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An efficient local coupled cluster method with single and double excitation operators and perturba-

tive treatment of triple excitations [DF-LCCSD(T)] is described. All required two-electron integrals

are evaluated using density fitting approximations. These have a negligible effect on the accuracy but

reduce the computational effort by 1–2 orders of magnitude, as compared to standard integral-direct

methods. Excitations are restricted to local subsets of non-orthogonal virtual orbitals (domain ap-

proximation). Depending on distance criteria, the correlated electron pairs are classified into strong,

close, weak, and very distant pairs. Only strong pairs, which typically account for more than 90% of

the correlation energy, are optimized in the LCCSD treatment. The remaining close and weak pairs

are approximated by LMP2 (local second-order Møller-Plesset perturbation theory); very distant

pairs are neglected. It is demonstrated that the accuracy of this scheme can be significantly improved

by including the close pair LMP2 amplitudes in the LCCSD equations, as well as in the perturbative

treatment of the triples excitations. Using this ansatz for the wavefunction, the evaluation and trans-

formation of the two-electron integrals scale cubically with molecular size. If local density fitting

approximations are activated, this is reduced to linear scaling. The LCCSD iterations scale quadrat-

ically, but linear scaling can be achieved by neglecting some terms involving contractions of single

excitations. The accuracy and efficiency of the method is systematically tested using various approx-

imations, and calculations for molecules with up to 90 atoms and 2636 basis functions are presented.

© 2011 American Institute of Physics. [doi:10.1063/1.3641642]

I. INTRODUCTION

The coupled cluster method with single and dou-

ble excitations and a perturbative treatment of triple ex-

citations [CCSD(T)] has become the “Gold Standard” in

quantum chemistry (this expression is attributed to T. H.

Dunning). Provided that the Hartree-Fock reference function

is a good zeroth-order approximation and large basis sets

are used, CCSD(T) usually yields energy differences, such

as reaction energies with chemical accuracy (1 kcal/mol or

better), and also many other molecular properties can be

accurately predicted. However, there are two bottlenecks that

restrict the applicability of the CCSD(T) method to very small

molecules: First, the computational increases with O(N 7),

where N is a measure of the molecular size or the number

of correlated electrons. This causes a “scaling wall” that can-

not be overcome even with massively parallel supercomput-

ers. Second, the convergence of the correlation energy with

respect to the basis set size is very slow, and very large basis

sets are needed to obtain accurate results. The latter problem

can be much alleviated by adding terms to the wavefunction

that depend explicitly on the inter-electronic distances r12 (so-

called F12-methods). This will be addressed in the companion

paper,1 in which the current work is extended to include such

terms.

a)Electronic mail: werner@theochem.uni-stuttgart.de.
b)Electronic mail: martin.schuetz@chemie.uni-regensburg.de.

The scaling problem can be overcome by exploiting the

fact that electron correlation in insulators is a short-range

effect. If a local orbital basis is used, approximations that

exploit the short-range character can be introduced, as first

proposed and implemented by Pulay and Saebø,2–6 and later

generalized and extended in our groups.7–23 These methods

are based on two distinct approximations: first, excitations

from a given pair of localized molecular orbitals (LMOs) are

restricted to a subspace (domain) of non-orthogonal projected

atomic orbitals (PAOs), which are spatially close to the two

LMOs. Second, the pairs of LMOs can be classified according

to their distance. Strong pairs, for which the two orbitals are

very close, are treated at the highest level, e.g., LCCSD(T),

and more distant weak pairs at lower level, e.g., LMP2. Very

distant pairs can be neglected. This has made it possible to

achieve linear scaling of the computational cost with molec-

ular size for the whole range of closed-shell single reference

methods.9–13,16 Based on the techniques described in this pa-

per, also an open-shell DF-LUCCSD(T0) method has recently

been developed, which will be described in Refs. 24 and

25. Furthermore, another variant, denoted OSV-LCCSD (lo-

cal coupled-cluster with orbital specific virtual orbitals), has

recently been implemented into our program.26 This is based

on tensor factorizations of the MP2 amplitudes.27 There are

also many other methods that exploit the locality of electron

correlation,28–40 but a review of all these methods is beyond

the scope of the current article.
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Our first linear scaling LCCSD implementation9 was

based on a semi-direct scheme. The integrals in the

LMO/PAO basis involving at most three PAOs were gener-

ated once and stored on disk (for simplicity, we will in the

following denote the integral classes with 1–4 PAOs as 1-

external to 4-external integrals, respectively). However, the

contributions of the 4-external integrals were accounted for

in an integral-direct manner by transforming in each itera-

tion the pair amplitude matrices into the AO basis and con-

tracting them with the integrals computed on the fly. Linear

scaling was achieved by pre-screening techniques. Despite the

asymptotic linear scaling property, this approach had several

disadvantages: first, the 2-electron integrals in the AO basis

had to be computed in each iteration. Second, the transforma-

tion of the amplitude matrices from the pair specific PAO to

the full AO basis reduces the sparsity and, therefore, the con-

traction with the 2-electron integrals was expensive. Third,

the efficiency of the integral screening techniques, which rely

on the sparsity of certain test densities, depends sensitively on

the structure of the molecule and the basis set. For molecules

with a compact three-dimensional structure low-order scaling

was reached only for very large systems, in particular, if ba-

sis sets with diffuse functions are used. Thus, calculations for

realistic molecules with good basis sets were still extremely

expensive.

Somewhat later, this problem was alleviated by a semi-

direct implementation,13 in which also the 4-external integrals

were transformed into the PAO basis and stored on disk. The

number of transformed integrals scales linearly with molecu-

lar size, and the contraction with the amplitudes is then very

fast. The bottleneck of this implementation is the integral-

direct transformation, which is very expensive, in particular

when large and diffuse basis sets are used.

The evaluation and transformation of the two-electron

integrals can be very much accelerated by using density fit-

ting (DF) approximations. The DF approximations are widely

used in electronic structure theory. Originating from density

functional theory (DFT) (Refs. 41–43) their usage spreads to-

day from HF,44–46 MP2,14,47–50 CC2,20,51 MP2-F12,52–55 up to

CCSD.16,56 Furthermore, for correlated calculations of peri-

odic systems DF is indispensable for an efficient method.57,58

The overall scaling of the computational effort with respect to

system size is not affected by standard DF, but it significantly

reduces the prefactor. Furthermore, for some methods such as

MP2 it reduces the scaling with respect to the basis set size per

atom, NAO/Natoms, from quartic to cubic. This leads to enor-

mous savings in calculations with large basis sets. If density

fitting is used with localized orbitals, domains can also be in-

troduced for the auxiliary basis set (local fitting), and then lin-

ear scaling can be achieved. This was first shown for the cal-

culation of the exchange contribution in local MP2 (Ref. 14)

and later extended to other methods.15,16, 46, 59–61 The errors

caused by density fitting approximations are generally very

small and systematic, in particular for energy differences.

As a first step towards a fully density fitted DF-

LCCSD(T) implementation, a linear scaling DF algorithm to

evaluate the 4-external integrals in LCCSD was presented al-

ready in 2003.16 In the current work, this approach is ex-

tended to treat all integral classes by density fitting. It will be

shown that overall this speeds up LCCSD(T) calculations by

1–2 orders of magnitude, in particular, when large basis sets

are used. For simplicity, the prefix DF will be omitted in the

following.

A preliminary (unpublished) version of the current

method has been available in MOLPRO (Refs. 85 and 86)

since some time. In the current work we describe the method

in detail, including recent enhancements, such as accelerated

LCCSD convergence, improved local density fitting approx-

imations, improved accuracy of weak pair approximations,

and more efficient approximations for treating the 3-external

integrals. Furthermore, we propose MP2 corrections for the

domain and basis set incompleteness errors.

The paper is organized as follows: in Sec. II some basic

concepts of LCCSD theory will be reviewed. In Sec. III, the

density fitting algorithms for the transformation of the various

integral classes will be discussed. Finally, illustrative exam-

ples and timings will be presented in Sec. IV.

II. THEORY

The LCCSD equations have been presented in full detail

by Hampel and Werner.7 Further aspects that are important

for achieving linear scaling of the computational cost with

molecular size have been discussed in our previous work.9

However, the formulation used in these papers differs from

the present one in some details as explained below, and we

will therefore briefly review the method as currently used in

our program.

