modifications of the Shepard method, which have been proposed with
the goal of making the Shepard interpolation more accurate. These improve-
ments can be recognized as variants of the general PUM. In Section 3 we explain
the construction of the local spaces VI(x) for the proposed approximation. Sec-
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tion 4 illustrates the properties of the present approach, such as accuracy, and
performance, on a number of numerical examples.

1 Shepard’s method

We consider discretization of domain Ω with an approximation based on a set
of scattered nodes. Each node affects the approximation in its neighborhood, or
domain of influence ΩI . The domains of influence can be of any shape: square,
circular, etc. A weight function WI(x) is associated with each node I. It is non-
negative inside ΩI , vanishes on the boundary ∂ΩI , and is non-zero at node I.

The Shepard’s approximation1 can be written as

uh(x) =
N∑
I=1

ωI(x)uI , (1.1)

where uI are the nodal parameters, and ωI(x) are the basis functions of compact
support, which are constructed from the weight functions associated with the
nodes, WI(x), by

ωI(x) =
WI(x)∑N
k=1Wk(x)

. (1.2)

It is trivially shown that

N∑
I=1

ωI(x) = 1 . (1.3)

Equation (1.3) expresses the fact that the functions ωI(x) represent a partition of
unity: A constant function u(x) = C is reproduced exactly. (This property is also
called “constant precision”.) If uI = C, for I = 1, . . . , N , it follows from (1.1)
that

uh(x) =
N∑
I=1

ωI(x)uI =
N∑
I=1

ωI(x)C = C

N∑
I=1

ωI(x) = 1 . (1.4)

Other properties of the Shepard functions depend on the weight functions. To
achieve interpolation, Franke and Nielson4 propose the following singular weight
function with compact-support

WI(xI ,x) =


[

(Rw − ||x− xI ||)
Rw||x− xI ||

]2

for ||x− xI || < Rw,

0 elsewhere,

(1.5)
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where Rw is the radius of the support. The PU basis ωI(x) generated via (1.2)
from the weight function of (1.5) has the following properties:

ωI(xK) = δIK (1.6)

∂ ωI(xK)

∂ xm
= 0 , (1.7)

where the derivatives are with respect to all spatial dimensions, m = 1, 2, . . . ,
and δIK is the Kronecker delta.

If interpolation is not required, a non-singular weight function is an option.
In this work we have used the radial quartic weight function

WI(x) =

{
(1− 6r2 + 8r3 − 3r4) for 1 > r ≥ 0,

0 for r ≥ 1,
(1.8)

where r = ||x−xI ||/Rw. Other choices of the weight function are also acceptable,
but the above is one of the simplest; see Reference 13.

2 Modified Shepard’s method

The PU basis ωI(x) defined above is only of constant precision. Therefore,
the approximation (1.1) does not have much appeal. It does not converge for
second-order partial differential equations, and it displays so-called flat spots
at the nodes14. In order to enhance the approximation, Franke and Nielson
have proposed a modification leading to an inverse distance weighted least-square
interpolation4, which can be explained in the framework of a general PU method.

The basic idea is to replace the nodal values in (1.1) by a local approximating
functions VI(x) (also called a local fit, or nodal function4,15; the span of this space
can be chosen to fit the expected behaviour of the solution, or may be selected
to reproduce polynomials of certain degree

uh(x) =
N∑
I=1

ωI(x)VI(x) (2.1)

where ωI(x) is the PU function. The resulting approximation is a blend of the
functions VI(x) through the PU basis ωI(x).

The approximation (2.1) reproduces exactly any function contained in all the
VI(x) functions. Let nodal functions VI(x) contain the function f(x). Then we
can rewrite (2.1) as

uh(x) =
N∑
I=1

ωI(x)VI(x) =
N∑
I=1

ωI(x)f(x) = f(x)
N∑
I=1

ωI(x) = f(x) , (2.2)

where the last step follows from (1.3).
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If the singular weight function (1.5) is used, the approximation (2.1) inter-
polates at the nodes, and the derivatives of the approximation at the nodes are
equal to the derivatives of the nodal functions VI(x). This follows from the
properties (1.6) and (1.7) of the singular weights.