A. Local orbital spaces

In order to introduce local approximations as required

to achieve low-order scaling of the computational cost with

molecular size, local orbitals have to be used. Orthonormal

occupied localized orbitals (LMOs) can be obtained by stan-

dard localization schemes, such has Foster-Boys62 or Pipek-

Mezey localization.63 Alternatively, natural localized orbitals

(NLMOs) (Ref. 64) can be employed, which have been found

to be less dependent on the basis set.18 The virtual orbital

space is more difficult to localize by unitary transformations,

and, therefore, non-orthogonal virtual orbitals are often gen-

erated. In the present work, we use PAOs,2 but other choices

are possible as well: for example, Neese et al.37 have suc-

cessfully used pair natural orbitals (PNOs), and Yang et al.27

proposed to use orbital specific virtuals (OSVs), obtained by

tensor factorizations of MP2 amplitudes. The latter method

has recently been implemented into our program and will be

reported in Ref. 26. The PNO and OSV methods have the ad-

vantage that a smaller number of virtual orbitals is required

to represent the wavefunction, but since the total number of

pair- or orbital-specific orbitals is much larger than the num-

ber of PAOs, the integral transformations are more difficult.

Furthermore, it is not yet clear how to treat triple excitations

with these schemes. Very recently, Jasík et al. have proposed

a new method to generate a single set of orthonormal virtual

orbitals65 that are supposed to be better localized than PAOs,
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but these orbitals have not yet been used in local coupled-

cluster methods.

In the following, the indices i, j, . . . refer to LMOs, r, s

refer to PAOs, a, b refer to canonical virtual orbitals (VMOs),

and p, q refer to any orbitals. The PAOs are defined as

�

�φPAO
r

�

=

virt
�

a

�

�φa

��

φa

�

�φAO
r

�

=

virt
�

a

�

�φa

�

Qar, (1)

where |φAO
r � are atomic orbitals. These are projected onto the

virtual orbital space, such that the PAOs are orthogonal on

all LMOs, �φPAO
r |φLMO

i � = 0 for all i, r . We assume that the

AOs and VMOs are expanded in a common orbital basis set

(OBS) {χµ} and represented by coefficient matrices CAO
µr and

Cv
µa , respectively. The matrix Qar that transforms from the

canonical virtual orbitals to the PAOs can then be written as

Q = Cv†SCAO, (2)

where Sµν = �χµ|χν� is the overlap matrix of the OBS. Thus,

the coefficient matrix of the PAOs is

P = CvQ = CvCv†SCAO. (3)

The choice of the AOs |φAO
r � is, in principle, arbitrary. For

numerical reasons, it is recommended that the PAOs result-

ing from inner-shell core orbitals are eliminated from the be-

ginning, since their norm would be almost zero if the cor-

responding LMOs strongly overlap with the AOs. In order

to make the selection of core AOs unique, a good general

choice is to use for each atom the canonical Hartree-Fock

AOs, represented only by the basis functions of the corre-

sponding atom, so thatCAO is a block-diagonal matrix. In case

that correlation consistent or atomic natural orbital basis sets

are used, the contracted basis functions χµ automatically cor-

respond either to atomic core or valence orbitals or to corre-

lation functions and, therefore, one can in these cases simply

choose CAO to be the unit matrix. Optionally, one can normal-

ize the PAOs; then CAO becomes a diagonal matrix contain-

ing the normalization factors. Since we will only use correla-

tion consistent basis sets, CAO is assumed to be diagonal from

now on.

B. The local CCSD equations

For non-metallic systems, the PAOs are local by defini-

tion. This makes it possible to introduce domain approxima-

tions: the single excitations from a LMO φi are restricted to a

subset of PAOs φPAO
r , r ∈ [i], which are spatially close to the

LMO φi . The subsets [i] are denoted as orbital domains. Cor-

respondingly, the double excitations from a pair of LMOs φi ,

φj are restricted to a pair domain [ij ], which is the union of

the orbital domains [i] and [j ]. The definition of the domains

will be further discussed in Sec. II C. Furthermore, pair ap-

proximations can be introduced, and only the amplitudes of

strong pairs are optimized in the LCCSD. The pair approxi-

mations will be discussed in more detail in Sec. II D.

Using these approximations, the LCCSD wavefunction

can be defined as

� = exp(T̂ )|0� (4)

with the cluster operator,

T̂ =
�

i

�

r∈[i]

Êr
i t

i
r +

1

2

�

ij∈Ps

�

r,s∈[ij ]

Êr
i Ê

s
j T

ij
rs . (5)

Here |0� is the closed-shell Hartree-Fock reference function,

Êr
i are spin-conserving one-particle excitation operators, and

t ir and T
ij
rs are the singles and doubles amplitudes, respec-

tively. The index ranges r ∈ [i] and r, s ∈ [ij ] are confined

to the corresponding domains. The list of orbital pairs ij in

the second summation is restricted to a subset Ps of strong

pairs (possibly also close pairs are included, cf. Sec. II D).

Since for a given pair ij the excitation operators Êr
i and Ês

j

commute, the doubles amplitude must satisfy the symmetry

relation T
ij
rs = T

ji
sr . For convenience in later expressions, the

redundant contributions ij and ji (i �= j ) are both included in

the summations.

A compact and computationally convenient form of

LCCSD amplitude equations is obtained by multiplying the

Schrödinger equation from the left by e−T̂ and projecting with

the contravariant configurations,66,67

�̃r
i =

1

2
Êr

i |0�, (6)

�̃rs
ij =

1

6

�

2Êr
i Ê

s
j + Ês

i Ê
r
j

�

|0�. (7)

This yields the linked CC residuals

rir =
�

�̃r
i

�

�e−T̂ Ĥ eT̂
�

�0
�

, (8)

Rij
rs =

�

�̃rs
ij

�

�e−T̂ Ĥ eT̂
�

�0
�

, (9)

which must vanish for the desired solution, i.e., rir = 0 for

r ∈ [i] and R
ij
rs = 0 for r, s ∈ [ij ] (note that the orbital do-

mains [i] equal the diagonal pair domains [ii] and, there-

fore, do not need a special treatment). The explicit form of

the residuals is most easily derived first in the canonical MO

basis and then transformed into the PAO basis. They differ

from the CCSD equations in the canonical virtual orbital basis

by multiplications with the PAO overlap matrix SPAO = Q†Q

in all places where an amplitude index is not matched by an

integral index. We note that the current formulation of the

LCCSD equations differs from the one given in Ref. 7, which

was based on the unlinked CC equations (cf. Appendix A).

The full equations as used in the current work are given in

Appendix B.

In each LCCSD iteration, the residuals are used to deter-

mine updates for the amplitudes. For this purpose, it is neces-

sary to transform them into a pair-specific orthonormal basis,

φ̄ij
a =

�

r∈[ij ]

φPAO
r W ij

ra, (10)

where the transformation matrices W
ij
ra are obtained by solv-

ing the Fock equations in the domain [ij ] as

F
ij

PAOW
ij = S

ij

PAOW
ij
�

ij (11)

with �
ij

ab = δab�
ij
a . Here, F

ij

PAO and S
ij

PAO are the Fock and

overlap matrices in the PAO basis for the domain [ij ]. Since
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the full set of PAOs is linearly dependent, it may happen that

the PAOs in a domain are (nearly) linearly dependent. Redun-

dant functions are eliminated at this stage by removing the

eigenvectors of S
ij

PAO that correspond to zero or very small

eigenvalues (singular value decomposition; the default value

for the threshold is 1.d-7). Note that for this purpose S
ij

PAO

is represented in the unnormalized PAO basis (obtained with

CAO = 1), so that contributions of PAOs with a small norm

are eliminated first.

In each LCCSD macroiteration, updates of the ampli-

tudes are obtained by solving the LMP2-like linear equations,

0 = ri + F�ti −
�

k

fikS�tk, (12)

0 = Rij + F�TijS + S�TijF

−
�

k

S
�

fik�Tkj + �Tikfkj

�

S. (13)

Using Eqs. (10) and (11), these equations can be solved it-

eratively (microiterations) by transforming them to the pair-

specific orthogonal basis. In each microiteration, amplitude

updates are calculated as

�t̄
i
a = −

r̄ ia

�
(ii)
a − fii

, (14)

�T̄
ij

ab = −
R̄

ij

ab

�
ij
a + �

ij

b − fii − fjj

, (15)

where fii are the diagonal elements of the Fock matrix in the

LMO basis and

r̄i =



ri −
�

k �=i

fikS�tk



Wii , (16)

R
ij

= Wij †



Rij −
�

k �=i

fikS�TkjS −
�

k �=j

S�TikSfkj



Wij .

(17)

The amplitude updates are then transformed back into the

PAO basis,

�tiPAO = �t̄iWii†, (18)

�T
ij

PAO = Wij�T
ij
Wij †. (19)

Typically, two microiterations per macroiteration are suffi-

cient to improve and stabilize convergence. Convergence of

the macroriterations can be further improved using the DIIS

(direct inversion of the iterative subspace) procedure. Some-

times it is also useful to add constant shifts to the denomina-

tors in Eqs. (14) and (15).

The correlation energy is computed by using an approxi-

mate LCCSD Lagrangian, with the assumption that the multi-

pliers are equal to the (contravariant) amplitudes (which holds

exactly in the LMP2 case, where this expression corresponds

TABLE I. Comparison of CCSD and LCCSD convergence. The number of

iterations needed to converge the amplitudes to an accuracy of 10−6 is shown.

The convergence criterion is that the square norms of the singles and doubles

amplitude changes are both smaller than 10−12. The aug-cc-pVTZ basis set

was used.

Molecule Canonical Locala Localb

C2H2 11 11 10

C4H4 10 11 10

CO2 11 11 11

H2CO 12 13 11

H2O2 13 14 12

C2H5OH 12 13 11

HCONH2 13 14 13

HCOOH 13 13 12

HCOOCH3 13 13 12

aWithout microiterations.
bUsing 2 microiterations per macroiteration.

to the Hylleraas functional),

E = 2
�

i

�

r∈i

t ir
�

f i
r + rir

�

+
�

ij∈Ps

�

rs∈[ij ]

D̃ij
rs

�

Kij
rs + Rij

rs

�

+
�

ij∈Pw

�

r,s∈[ij ]

T̃ ij
rs K

ij
rs (20)

with

f i
r = �i|f̂ |r�, (21)

Kij
rs = (ir|js), (22)

representing the Fock matrix elements and two-electron inte-

grals in the LMO/PAO basis, and

Dij
rs = T ij

rs + t ir t
j
s , ij ∈ Ps, (23)

the composite LCCSD strong pair amplitudes.102 The weak

pair amplitudes, T
ij
rs , ij ∈ Pw are taken from a preceding

LMP2 calculation. The tilde indicates contravariant quanti-

ties, i.e., T̃
ij
rs = 2T

ij
rs − T

ij
sr and D̃

ij
rs = 2D

ij
rs − D

ij
sr . The sin-

gles and doubles residuals rir and R
ij
rs go to zero at conver-

gence. Their inclusion makes the energy expression approx-

imately quadratic in errors of the amplitudes t ir and T
ij
rs and

thus leads to faster convergence of the energy.

A comparison of the convergence of canonical and local

coupled cluster calculations is presented in Table I. In the lo-

cal case, calculations with and without the additional microi-

terations are compared. In the third column of the table, the

off-diagonal elements fik in Eqs. (16) and (17) are neglected,

i.e., just the initial microiteration is performed. This corre-

sponds to the usual update procedure in canonical calcula-

tions. In the last column, two microiterations per macroitera-

tion were performed. Even though the improvements by using

the microiterations are not dramatic, the number of iterations

is never larger than for the canonical method. The microiter-

ations also stabilize the convergence of the energy, and in no

case more than nine iterations were needed to obtain an accu-

racy of 1 µH for the LCCSD energy (in Table I more iterations

were performed to accurately converge the amplitudes).
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C. Choice of orbital domains

In most previous applications of local correlation meth-

ods as outlined in Sec. II B, the orbital domains were de-

termined by a procedure originally proposed by Boughton

and Pulay (BP) (Ref. 68) (for details about domain specifi-

cation in our program, see also Refs. 7 and 17). It turned out,

however, that this choice is rather strongly basis set depen-

dent. More recently, Mata and Werner18 proposed an alterna-

tive domain selection method that is based on natural popu-

lation analysis69 (NPA) and much more stable with respect to

the basis set.18 On the other hand, due to the lack of a clear

localization criterion to be put into the Lagrangian the latter

have the disadvantage of not being compatible with analytic

energy gradient calculations.15,70

Both for the BP and NPA methods, the domains com-

prise all PAOs at a selected set of atoms and, therefore, an

orbital domain is equivalent to a subset of atoms assigned

to the LMO. The standard domains obtained by the BP or

NPA procedure can be augmented by adding the PAOs at the

next shell(s) of neighboring atoms. In this way, it is possi-

ble to approach the canonical result systematically. Typically,

98%–99% of the correlation energy of the corresponding

canonical method for a given basis is recovered with standard

domains; if the domains are extended by one shell of neigh-

boring atoms, about 99.8%–99.9% of the full correlation

energy is obtained.14,17 It should be noted, however, that

domain extensions strongly increase the computational cost

(for LCCSD(T), the computational resources such as CPU

time and disk space increase with L4, where L is a measure

of the average domain size per pair).

Finally we note that the domains may change as a func-

tion of the geometry.71–73 This can be avoided by freezing

the domains determined at some geometry, e.g., the equilib-

rium distance. In most cases, this has very little effect on the

results and guarantees microscopically smooth potentials. In

case where the electronic structure strongly changes as a func-

tion of the geometry, it may be necessary to merge the do-

mains obtained at different structures. This has been discussed

and demonstrated in detail in Ref. 73.

D. Pair approximations

The second type of approximations in local correlation

methods is to introduce a hierarchy of pair classes, which

are treated at different levels. In our program, we distinguish

strong, close, weak, distant, and very distant pairs. By default,

only the strong pairs are included in the LCCSD, i.e., the sum-

mations over ij are restricted as indicated in Eqs. (5) and (20).

The close, weak, and distant pair amplitudes are optimized at

the LMP2 level and kept fixed thereafter. For this purpose,

an initial LMP2 calculation is performed for all (except very

distant) pairs, and the pair energies for the close, weak, and

distant pairs are added to the LCCSD energy in Eq. (20). One

can also solve the LMP2 equations with fixed strong-pair am-

plitudes from the converged LCCSD, but we found that this

makes virtually no difference for the accuracy of the results.

Very distant pairs are completely neglected. The integrals

(ri|sj ) for distant pairs ij can optionally be evaluated by

multipole approximations,74,75 but this is mainly of interest

to reduce the computational effort in LMP2 calculations for

very large systems. For LCCSD, the multipole approximation

would not save much time and is not recommended. Thus,

in the current paper, there is no difference between weak and

distant pairs.

Close pairs were originally introduced as a pair class in-

termediate between strong (LCCSD) and weak (LMP2) to

specify restricted lists of triples for local (T) calculations10,11

(cf. Sec. II E). Furthermore, the close pair amplitudes, deter-

mined at the LMP2 level, are included in the triples calcu-

lation. Meanwhile they can also be included in the LCCSD

residuals (option KEEPCLS=1). The inclusion of the close

pair amplitudes in the LCCSD amplitude equations for the

strong pairs requires only a relatively small additional ef-

fort. In particular, it does not affect the contributions of the

4-external integrals. A strong increase in the number of 3-

external integrals required in the LCCSD part can be avoided

by neglecting the contributions that are quadratic in the am-

plitudes (cf. Appendix B). As will be shown in Ref. 1, the

inclusion of close-pair amplitudes is particularly important

in the DF-LCCSD(T)-F12 method, since the explicitly cor-

related terms remove most of the domain error and then the

errors caused by the pair approximations dominate.

The assignment of orbital pairs to the pair classes de-

pends on the distance Rij of the LMOs φi and φj . This is

defined as the minimum distance between any atom in the do-

main [i] and any atom in the domain [j ].7 Alternatively, one

can use the minimum number of bonds between these two sets

of atoms. The advantage of the latter method is that it is in-

dependent of the bond lengths and works for any molecule.

The disadvantage is that under certain circumstances atoms

which are separated by many bonds can be spatially close (an

example will be presented at the end of Sec. IV). This prob-

lem can be avoided by using distance criteria to determine

the distant and very distant pairs, and connectivity criteria for

the remaining pair classes. Furthermore, it is sometimes use-

ful to determine the pair lists at one geometry (along with

the domains) and then to keep them fixed at other geometries,

as already discussed for the domains in Sec. II C. For exam-

ple, this is important when bonds are elongated at transition

states.76, 77 This is also the preferred way to avoid basis set su-

perposition errors (BSSE) in local correlation calculations on

intermolecular complexes and clusters.7, 78, 79

Unless otherwise noted, we will use connectivity criteria

in the current paper, and these will be defined in Sec. IV.

E. Triple excitations

In order to compute the local perturbative triples correc-

tion (T),10,11 the triple excitations Êr
i Ê

s
j Ê

t
kT

ijk
rst are restricted

to triples domains [ijk] = [i] ∪ [j ] ∪ [k]. Furthermore, the

list of orbital triples ijk is (by default) restricted such that the

related pairs ij , ik, kj are close or strong, and at least one of

them is strong. The strong and close pair amplitudes as well

as the singles amplitudes are included in the triples equations.

Since the Fock matrix is not diagonal in the local basis,

the zeroth-order Hamiltonian is not diagonal in the basis of

triply excited determinants, and the perturbative triples equa-

tions need in principle to be solved iteratively. Even though
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this is possible,11 it is expensive and requires to store all

triples amplitudes. By neglecting couplings induced by off-

diagonal elements fij in the occupied-occupied block of the

Fock matrix the equations can be decoupled (T0 approxi-

mation). Alternatively, the fij couplings can be treated by

first-order perturbation theory, which also avoids storage of

the triples amplitudes,11 yet is considerably more expensive

than the T0 approximation. Since the T0 triples correction

can be computed very efficiently and in most cases provides

sufficient accuracy it has been used throughout in the present

work.