Shepard proposed using the derivative data (linear terms of a Taylor series)
to achieve linear precision1 of the approximation basis. In order to enhance the
capabilities of the method for data fitting (surface approximation), Franke and
Nielson4 proposed the quadratic local least-squares fit

VI(x) = c
(I)
1 (x− xI)2 + c

(I)
2 (x− xI)(y − yI) + c

(I)
3 (y − yI)2

+c
(I)
4 (x− xI) + c

(I)
5 (y − yI) + c

(I)
6

(2.3)

If the PU functions ωI(x) allow for interpolation, the coefficient c
(I)
6 can be iden-

tified with the value of the approximated function at the node I; otherwise it
needs to be determined by a weighted least-squares fit4. The fact that the coeffi-
cients c

(I)
j , j = 1, . . . , 5 correspond to the derivatives of the solution, is a distinct

disadvantage for applications of the approximation (2.1) in numerical solutions
of partial differential equations: the nodal parameters have different physical di-
mensions, and the number of degrees of freedom per node increases. Therefore,
a formulation using only the values of the sought function at nodes as degrees of
freedom is desirable.

3 Linear nodal PU approximation

Our goal is to design the local approximating space in such a way as to achieve
(i) linear precision, and (ii) use of only one type of nodal parameter. Therefore,

we are looking for a set of linear functions µ̂
(I)
m (x) such that

VI(x) = µ̂
(I)
I (x)uI +

NI∑
k=1

µ̂
(I)
k (x)uk ,

where uI is the nodal parameter associated with the node I, and uk are the nodal
parameters associated with some other nodes, which are “close” to node I. We
shall call this set of nodes the star nodes; see Fig. 1, where the star nodes are
enclosed in square boxes. The selection of the star nodes is quite arbitrary. Note
especially that the star nodes are not required to be in the domain of influence of
the node I, and node I is not required to be in the domains of influence of the star
nodes. However, since the star nodes are essential in determining the derivative
data, the closest nodes to the node I can be expected to work best. (Figure 1
looks similar to those used by Perrone and Kao 16 to explain their irregular finite
difference method. The methods are not related, though.)

If the singular weights are used, interpolation may be achieved if the nodal
function VI interpolate at the node I for any values of nodal parameters at the
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nodes of the nodal function. Furthermore, if the nodal parameters are set to
values of a linear polynomial function at the nodes, the nodal function should
interpolate at all the nodes contained by the VI . The last requirement is posed
so that in this case we know the nodal parameters to be the values of the linear
function at the nodes, and we can formulate the linear consistency conditions.

Given the above, we write the nodal function as

VI(x) = uI +

NI∑
k=1

µ
(I)
k (x)(uk − uI) = uI

(
1−

NI∑
k=1

µ
(I)
k (x)

)
+

NI∑
k=1

µ
(I)
k (x)uk .

(3.1)

The functions µ(I)
k (x) are associated with node k in the star of node I, as indicated

by the superscript (I).
In what follows, we shall specialize the discussion to a two-dimensional setting.

However, the conclusions also apply to three and more dimensions. To facilitate
further developments, we introduce another Cartesian coordinate system, x̄, ȳ,
parallel to the global Cartesian axes x, y. Its origin is placed at node I, as shown
in Fig. 1.
Local basis functions. For the nodal function VI to interpolate at node I, we
construct the linear functions µ(I)

k (x) so as to vanish at node I. The functions

µ
(I)
k (x) associated with the star nodes will be

µ
(I)
k (x) = µ

(I)
k (x̄) = a

(I)
k

x̄

dk
+ b

(I)
k

ȳ

dk
, (3.2)

where dk is the distance of the star node k from the node I, dk = ||x̄k||. The

scaling by dk is introduced to make the coefficients a
(I)
k , b

(I)
k non-dimensional, thus

minimizing numerical errors in the linear algebra operations described below.
In order to fully specify VI(x), we need to find the coefficients a

(I)
k , b

(I)
k for

each star node k = 1, . . . , NI . Our goal is to construct a basis of linear precision,
which reproduces a linear function exactly, so the nodal functions need to be
able to reproduce exactly any complete linear polynomial, f(x) = αx + βy + γ.
Equivalently, we may introduce a linear transformation, x̄ = x − xI , ȳ = y − yI ,
and reformulate the polynomial to be reproduced as f(x) = Ax̄+Bȳ+C (A = α,
B = β, and C = γ + αxI + βyI).

The nodal functions VI(x) are constructed so as to interpolate at node I and
all the star nodes for nodal parameters corresponding to a linear polynomial,
um = f(xm) = Ax̄m +Bȳm + C. Therefore (note that x̄I = ȳI = 0)

VI(x) = f(x) = Ax̄+Bȳ + C

= f(xI)
(

1−
∑NI

k=1 µ
(I)
k (x)

)
+
∑NI

k=1 µ
(I)
k (x)f(xk)

= C
(

1−
∑NI

k=1 µ
(I)
k (x)

)
+
∑NI

k=1 µ
(I)
k (x)(Ax̄k +Bȳk + C)

= C +
∑NI

k=1 µ
(I)
k (x)(Ax̄k +Bȳk) .