The computational effort scales strictly linear with

molecular size. Thus, in sharp contrast to canonical methods,

where calculation of the (T) correction is the main bottleneck,

the evaluation of the local (T0) corrections usually takes only

a comparable or even shorter time than the LCCSD. It should

be noted, however, that the relative effort for the triples quite

strongly increases if the close-pair class is extended.

F. Further approximations to achieve linear scaling

The domain approximation in combination with the re-

striction of the LCCSD treatment to strong pairs automat-

ically leads to linear scaling for most terms in the LCCSD

equations. This is due to the fact that the residuals R
ij
rs have

to be computed only for the domains r, s ∈ [ij ] and that the

occupied pair labels of the residuals and amplitude matrices

are restricted to strong (or close) pairs. However, there are

some terms, in particular those involving single excitations,

for which this alone is not sufficient to achieve linear scaling.

One also has to exploit that certain integrals decay quickly

with the distance between the orbitals involved. This leads

to the definition of integral lists and integral domains as dis-

cussed in detail in Ref. 9. These lists and domains can be de-

termined in advance on the basis of distance criteria, which

makes it possible to achieve linear scaling not only in the

computation of the residuals, but also in the integral trans-

formations. The errors introduced by these truncations only

amount to a few microhartree and are negligible. We note that

in the current work some additional approximations have been

introduced to the contributions of the 3-external integrals in

the pair-singles coupling terms (cf. Appendix B for details).

These strongly reduce the number of 3-external integrals to

be computed and stored.

The only term for which linear scaling is not easily

achieved9 involves the contraction,

[G(E)]rs =
�

i

[2(rs|iu) − (ri|su)]t iu. (24)

This matrix is needed for all r, s since it contributes to all

pairs [cf. Eqs. (B21) and (B24) in Appendix B]. Calculat-

ing G(E) can entirely be avoided by using an approxima-

tion which is based on the observation that these terms can-

cel to large extent with the corresponding terms involving

1-external, instead of the 3-external integrals, i.e., with the

terms involving lkli in the βikST
kjS contribution to the resid-

uals Rij [cf. Eqs. (B21) and (B23) in Appendix B]. If these

contributions along with those of G(E) are neglected (option

SKIPGE=1), only a small error results.9 This error is much

smaller than errors caused by the domain approximation, and

it is also much smaller than the difference between full CCSD

and quadratic configuration interaction. In the latter method,

these terms are also absent. The effect of this approxima-

tion on the accuracy and efficiency will be demonstrated in

Sec. IV.

III. LOCAL DENSITY FITTING APPROXIMATIONS

A. 0-2 external integrals

The 2-external exchange integrals Kkl
rs = (rk|ls) (rs

∈ [kl]K) are computed using density fitting as described in de-

tail in Ref. 14. The all-internal and 1-external integrals can be

obtained in the same way with very little extra cost. Since for

LCCSD the operator lists kl and operator domains [kl]K are

much larger than in the LMP2 case,9 it is usually not useful to

enable local fitting – the crossover point to linear scaling oc-

curs quite late, and for medium size calculations the overhead

exceeds the savings. However, despite the fact that without

local fitting the algorithm scales in the asymptotic limit cubi-

cally (with a low prefactor), the CPU times for this part of the

transformation are quite short and have never been a bottle-

neck in the calculations.

The 2-external Coulomb integrals J
ij
rs = (rs|ij ) are first

computed in the AO basis as

(µν|ij ) = (µν|A)dA
ij , (25)

where dA
ij are the fitting coefficients obtained in the generation

of the 0-external integrals, i.e.,
�

B

(A|B)dB
ij = (A|ij ). (26)

Here and in the following, A,B refer to fitting basis functions

χA, χB , and the 2-index and 3-index Coulomb integrals are

defined as

(A|B) =

�

χA(r1) r−1
12 χB(r2)dr1dr2, (27)

(µν|A) =

�

χµ(r1)χν(r1)r−1
12 χA(r2)dr1dr2. (28)

The fitting coefficients dA
ij are kept in memory. The outermost

loop runs over blocks of AOs, µ ≥ ν, and for each block the

three-index integrals are computed and contracted on the fly

with the fitting coefficients. In the final step the integrals are

transformed into the PAO basis. In the asymptotic limit, the

algorithm scales cubically with molecular size, but as for the

2-external exchange integrals the time is usually short as com-

pared to other parts of the calculation.

B. 3- and 4-external integrals

The 3-external integrals (rs|kt) occur in various terms

involving contractions with the singles amplitudes,

[J(Ekj )]rs = (rs|kt)t
j
t , (29)

[K(Ekj )]rs = (rk|st)t
j
t , (30)
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and with doubles amplitudes,

[K(Dij )]rk = (rs|kt)D
ij
st , (31)

as well as in the expression of the perturbative triples cor-

rection (see Appendix B for the explicit LCCSD equations).

The range of indices r, s, t for each LMO k is independent of

the molecular size and can be determined in advance (3-ext

domains). Thus, in the asymptotic limit, the number of these

integrals scales linearly with molecular size. A detailed de-

scription of the definition of the 3-ext domains can be found

in Appendix B.

The 4-external integrals (rt |su), on the other hand, just

appear in the external exchange operators,

[K(Dij )]rs = (rt |su)D
ij
tu, r, s, t, u ∈ [ij ], (32)

which contribute only to the doubles residual for pair ij . Since

all four indices of (rt |su) always belong to the same domain,

this set of integrals is usually as compact as the 3-external

integral set, in spite of the additional virtual orbital index.

Obviously, since the number of correlated pairs ij scales lin-

early with molecular size, and the pair domains are indepen-

dent of the molecular size, also the number of 4-external in-

tegrals scales linearly. However, different pair domains may

overlap and, therefore, the calculation and storage of a dif-

ferent integral set for each domain [ij ] would be highly re-

dundant. A non-redundant set of 4-external integrals can be

determined by first setting up a non-redundant list of center

quadruples (RSTU ); this makes use of the fact that the do-

mains always include all PAOs at a given center. The calcula-

tion and contraction of the 4-external integrals are then driven

by this list.13 Quite similarly, the 3-external integral set is

driven by a quadruple (kRST ) consisting of one LMO index

k and three centers, specifying the minimum set of integrals

required for the computation of all the terms as mentioned

above.

As the 0-2 external integrals, the 3- and 4-external inte-

grals are generated by utilizing density fitting. For the sake

of simplicity, each of these three subsets is computed inde-

pendently. In principle, common intermediates such as the

transformed 3-index integrals (ri|A) and (rs|A) and the cor-

responding fitting coefficients could be computed only once

and reused, but this has not been implemented. The main rea-

son for this is that the domain sizes for the individual integral

subsets are different, and this would cause considerable com-

plications.

Since the individual orbital product distributions are lo-

cal (products of spatially local one-electron functions), local

fitting can be applied. In the following, we outline our algo-

rithm for the 4-external integrals, for which local fitting is

most useful. Local fitting for the 3-external integrals proceeds

along similar lines. However, since the 3-external domains are

quite extended, the savings are smaller than in the 4-external

case, and the crossover point to the standard non-local fitting

method occurs only for larger molecular sizes. An example

where local fitting indeed leads to substantial savings is given

in Sec. IV (Table IX).

Local fitting makes it necessary to use the robust three-

term fitting expression,14,16, 80–82

(rs|tu) ≈
�

A∈[RS]

dA
rs(A|tu) +

�

B∈[T U ]

dB
tu(B|rs)

−
�

A∈[RS]

�

B∈[T U ]

dA
rs(A|B)dB

tu (33)

or the symmetric two-term term formula,16

(rs|tu) ≈
1

2





�

A∈[RS]

dA
rs(A|tu) +

�

B∈[T U ]

dB
tu(B|rs)



 .

(34)

Here, A ∈ [RS] represents an auxiliary fitting function con-

fined to a fit domain [RS]. This domain is related to the charge

distributions of the orbital products φPAO
r (r)φPAO

s (r), where r

and s denote functions located at the centers R and S, respec-

tively. Thus, the fitting domains are specific to center pairs. dA
rs

are the fitting coefficients obtained by solving for each center

pair RS,

�

B∈[RS]

(A|B)dB
rs = (A|rs), ∀A ∈ [RS]. (35)

Since this implies that the indices A,B, r, s refer to func-

tions that are spatially close, the computational effort scales

linearly with molecular size. In the case that full fit domains

are used (non-local fitting), all terms in Eqs. (33) and (34) are

identical, yielding the usual one-term expression of density

fitting.

In Ref. 16, a first implementation of local fitting for the

4-external integrals was presented. There the individual fit do-

mains [RS] were comprising the fitting functions of the cen-

ters of all center quadruples (RSTU ) containing the center

pair (RS). Optionally, further centers could be added to these

core fit domains based on a distance criterion. Such an ap-

proach, however, can only efficiently work if the correlated

orbitals i and j are spatially close. This is because the pair

domains [ij ] are the union of the orbital domains [i] and [j ]

and, therefore, the size of the fitting domain would depend on

the number of orbitals j that form pairs with a given orbital i.