(3.3)
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Constant precision is guaranteed by construction; compare with (3.1). Linear
precision is achieved if the following equations hold for any A and B

NI∑
k=1

a
(I)
k

(
A
x̄k
dk

+B
ȳk
dk

)
= A (3.4)

NI∑
k=1

b
(I)
k

(
A
x̄k
dk

+B
ȳk
dk

)
= B (3.5)

Since the above must hold for arbitrary A and B, the coefficients a
(I)
k have to

satisfy the following two equations

NI∑
k=1

a
(I)
k

x̄k
dk

= 1 (3.6)

NI∑
k=1

a
(I)
k

ȳk
dk

= 0 (3.7)

and the coefficients b
(I)
k have to satisfy

NI∑
k=1

b
(I)
k

x̄k

dk
= 0 (3.8)

NI∑
k=1

b
(I)
k

ȳk
dk

= 1 (3.9)

It becomes clear that there must be at least two star nodes in order to be able to
construct a basis with a linear precision: in that case there are two coefficients
a

(I)
k and two coefficients b

(I)
k so equations (3.6)–(3.9) can be met. If there are

more than two star nodes, one can solve for two of the coefficients, but the values
of the remaining (NI − 2) coefficients can be chosen arbitrarily; the selection of
the coefficients is discussed below.
Existence of a solution. When does a unique solution of the set of equations
(3.6) and (3.7) exist? Let us assume we solve for the coefficients a1 and a2. The
left-hand side matrix is then

[L] =

[
x̄1/d1 x̄2/d2

ȳ1/d1 ȳ2/d2

]
(3.10)

It is easy to see that the columns are linearly independent provided the star nodes
1 and 2 are not located on a line radially emanating from the node I, or in other
words, matrix [L] is non-singular if the vectors {x̄1, ȳ1} and {x̄2, ȳ2} are linearly
independent.
Determination of the coefficients. How should one select the coefficients
a

(I)
k and b

(I)
k for k = 3, . . . , NI? Because of (1.7), these coefficients determine
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the slope of the approximated function at the nodes. The question is then, how
should the coefficients a

(I)
k be distributed to achieve a good approximation to the

derivatives of a given function at the node I? (Analogous reasoning applies to

the determination of the coefficients b
(I)
k .)

It is reasonable to require some kind of symmetry of the distribution with
respect to the axes x̄, ȳ. Also, for a perfectly symmetric distribution of nodes
the coefficients should be also symmetric. For instance, for the star nodes of
Fig. 2, both distributions of the coefficients a

(I)
k , k = 0, . . . , 7 are acceptable. The

left side in fact loosely corresponds to a central difference estimate of the first
derivative with respect to x at the central node. One can expect a connection
between the design of the nodal function in the present method and the finite
difference approximations of derivative data. In particular, the connection to the
generalized finite difference method of Liszka and Orkisz 17 seems worth exploring.

We propose the following rule for the initial selection of the coefficients a
(I)
k

for any irregular distribution of the star nodes (analogous estimates apply to the

coefficients b
(I)
k )

a
(I)
k =

(
NI∑
m=1

x̄2
m

d2
m

)−1

x̄k
dk

. (3.11)

As can be easily verified, for symmetric arrangements of the star nodes, (3.11)
satisfies (3.6) by construction. If either one of equations (3.6) and (3.7) is not

satisfied exactly for the values estimated from (3.11), the values of a
(I)
1 and a

(I)
2

are obtained via the solution of (3.6) and (3.7).
Some comments are in order: (i) one can expect deterioration of the absolute

accuracy for non-optimal distributions of the coefficients, but the convergence
rate is not affected, since the linear precision conditions are met, (ii) further in-
vestigation is needed to determine if there are optimality criteria for the selection
of the stars and for the distribution of the coefficients in the stars.
Implementation. Applying the above results, equation (2.1) can be written
as

uh(x) =
N∑
I=1

ωI(x)

[
uI

(
1−

NI∑
k=1

µ
(I)
k (x)

)
+

NI∑
k=1

µ
(I)
k (x)uk

]
, (3.12)

which can be also converted to the standard form

uh(x) =
N∑
I=1

ϕI(x)uI , (3.13)

where the resulting linear-precision basis functions ϕI(x) are expressed as

ϕI(x) = ωI(x)

(
1−

NI∑
k=1

µ
(I)
k (x)

)
+

AI∑
k=1

ωk(x)µ
(k)
I (x) . (3.14)
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Note the distinction in the sums: AI is the number of stars in which the node I
participates.