In the case of extended pair lists or domains, this scheme be-

comes inefficient and a more advanced algorithm is desirable.

In the present work, we adopt a procedure developed for den-

sity fitting in the context of periodic systems,57,58, 83, 84 where

local fitting is not only more efficient, but also mandatory due

to the infinite nature of the physical system. The importance

of a certain center X for the product charge distribution of

orbitals r, s is measured by the quantity,58

qX
rs = (1 + τrs)

�

µ∈X

�

�

ν∈X

PµrSµνPνs

�2

, (36)

where Pµr are the PAO coefficients as defined in Eq. (3)

and τrs permutes the indices r and s. This “pseudo popula-

tion” then is condensed to individual groups of product dis-

tributions for each center pair RS (for product distributions
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rs) as

qX
RS =

�

r∈R

�

s∈S

qX
rs . (37)

The quantities qX
RS are finally normalized over the center

range X and sorted for each individual center pair (RS). Core

fit domains then are specified for RS by adding more and

more centers X from the sorted list, until a certain threshold

is reached. The core fit domains can optionally be augmented

by further centers according to either a distance or a topology

criterion. The set of three-index integrals (A|tu) required in

the assembly step of the 4-external integrals adheres to united

fit domains,

(tu|A), A ∈ [RS],∀(RS) ∈ (RSTU ). (38)

IV. SAMPLE CALCULATIONS

The method presented in Secs. I–III is available in the

MOLPRO package of ab initio programs85,86 and has already

been successfully applied in various applications.19,76, 77, 87–90

For example, barrier heights in various enzymes have been

computed in the framework of the hybrid quantum mechan-

ical and molecular mechanics (QM/MM) approach, and the

effect of domain and pair approximations on the results has

been systematically investigated.76,77, 90 Furthermore, the ac-

curacy of the local coupled cluster method (without den-

sity fitting) has been tested for reaction energies17 and other

molecular properties, such as dipole moments and dipole

polarizabilities.89 Especially noteworthy is the possibility to

correlate only certain regions of a molecule in the vicinity of

the reaction center.19 Then the computation time for the cor-

relation calculation becomes independent of the size of the

rest of the molecule. It has been shown in Ref. 19 that rela-

tively small regions are sufficient to obtain converged reaction

energies.

Here, we focus on the accuracy and efficiency of the

density fitting, as well as of pair approximations. The test

molecules considered for that purpose are shown in Fig. 1.

The geometries of these molecules were optimized by DF-

LMP2 using the cc-pVTZ basis set.91 We have studied three

reactions involving these molecules, namely, the hydrogena-

tion of progesteron via pregnenolon to pregnanediol (reac-

tions I and II), and the last synthetic step to yield andros-

tendione (reaction III),

Reaction I : C21O2H30 + H2 → C21O2H32.

Reaction II : C21O2H32 + 2H2 → C21O2H36.

Reaction III : C25O4H32 → C19O2H26 + C6O2H6.

Moreover, as an illustrative example for the capabilities of

our program, we will present some preliminary results on

the thermal reaction energy of the photodamaged cyclobu-

tane pyrimidine dimer (CPD) lesion back to the undam-

aged/repaired dimer (TpT) in the ATTA sequence of the DNA

double strand.92 Further benchmarks, comparing the standard

DF-LCCSD(T) method with the explicitly correlated variant

DF-LCCSD(T)-F12 are presented in Ref. 1.

As orbital basis we used the correlation consistent triple-

ζ basis sets, cc-pVTZ.93 Diffuse functions were added for the

oxygen and nitrogen atoms, i.e., C,H=cc-pVTZ, O,N=aug-

cc-pVTZ.94 In the following, this mixed basis will be de-

noted by aVTZ. In order to study basis set effects, the cor-

responding aVQZ and aV5Z basis sets were used as well.

The auxiliary basis sets for the Fock-matrix fitting46 in the

preceding density fitted Hartree-Fock (DF-HF) calculations

were cc-pVnZ/JKFIT (Ref. 45) (n = T,Q,5 corresponding

to the OBS). For all other integrals, the cc-pVTZ/MP2FIT,

(a) Progesteron (b) Pregnenolon (c) Pregnanediol

(d)

O

H

H H

O

O

O

O

OO

H H

H

O

+

H

H

Androstendione Precursor Androstendione Ortho-

hydroxyphenol

FIG. 1. The molecules (a) progesterone C21O2H30, (b) pregnenolone C21O2H32, (c) pregnanediol C21O2H36, and (d) a reaction step yielding androstendione.
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TABLE II. Definition of pair classes based on connectivity criteria. Here,

n is the number of bonds between the orbital domains [i] and [j ] that form

a pair ij . The input parameters IVDIST, IWEAK, ICLOSE, and KEEPCLS

are abbreviated as v, w, c, and k, respectively. In the current work, there is no

difference between weak and distant pairs. Unless otherwise noted the default

IVDIST = 8 was used.

Pair class Criteria Amplitudes

Strong n < c Optimized by LCCSD

Closea c ≤ n < w Optimized by LMP2

but included in LCCSD(T0)

Weak w ≤ n < v Optimized by LMP2,

neglected in LCCSD(T0)

Very distant v ≤ n Entirely neglected

aIf k = 0, these pairs are neglected in the LCCSD residuals but included in the (T0) cal-

culation. If k = 1, they also contribute to the strong pair and singles LCCSD residuals.

cc-pVQZ/MP2FIT, or cc-pV5Z/MP2FIT (Ref. 50) basis sets

have been used; as for the OBS, the corresponding augmented

basis sets were used for the oxygen and nitrogen atoms. Nat-

ural localized molecular orbitals were employed, and unless

otherwise noted the NPA with the threshold NPASEL=0.07

was used to determine the domains as described in Ref. 18.

Option MERGEDOM=1 was used, which merges overlapping

domains of the π -orbitals in aromatic rings of reaction III,

yielding identical domains that extend over all six atoms (for

all other reactions studied in this paper there is no effect). Lo-

cal fitting was used only when indicated.

As outlined in Sec. II D, the definition of the pair classes

is based on the number of bonds (n) between the closest

atoms of the two orbital domains of a pair. In the current

benchmarks, the numbers of strong, close, and weak pairs are

varied. The parameters IWEAK and ICLOSE affect the as-

signment of the pairs to these three classes. The additional

parameter KEEPCLS affects the approximations made for the

different pair classes. The meaning of the three parameters is

summarized in Table II. In the following, we will use the ab-

breviation wck, so that, e.g., wck = 321 means IWEAK=3,

ICLOSE=2, KEEPCLS=1. In addition, we will test the ef-

fect of neglecting G(E) along with the corresponding con-

tributions of the one-external integrals (option SKIPGE=1,

cf. Sec. II F).

We will first test the errors caused by the density fit-

ting approximation. Table III shows the errors of the DF-

TABLE III. Fitting errors � and additional local fitting errors δsymm (us-

ing symmetric formula, Eq. (34)), δrobust (using robust formula, Eq. (33))

for pregnanediole, DF-LCCSD/aVTZ. All values are given in µEh. For the

LCCSD method, the errors refer to the total correlation energy (including the

weak pair LMP2 contributions) for (T0) to the triples contribution only.

0-3 ext. aVTZ aVTZ aVQZ aVQZ aV5Z

4-ext. aVTZ aVQZ aVQZ aV5Z aV5Z

� (LMP2) 458 458 157 157 5

� (LCCSD) −1976 147 −100 103 −22

δsymm(LCCSD) −150 −43 −39 −12 −10

δrobust(LCCSD) −151 −42 −39 −10 −9

�(T0) −78 −71 −3 −3 −1

δsymm(T0) −22 −20 0 0 1

δrobust(T0) −8 −5 0 0 0

TABLE IV. Effect of density fitting approximations on reaction energies (in

kJ mol−1). wck = 210, SKIPGE = 0. Basis: aVTZ.

Fitting basis HF LCCSD LCCSD(T0)

0-3 ext. 4-ext. I II I II I II

Integral-direct −59.2 −195.0 −75.0 −218.6 −70.9 −209.4

aVTZ aVTZ −59.3 −195.1 −75.2 −218.7 −71.1 −209.5

aVTZ aVQZ −59.3 −195.1 −75.2 −218.8 −71.1 −209.6

LCCSD correlation energy of pregnanediol as compared to

an integral-direct LCCSD calculation without density fitting.

For comparison, the errors of the corresponding DF-LMP2

calculations are also presented. It is found that fitting the 0-3

external integrals in the DF-LCCSD does not lead to an error

that is significantly larger than for DF-LMP2, even though the

fitting basis set was optimized for MP2 and not for LCCSD.

However, the fitting approximation is more critical for the 4-

external integrals, since these involve more virtual orbitals

with a complicated node structure. This leads to an error that

is 4-5 times larger (and of opposite sign) than the fitting er-

ror in DF-LMP2. The error of the correlation energy is re-

duced by one order of magnitude if for the 4-external the

larger aVQZ/MP2FIT basis is used. It is then actually smaller

than the DF-LMP2 error, but this is certainly due to some er-

ror compensations between the different integral classes. The

errors due to local fitting are one order of magnitude smaller

than the fitting errors and thus negligible.

Table IV demonstrates the effect of the density fitting on

reaction energies. The Hartree-Fock values are affected by

0.1 kJ mol−1, the LCCSD, and LCCSD(T0) correlation con-

tributions by about the same amount. These errors are cer-

tainly negligible, even if only the aVTZ fitting basis is used

for the 4-external integrals. In all subsequent calculations, the

aVTZ/MP2FIT fitting basis set thus is used for all integral

classes.

The savings due to the density fitting approximations are

enormous. For pregnanediol, the standard integral-direct cal-

culation of the transformed integrals [using the programs de-

scribed in (Refs. 9 and 95)] is about 50 times slower than with

the current density fitting implementation. This ratio would

further increase if larger basis sets were used.

TABLE V. CPU times (in min on Intel W5590 @ 3.33 GHZ) for density

fitting integral transformations for pregnanediol. Basis set: aVTZ.

Integral set wck locfit=0 locfit=1

0-2-external 210 20.9 32.7

311 43.8 47.0

321 44.7 47.5

3-external 210 53.3 33.6

311 76.1 50.3

321 113.7 81.1

4-external 210 46.6 23.7

311 38.1 19.2

321 77.7 48.1
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TABLE VI. Canonical DF-HF and DF-MP2 results for reaction energies

(see text).

DF-HF DF-MP2

BASIS I II III I II III

aVTZ −59.3 −195.1 −2.7 −73.2 −220.6 28.3

aVQZ −58.6 −192.9 −5.1 −74.5 −220.4 22.3

aV5Z −58.6 −192.7 −5.8 −74.7 −219.7 20.5

CBS[45] −58.6 −192.6 −5.9 −74.9 −219.4 19.2

Table V shows the CPU times to generate the transformed

integrals for pregnanediol with and without local density fit-

ting. As already mentioned, there is no saving for the 0-2 ex-

ternal integrals – in contrary, the overhead for local fitting in-

creases the CPU times. Therefore, local fitting is not recom-

mended for this class of integrals. However, there are signif-

icant savings for the 3-external and 4-external integrals. The

time to generate the latter is almost reduced by a factor of 2.

Naturally, the savings get somewhat smaller if the pair lists

are extended, since then the linear scaling regime is reached

later.

Next we will assess the domain errors and basis set ef-

fects on the reaction energies. Normally, canonical DF-MP2

calculations are easily possible for molecules that can be

treated by DF-LCCSD(T0). This makes it possible to esti-

mate the domain error by comparison of DF-LMP2 and DF-

MP2 calculations. Experience for smaller molecules, where

canonical coupled cluster calculations are still possible, has

shown that the domain errors are very similar at the LMP2

and LCCSD levels, and thus it is possible to add a correction

�EMP2 = EMP2 − ELMP2 to the LCCSD(T0) results. If DF-

MP2 results are available for larger basis sets, this may also

include a basis set correction. The DF-MP2 reaction energies

for aVTZ, aVQZ, and aV5Z, as well as the extrapolated basis

set limits are presented in Table VI. The latter have been ob-

tained by Karton-Martin extrapolation96 of the Hartree-Fock

values and by n−3 extrapolation97 of the correlation energies.

The corresponding DF-LMP2/aVTZ values for reactions I–

III are −69.2, −211.5, and 15.3 kJ mol−1, respectively, yield-

ing domain corrections of −4.0, −9.1, and +13.0 kJ mol−1,

respectively. The additional basis set corrections are −1.7,

+1.2, and −9.1 kJ mol−1, yielding total corrections of −5.7,

−7.9, and +3.9 kJ mol−1.

In particular for reaction III the domain error of

13 kJ mol−1 is quite large. It can be observed, however,

that it has opposite sign as the basis set error, and actually

the LMP2/aVTZ value is in much better agreement with the

MP2/CBS value than with the MP2/aVTZ one. We believe

that this is due to strong BSSE effects in the canonical cal-

culation. It is well known that BSSE effects on the correla-

tion energies are strongly reduced by the local ansatz.7, 78, 79

In molecular clusters, this is due to the fact that double ex-

citations from one monomer to the other are excluded by the

local ansatz. Similarly, the absence of double excitations from

one part of the molecule to another can reduce intramolec-

ular BSSE effects, though this is more difficult to quantify.

In the current case, BSSE effects should favor the energy

of the large precursor relative to the products, making the

TABLE VII. Effect of weak pair approximations on correlation energies (in

Eh), file sizes (in GB), and CPU times (in min on Intel Xeon W5590 @ 3.33

GHZ) for pregnanediol. The Hartree-Fock energy is –966.2468036 Eh. The

number of LCCSD iterations is given in parenthesis. Basis: aVTZ.

Correlation energy File size

wck LCCSD LCCSD(T0) 3-ext 4-ext

CPU

time (it)

210 −4.276074 −4.433139 5.9 7.3 178.2 (8)

210a −4.276081 −4.433140 5.9 7.3 152.8 (9)

211 −4.240449 −4.393467 6.2 7.3 188.6 (9)

311 −4.226976 −4.394841 18.9 7.3 268.7 (9)

411 −4.222332 −4.394565 37.8 7.3 380.2 (10)

321 −4.210514 −4.377468 38.1 36.9 419.1 (10)

421 −4.205630 −4.378183 48.5 36.9 611.7 (10)

431 −4.199469 −4.371195 95.6 137.6 917.4 (9)

aUsing SKIPGE = 1. All other cases with SKIPGE = 0.

MP2/aVTZ reaction energy too positive. Likely, this leads to a

significant part of the observed difference of the LMP2/aVTZ

and MP2/aVTZ values. This conclusion is supported by the

fact that the LMP2/aVTZ reaction energy is in much bet-

ter agreement with the MP2/CBS value than the MP2/aVTZ

result. Thus, looking at the “domain error” for a fixed ba-

sis set may be misleading. Similar BSSE effects have, for

example, also been found in calculations of vibrational fre-

quencies, where the local results were found to be more ac-

curate than the canonical ones.87,88 In order to account for

all effects appropriately, we recommend to add a correction

�EMP2(CBS) = EMP2(CBS) − ELMP2 to the LCCSD(T0) results.

Alternatively, in Ref. 1 it will be shown that the basis set ef-

fect as well as the domain error can be accounted for more

rigorously using explicitly correlated wavefunctions, and the

final DF-LCCSD(T0)-F12 results are indeed close to the DF-

LCCSD(T0)+�EMP2(CBS) ones.

Next we will investigate the effect of the pair approxi-

mations. Table VII demonstrates the effect of the weak pair

approximations on the correlation energies, file sizes, and

CPU times for pregnanediole. A LCCSD(T0) calculation for

this molecule with 59 atoms, 1226 contracted Gaussian basis

functions (CGTOs), and the default parameters wck = 210

takes just 3 h of CPU time on a single core of an Intel

W5590 @ 3.33 GHZ processor. This can be reduced further

to less than 2 h by neglecting the G(E) contributions (option

SKIPGE=1, cf. Table VII) and by using local fitting for gen-

erating the 3-external and 4-external integrals (cf. Table V).

Comparison with the timings in Table V shows that a large

fraction of the total time is spent in the integral evaluation

and transformation. The elapsed time depends sensitively on

the amount of available memory and the I/O configuration;

on our machine, which has 72 GB of memory and a striped

file system with an I/O bandwidth of 500–600 MB/s, the

elapsed time for the smaller calculations (wck = 210 or 211)

is just 2%–3% larger than the user-CPU time. Most likely, in

this case all integrals are cached in memory by the operat-

ing system. The situation is different, however, if the strong

pair list is extended (wck = 321 or larger); this increases the

file sizes by a factor of more than 5, and then the integrals

cannot be cached in memory any more. The CPU time in-

creases to about 7 h, and the elapsed times are now about
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TABLE VIII. Effect of weak pair approximationson LCCSD(T0) reaction

energies (in kJ mol−1). Basis: aVTZ.

LCCSD LCCSD(T0)

wck I II III I II III

210 −75.0 −218.5 22.2 −70.9 −209.4 15.2

210a −74.5 −218.0 22.0 −70.2 −208.6 15.0

211 −74.9 −219.2 23.3 −71.3 −211.0 16.8

311 −75.6 −219.1 21.4 −70.1 −209.0 17.7

411 −75.5 −218.6 18.8 −69.9 −208.6 16.9

321 −74.1 −218.6 20.8 −68.3 −208.6 17.7

421 −73.9 −217.8 18.0 −68.1 −207.9 17.0

431 −74.4 −218.3 17.3 −68.7 −208.6 16.3

aUsing SKIPGE = 1. All other cases with SKIPGE = 0.