4 Numerical examples

In order to gain some insight into the properties of the proposed approximation
basis, we present L2 interpolation errors. The schemes compared are:

1. Moving least squares, which are used in the element-free Galerkin (EFG)
method, with a linear basis11,13, 18,

2. FEM with linear triangles,

3. Interpolating PUM (the singular weight function of (1.5) is used),

4. Non-interpolating PUM (non-singular weight function of (1.8) is used).

Two surfaces have been approximated, S(x, y) = (−x3 + sin(2y) + xy/2)/4, and
R(x, y) = −xy exp(−2x4y4); both on a square domain x ∈ 〈−2; 2〉2. Four grids
have been used. The spacing of the grids was set to 1/5, 1/10, 1/20 and 1/40
of the length of the domain edge. An unstructured triangulation with edges
approximately the same length was generated for each spacing, and the nodes
in the meshless methods were placed at the vertices of the triangulation. (The
FEM solution was obtained on the triangulations, of course.) The support size
was set to 1.7le for the meshless methods, EFG and the interpolating and non-
interpolating PU; le is the average length of edges in the triangulation. The
EFG method used a linear basis, and a quartic polynomial weight function on a
spherical support. For the EFG and the non-interpolating PU methods the nodal
values were found from the interpolation conditions

[φI(xj)] {fI} = {f(xj)} (4.1)

The star nodes were selected from nodes within the domain of influence of
the central node. As will be discussed later, the number of star nodes was either
unlimited, or the nodes were sorted by distance, and only the closest to the central
node have been considered.

The interpolation error is measured by the L2 norm

||f − fh||2L2
=

∫
[f(x)− fh(x)]2 dΩ , (4.2)

and error in derivatives is measured by the L2 seminorm

||∂f − ∂fh||2L2
=

∫ {[
∂ f

∂ x
(x)− ∂ fh

∂ x
(x)

]2

+

[
∂ f

∂ y
(x)− ∂ fh

∂ y
(x)

]2
}

dΩ , (4.3)
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Figure 3 shows the convergence of the interpolation error norms for the surface
S, and the corresponding interpolation errors for the surface R are shown in
Fig. 4. The expected convergence rate for linear triangles is two in the norm (4.2),
and one in the norm (4.3). It can be seen that the EFG method and the non-
interpolating PUM display similar absolute accuracy and convergence rates. The
interpolating PUM is only slightly more accurate than the linear finite elements.
The kink in Fig. 4 can be probably attributed to pre-asymptotic behavior, but
the convergence rate of the EFG and the present non-interpolating PUM is not
completely understood yet.
Dependence on the star coefficients In order to assess how the star coeffi-
cients influence the accuracy we compare interpolation errors for the surface S for
coefficients obtained from (3.11), with results obtained for obviously non-optimal
coefficients ak = bk = 0, k ≥ 3. As can be seen from Fig. 5, the latter distribution
gives slightly worse absolute accuracy, but the convergence rate is, as expected,
unchanged.
Dependence on the support size The support size, and in a related manner
the number of star nodes selected at a given point, has a modest influence on
the absolute approximation errors. To assess this characteristic, we compare the
interpolation errors for varying support sizes. The support size is measured in
multiples of the smallest nodal spacing for a regular grid. The interpolation errors
are evaluated for the surface S on a perfectly regular grid of 10 × 10 nodes, and
on a grid of 10× 10 nodes with slightly randomly shifted nodes (approx. 1/5 of
the node spacing). Figure 6 shows the interpolation error for the case where all
the nodes inside the domain of influence of the center node are selected as star
nodes; figure 7 depicts analogous results for the case the star nodes are limited to
the four closest nodes in the domain of influence of the center node. The accuracy
of the present interpolating PUM is almost independent of the support size; the
accuracy of the non-interpolating PUM is comparable to the accuracy of the EFG
method, but does not improve as markedly for larger supports. Interestingly, the
present approach seems to be less sensitive to the irregularity of the grid than
the EFG method.