20% larger than the CPU time. This is due to the fact that

in the LCCSD iterations the processing of the 3-external and

4-external integrals is strongly I/O bound. It can be seen in

Table VII that the correlation energies are reduced by includ-

ing more pairs in the LCCSD residual. This is not due to an

overestimation of the weak pair LMP2 energies, but due to

the additional strong and weak pair couplings in the LCCSD.

These couplings are approximately accounted for with option

KEEPCLS=1, which means that the close-pair LMP2 am-

plitudes are included in the LCCSD residuals for the strong

pairs. The standard choice of wck = 210 yields for pregnane-

diol a correlation energy that is about 1.4% larger than the

best current value, obtained with wck = 431. This error is re-

duced to 0.5% by using wck = 211, i.e., KEEPCLS=1, and

to 0.1% with wck = 321.

The LCCSD and LCCSD(T0) reaction energies are pre-

sented in Table VIII. The effect of SKIPGE=1 on the reaction

energies is small (0.2–0.8 kJ mol−1 in the current examples).

For reactions I and II, the LCCSD results are only weakly

affected by the pair approximations. The variations depend-

ing on the choice of the wck parameter amount only to about

1 kJ mol−1. This is probably due to the fact that in these cases

only OH-bonds are formed and no additional long-range cor-

relations occur. For LCCSD(T0), the effect of the weak pair

approximations on reactions I and II is somewhat larger than

for LCCSD; overall, extending the strong pair list reduces

the correlation effect on the reaction energies and, therefore,

makes the reactions less exothermic. In this case, however,

the choice wck = 211 yields somewhat worse agreement with

the best values for the reaction energies, and only extending

IWEAK to 3 improves the result. Apparently, different effects

of opposite sign partly compensate each other.

For reaction III, the situation is different. Extension of

the strong and/or close pair lists reduces the LCCSD re-

action energy by about 5 kJ mol−1. Likely, this is due to

the additional long-range correlation in the precursor rela-

tive to the separated molecules. This effect is to a large ex-

tent compensated, however, by the triples. Somewhat surpris-

ingly, the effect of the triples on the reaction energy amounts

to −7 kJ mol−1 for wck = 211, but only −1 kJ mol−1 for

wck = 431. Thus, the LCCSD(T0) reaction energy is much

less dependent on the choice of wck than the LCCSD one. At

present, we have no simple explanation for this effect.

FIG. 2. Undamaged pyrimidine dimer (TpT) and the photoproduct cyclobu-

tane pyrimidine dimer (CPD) thereof in the ATTA sequence of the DNA

double strand. The geometry corresponds to frame D of Ref. 92 with the

two pyrimidines H-bonded to the upper/lower adenines being removed. The

chemical formulas of the two pyrimidines (thymines) and the four adenines

are C5H6N2O2 and C5H5N5, respectively.

Furthermore, we point out that the domain and ba-

sis set corrections �EMP2(CBS) to the LCCSD(T0) reaction

energies yield estimates for the CCSD(T)/CBS values of

−74.4, −216.7, and 20.2 kJ mol−1 for the three reactions,

respectively. These compare very well with the LCCSD(T0)-

F12/aVTZ values of −73.2, −215.9, and 21.6 kJ mol−1, re-

spectively. The latter values include the complementary aux-

iliary basis set (CABS) singles correction98,99 for basis set

errors of the Hartree-Fock energies.

Finally, to demonstrate the efficiency of our program in

the context of a small application project we present some

preliminary results on the relative stability of the photodam-

aged CPD lesion vs. the undamaged dimer (TpT) in the ATTA

sequence of the DNA double strand.92 The CPD is one impor-

tant type of mutagenic photoproducts in DNA caused by solar

irradiation in the UV spectral range,100 and the repair of these

photolesions is of major importance for the survival of organ-

isms. The CPD lesion is rather stable, and for its repair quite

a large amount of energy is required to surmount the high re-

action barriers. Nature, therefore, employs enzymes, such as

photolyases,101 which exploit the energy of absorbed photons,

to catalyse the repair reaction.

The present calculations comprise the CPD/TpT pyrimi-

dine dimer plus the four nearest adenine bases (two hydrogen

bonded, two π -stacked with respect to the pyrimidine dimer),

in total 90 atoms, 528 correlated electrons, and 2636 basis

functions in the aVTZ basis set. The geometries used for these

calculations are depicted in Fig. 2 and correspond to frame D

of Ref. 92. Since the intermolecular contribution to the rel-

ative stability of CPD vs. TpT is dominated by hydrogen-

bonding (the effect of π -stacking is small, cf. Fig. 4 in

Ref. 92) the aVTZ basis as specified above was not fur-

ther augmented by diffuse functions on the C atoms. For

the local calculations NLMOs and NPA domains (NPASEL

= 0.07, vide supra) were used. In order to include inter-

molecular pairs, the individual pair classes were specified

by employing distance rather than connectivity criteria, i.e.,

by (rc = 1, rw = 5, rvd = 15 bohrs). Pure connectivity cri-

teria fail for systems comprising separate subunits or bent

molecules. Close pairs were included in the computation of

the LCCSD residuals (KEEPCLS = 1, cf. Table II). The cal-

culations were performed with SKIPGE = 0, the G(E) terms
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TABLE IX. Relative energies �E = E(CPD) − E(TpT) (in kJ mol−1) and

elapsed times (in min) for various steps of the TpT calculation (7 cores, Intel

Xeon X5690 @ 3.47 GHz).

�E

Method Basis locfit=0 locfit=1

HF aVTZ 55.2

HF aVQZ 55.4

HF CBSa 55.4

MP2 aVTZ 62.2

MP2 aVQZ 61.0

MP2 CBSb 60.1

LMP2 aVTZ 66.3 66.2

LCCSD aVTZ 49.8 49.8

LCCSD(T0) aVTZ 61.5 61.7

Elapsed times

LMP2

Integrals 45 18

Iterations 31 31

Total 80 50

LCCSD(T0)

0-2-external 65 65

3-external 166 87

4-external 210 60

LMP2 It 31 31

LCCSD It 253 252

(T0) 62 63

Total 790 562

aUsing Karton-Martin extrapolation.
bUsing n−3 extrapolation of the correlation energies.

thus fully included. SKIPGE = 1 calculations were tried but

did not converge for the CPD system.

The resulting relative energies and the elapsed times

of individual steps of the TpT calculation are compiled in

Table IX. Evidently, a LCCSD(T0) calculation on a molecule

of that size can be performed within less than half a day. The

use of local fitting reduces the cost for integral generation con-

siderably, for the 3-external, and even more for the 4-external

integral set, with no effect on the accuracy of the final rel-

ative energies. Additional calculations employing the aVQZ

and aV5Z fitting basis sets for the 4-external integrals showed

that the relative energies remain entirely unaffected from an

extension of the fitting basis.

Subtracting the local from the canonical MP2 value a do-

main error of 4.1 kJ mol−1 in the aVTZ relative energy is

obtained. Using as correction term �EMP2(CBS) = EMP2(CBS)

− ELMP2(aVTZ) = 6.2 kJ mol−1 yields an estimate for the cor-

responding LCCSD(T0) relative energy of 55.2 kJ mol−1, sur-

prisingly close to the uncorrelated Hartree-Fock result. The

DFT-SAPT calculations reported in Ref. 92 have shown that

about 24 kJ mol−1 of the CPD vs. TpT relative stability comes

from intermolecular interactions, i.e., the reduced strength of

hydrogen bonding in the former, which apparently is a sub-

stantial fraction of the overall relative stability.

V. SUMMARY AND CONCLUSIONS

We have presented an efficient LCCSD(T) method and

demonstrated that this makes it possible to study molecules

with up to 90 atoms and over 2600 basis functions with a rea-

sonable amount of computer time (over night). All integrals

are computed using density fitting approximations. Depend-

ing on the basis set, this speeds up the calculations by 1–2

orders of magnitude, but has a negligible effect on absolute

and relative energies. If local density fitting approximations

are invoked, linear scaling of the computational effort can be

reached, provided that certain terms involving contractions of

single excitations are omitted.

For reactions involving such large molecules, the differ-

ences between the results of local and canonical calculations

can be significant. This may either be due to the local approx-

imations or the larger BSSE effects in the canonical calcula-

tions. The latter may either improve or deteriorate the canon-

ical results relative to the basis set limit. Thus, there is often

a strong coupling of the apparent domain and basis set effects

which is difficult to predict. Therefore, it is recommended

to add a correction �EMP2(CBS) = EMP2(CBS) − ELMP2 to the

LCCSD(T0) energies, where the LMP2 and LCCSD(T0) en-

ergies are computed with the same basis set. Alternatively,

these effects can be accounted for by using the explicitly

correlated LCCSD(T0)-F12 method, which is presented in

Ref. 1.