5 Performance

The cost of the PU method of (2.1) is composed of the cost of constructing
the functions ωI(x) and of the cost involved in the computation of the nodal
functions VI(x). Therefore, it is not possible to reduce the total CPU time cost
below that needed to construct the functions ωI(x). We use equation (1.2) to
construct the functions ωI(x) (or, in other words, the Shepard approximation is
used as the PU). In view of the preceding argument, we compare the cost of the
presented approach with the cost of the EFG method, and also with the cost of
the evaluation of the PU functions ωI(x). The efficiency of the construction of the
functions ωI(x) depends crucially on the efficiency with which nodes associated
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with non-zero weight can be found at any given point. We use a bounding-box
tree search technique with the EFG method.
Star-based searching. Interestingly, the present approach allows us to use a
star-based searching technique which is more efficient than the bounding-box tree
search. The star-based search makes use of the fact that one can search for only
a single node using the bounding-box tree search, and then the star connectivity
can be used to collect all the remaining nodes. (In order to make this work, all
the nodes in the domain of influence need to be included in the star.)
Timing comparisons. We use a grid with 10,000 nodes, and we evaluate
the basis functions and their first derivatives at 10, 000×M randomly scattered
points, M = 1, 4, 9, 16. We measure the CPU time for the following methods: (i)
Shepard method (or construction of the PU functions ωI(x)), (ii) EFG method
with a linear basis, (iii) the present approach with a bounding-box tree search
structure, (iv) the present approach with star-based searching.

The domains of influence of the nodes are square, and of two sizes leading to
12 and 32 neighbors per evaluation point, respectively. The times are compared in
Fig. 8. As can be seen, the present approach using the bounding-box tree search
is only slightly slower than the construction of the PU functions ωI(x). This
indicates that the effort expended in making the approximation basis linearly
precise is minor, and in fact, the present method can be seen to be close to
optimal in the sense that the bulk of the cost is associated with the functions
ωI(x).

As already mentioned, the connectivity information stored with the star at
each node allows us to use a more efficient way to construct the functions ωI(x),
since the necessary searches can be performed more quickly. Therefore, the
present method in conjunction with the more efficient searching technique is even
faster than the construction of the functions ωI(x) using the slower bounding-box
tree searching method; compare with Fig. 8.

Conclusions

We have described how to construct approximation basis functions for a partition-
of-unity (PU) method. The PU is in our case the Shepard basis. In order to en-
hance its accuracy, we have designed linear-precision nodal functions (local fits)
in such a way as to involve only the magnitude of the solution at the nodes as
the degrees of freedom. The nodal functions are sought as linear combinations of
the nodal parameters at the central node and a set of near-by nodes, called the
star nodes. The unknown coefficients are computed in a pre-processing step. The
resulting approximation is meshless, and it is applicable to any number of spatial
dimensions. Two variants can be constructed depending on the weight functions
which generate the PU: an interpolating PU method (for singular weight func-
tions), and a non-interpolating PU method. The non-interpolating PU method
is comparable in accuracy with the element free Galerkin (moving least squares)

11



method. The present method is very efficient, in fact the cost of the precision
enhancement constitutes only a small fraction of the cost involved in the con-
struction of the Shepard basis. Furthermore, the connectivity information stored
in the star allows for more efficient search. In this way the present linear-precision
basis can be constructed with the more efficient search technique more quickly
than a constant-precision Shepard basis using the usual search strategy.

To summarize, the present approach has the following desirable properties:
(i) the grid consists of scattered nodes, (ii) the basis exactly reproduces complete
linear polynomials, (iii) only the values of the approximated function at the nodes
are used as unknowns, (iv) the construction of the basis is only slightly more
expensive than the Shepard constant-precision method, and, (v) the method is
applicable in any number of spatial dimensions.
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Figure 3: Interpolation errors for the surface S(x, y) = (−x3 + sin(2y) +xy/2)/4.
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Figure 4: Interpolation errors for the surface R(x, y) = −xy exp(−2x4y4).
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Figure 5: Dependence of the accuracy on the star coefficients, ak and bk. ONLY

TWO NZ means that ak = bk = 0 for k ≥ 3.
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Figure 6: Interpolation errors ||f − fh||L2 for varying support size. Grid 10× 10
nodes. Quartic circular weight. All the nodes inside the domain of influence of
the center node are selected as the star nodes.
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Figure 7: Interpolation errors ||f − fh||L2 for varying support size. Grid 10× 10
nodes. Quartic circular weight. Only the closest four nodes are selected as the
star nodes.
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Figure 8: Timings for different average number of neighbors per evaluation point.
Methods shown: Shepard = ωI(x) basis (Shepard method), EFG = EFG method,
PU/LOBS = present approach with bounding-box tree search structure, PU/STARS
= present approach with star-based searching.
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