It has also been demonstrated that the errors caused by

weak pair approximations may be larger than it was previ-

ously assumed. In some cases, the reaction energies may con-

verge rather slowly with an extension of the strong and/or

close pair classes. It is well known from previous work that

in calculations with medium-size basis sets (e.g., cc-pVTZ)

there is often a very favorable error compensation between

the errors caused by the domain and pair approximations.17

However, the errors due to the pair approximation may be-

come dominant if either the �EMP2(CBS) correction is added

or the LCCSD(T0)-F12 method is used. Unfortunately, ex-

tending the number of strong and close pairs significantly

increases the disk space and the CPU time. Nevertheless,

near CCSD(T)/CBS accuracy can be reached for molecules

with more than 100 atoms, such that high-level computational

studies of many problems of current interest in (bio)chemistry

and physics now become possible.

Extensions of the DF-LCCSD(T0) method presented

here to open-shell cases24,25 are already functional and will

be described in a future publication.
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APPENDIX A: UNLINKED AND LINKED FORMS OF
THE LCCSD RESIDUAL EQUATIONS

In our previous LCCSD implementations,7, 9 we defined

the residuals as

r̄ ir =
�

�̃r
i

�

�Ĥ − E
�

��
�

r ∈ [i], (A1)

R̄ij
rs =

�

�̃rs
ij

�

�Ĥ − E
�

��
�

r, s ∈ [ij ], (A2)
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i.e., according to the unlinked CC equations. Alterna-

tively, one can use a similarity transformed Hamiltonian H̄

= e−T̂ Ĥ eT̂ and write the residuals as

rir =
�

�̃r
i

�

�e−T̂ Ĥ eT̂
�

�0
�

, (A3)

Rij
rs =

�

�̃rs
ij

�

�e−T̂ Ĥ eT̂
�

�0
�

. (A4)

These are the linked CC equations with each individual dia-

gram contributing to the residuals being strictly size extensive

by itself.

It can be shown that

ri = r̄i , (A5)

Rij = R̄ij − ritj
†
S − Stirj

†

. (A6)

In the canonical case (or if all domains comprise the full vir-

tual space), the use of R̄ij leads to exactly the same results

as with Rij , since for the optimized amplitudes the terms in-

volving the singles residuals r̄ ir vanish. We found that neither

in terms of convergence nor in terms of computational ef-

ficiency, there is a particular advantage of using one or the

other form. Yet in the local case the two different forms of the

residual lead to slightly different results. The reason is that if

single excitations are restricted to a domain of virtual orbitals

r ∈ [i], the residuals rir vanish only in this domain. Since for

non-diagonal pairs ij the pair domains r, s ∈ [ij ] are larger

than the orbital domains [i] or [j ], the subtracted terms in

Eq. (A6) are non-zero even at convergence. In our current pro-

gram Eq. (A4) is, therefore, used by default.

However, in our previous LCCSD implementations7,9 we

used Eq. (A2). The doubles residuals then contained “un-

linked” terms sir t
j
s , where sir is a part of the singles residual

and r runs over the pair domain [ij ] (cf. Eqs. (42) and (44) in

Ref. 7). Therefore, the vectors sir were computed for r ∈ [i]U,

where [i]U refers to the union of all pair domains [ij ] for a

fixed i (united pair domain). This caused additional complica-

tions and approximations in order to achieve linear scaling. If

Eq. (A4) is used, the additional contributions are removed and

all terms in the singles residual are only needed for r ∈ [i].

The current form [Eq. (A4)] is, therefore, preferable in local

calculations. The results are hardly affected by this choice.

APPENDIX B: THE LINKED LCCSD RESIDUALS

In order to write the coupled cluster equations in compact

and computationally efficient form, we define the contravari-

ant doubles amplitudes,66,67

T̃ ij
rs = 2T ij

rs − T ji
rs . (B1)

The one- and two-electron integrals involving two external

orbitals (PAOs) are ordered into matrices,

Frs = �r|f̂ |s�, (B2)

J ij
rs = (rs|ij ), (B3)

Kij
rs = (ri|sj ), (B4)

and those with one external orbital into vectors,

f i
r = �r|f̂ |i�, (B5)

kkli
r = (rk|li), (B6)

lklir = 2(rk|li) − (rl|ki). (B7)

The all-internal integrals are defined as

fij = �i|f̂ |j �, (B8)

K
ij

kl = (ik|j l). (B9)

The superscripts denote different vectors or matrices, the sub-

script their elements. In the following matrices and vectors

whose subscripts correspond to PAOs are typeset in upper

and lower cases bold face letters, respectively, and the equa-

tions are given in matrix/vector form without specification of

the external indices. The use of appropriate domains and pair

restrictions is implied and not explicitly shown. Summation

over repeated indices will always be implied.

The contributions of the 3-external and 4-external inte-

grals only occur in contractions with amplitudes. Following

the notation of earlier papers7,9, 67 we define

[K(Dij )]rs = (rt |su)D
ij
tu, (B10)

[K(Dij )(k)]r = (rt |ku)D
ij
tu, (B11)

[K(Eij )]rs = (ri|su)t ju , (B12)

[J(Eij )]rs = (rs|iu)t ju , (B13)

[G(E)]rs =
�

i

[2J(Eii) − K(Eii)]rs , (B14)

where formally E
ij
pr = δpi t

j
r . For convenience in later expres-

sions, we also define

k̄kli = kkli + Kklti , (B15)

l̄kli = lkli + Lklti , (B16)

f̄ = f k + Lkltl , (B17)

F̄ = F − LklTlkS. (B18)

In terms of these quantities, the residuals take the explicit

form,

ri = f i − F̄†ti + K(D̃ik)k + (2Kik − Jik)tk

+S[T̃ik f̄k − Tkl llki − βikt
k], (B19)

Rij = Kij + K(Dij ) + αij,kl SD
klS

+Gij + Gji† (B20)
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with

Gij = STijX + K(Eij ) − βikST
kjS,

−
�

K(Dij )(k) + Jjkti + k̄ikj
�

tk
†
S

+S

�

T̃ikYkj −
1

2
TkiZkj − TkjZki

�

. (B21)

The intermediates are defined as

αij,kl = K
ij

kl + tr(DijKlk) + ti
†
kklj + tj

†
klki , (B22)

βik = fik + f k
†
ti + tr(TilLlk) + tl

†
l̄lki , (B23)

X = F̄ − f̄
k
tk
†
S + G(E), (B24)

Ykj = Kkj + K(Ekj ) −
1

2
[Jkj + J(Ekj )]

+

�

1

4
LklT̃lj −

1

2
l̄klj tl

†
�

S, (B25)

Zkj = Jkj + J(Ekj ) −

�

1

2
KlkTj l + k̄lkj tl

†
�

S. (B26)

We will finally discuss the approximations made for the terms

involving the 3-external integrals. Collecting all 3-external in-

tegral contributions gives the following contributions to the

singles and doubles residuals:

�ris = (su|vk)D̃ik
uv, (B27)

�Gij
rs = (su|vk)

�

δikδvr t
j
u − Srt

�

t kt D
ij
uv − T̃ ik

tv t
j
u

+
1

2
T̃ ik
tu t

j
v +

1

2
T ki
tu t

j
v + T

kj
tu t iv

��

. (B28)

In our program, the set of 3-external integrals (su|vk) de-

pends on domains u, s, v ∈ [k]3ext for each k. In most terms,

these domains are uniquely determined by the pair classes

included in the residual (i.e., ij , ik, or jk correspond to

strong pairs). The only exception is the term tkt D
ij
uv in the

doubles residual, since here k is not a pair label and, there-

fore, not limited. However, this term gives only small con-

tributions, and we found it sufficient to restrict k so that the

distances Rik = 0 or Rjk = 0, i.e., the orbital domain of [k]

must share at least one atom with [i] or [j ]. Thus, no addi-

tional integrals are needed for these terms. If close pair am-

plitudes are included in the residuals (option KEEPCLS=1)

the number of 3-external integrals strongly grows. Based

on numerical evidence, we found it uncritical to neglect all

close-pair contributions that are quadratic in the amplitudes in

Eqs. (B27) and (B28). Thus, only the contributions to the sin-

gles residual are affected by close pairs, and this leads only to

a very minor increase of the number of 3-external integrals.

The required 3-external integral set also depends on the

length of the triples list and the size of the triples domains. For

each k the united triple domain [k]T is formed as the union

of all triples domains corresponding to the triples containing

k.11 [k]T and [k]3ext above are then further unified to form

the final 3-ext-domains, which, in turn, are used to specify a

non-redundant distribution of 3-external integrals in terms of

quadruples (kRST ) consisting of one LMO index k and three

centers (cf. Sec. III B). Increasing the number of close pairs

by enlarging IWEAK thus increases [k]T, and with this the size

of the 3-external integral distribution.
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