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Abstract

In this paper we present a new algorithm for computing
reduced-order models of interconnect which utilizes the
dominant controllable subspace of the system. The dom-
inant controllable modes are computed via a new itera-
tive Lyapunov equation solver, Vector ADI. This new al-
gorithm is asinexpensive as Krylov subspace-based mo-
ment matching methods, and often produces a better ap-
proximation over a wide frequency range. A spiral in-
ductor and a transmission line example show this new
method can be much moreaccuratethan moment match-
ing via Arnoldi.

1 Introduction

Designers of analog and high performance digital integrated
circuits rely heavily on circuit-level ssimulation programs
which can efficiently incorporate accurate models of the in-
terconnect. The now-standard approach to efficient circuit-
interconnect simulation is to represent the interconnect with
moment matching-based reduced-order models [19, 2, 9].
Accurate computation of such models can be accomplished
using bi-orthogonalization algorithms like Padé via Lanczos
(PVL) [5], or with methods based on orthogonalized Krylov
subspace methods [17, 1, 20].

Another approach to computing these reduced-order
models is the Truncated Balanced Redlization (TBR) [8].
TBR produces a reduced model which is often close
to the optimal Hankel-norm approximation, and also
has a known t“-transfer function error bound. How-
ever, TBR has been largely abandoned for the intercon-
nect model order reduction application, because it re-
quires solving two Lyapunov equations for the control-
lability and observability grammians, as well as balanc-
ing the grammians using several matrix factorizations
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and products. These requirements made TBR too computa-
tionally expensiveto use on I%rge problems.

In this paper we propose reducing the system so only the
dominant controllable subspace remains. This only requires
the dominant singular subspace of the controllability gram-
mian. We present a new algorithm, Vector ADI, to compute
this dominant singular subspace. Vector ADI comesfrom re-
formulating thewell-known ADI method for the case of Lya-
punov equations with low rank right hand side. It is shown
that Vector ADI in fact generatesa particular rational Krylov
subspace of the system matrix A and the input coefficient ma-
trix B. This new method requires only linear matrix-vector
solves, and hence enables one to take advantage of any sys-
tem sparsity.

Section 2 gives brief background on state-space descrip-
tion of linear time-invariant systems, and system grammians
as solution of low rank right hand side (LRRHS) Lyapunov
equations. Section 3 describes two existing approaches to
model order reduction, moment matching via Lanczos or
Arnoldi and Truncated Balanced Realization. Section 4 de-
scribes reducing the system via the dominant controllable
subspace. In section 5, we derive the Vector ADI method
for computing the dominant controllable subspace, and show
that it is equivalent to generating arational Krylov subspace.
Section 6 comparesthe work required for Vector ADI and for
moment matching viaArnoldi (MMVA). In section 7 the new
Vector ADI-controllable subspace method is compared with
MMVA and TBR in two numerical examples. Section 8 con-
tains concluding remarks.

2 State-Space Representation

A linear time-invariant system with realization (A, B, C) is
characterized by the equations:
X = Ax+Bu 1)
y = & 2

wherex € R™1, u € RP*!, andy € R9*! are the vectors of
state variables, input, and output, respectively. A € R™",
B € R™P, C € R¥*" arethe system maitrix, the input coeffi-
cient matrix, and the output coefficient matrix, respectively.



In single-input single-output (SISO) systems, p=1,q=
1. Evenin multiple-input, multiple-output (MIMO) systems,
p and g are both very small compared to the number of state
variablesn.

If the system matrix A is stable, ie, the eigenvalues of A
arein theleft open half plane, we can define the controllabil -
ity grammian as

pa / BB Lt 3)
0
and the observability grammian as
Q2 / At CTCeM ., 4
0

It can be seen that the grammiansP and Q are symmetric, and
satisfy the following Lyapunov equations

AP+PAT +BBT =0 (5)
ATQ+QA+C'C=0 (6)

Since rank(BB') = rank(B) < p < n and rank(C'C) =
rank(C) < g < n, equations (5-6) both have alow rank right
hand side (LRRHS).

The grammians provide information about the reachabil -
ity and observability of the system, and are neededin optimal
Hankel-norm or Truncated Balanced Realization-type model
reductiong[4, 8, 18]. Frequently the bottleneck of these ' op-
timal’ model reduction methods occursin the solution of the
two Lyapunov eguations for the system grammians. So far,
all methodsof solving Lyapunov equations, exact or iterative,

have been O(n®) work [3, 10, 15, 22].

3 Modd Order Reduction

The system described by equations (1-2) is characterized by
itstransfer function G(s),

G(s) =C(sl —A)1B, Y(s) =G(5)U(s). 7)
Model order reduction seeksto obtain a smaller system

Xr = ArXr + Bru (8)
Yo = GX ©)
such that the number of state variables of this new systems

is much smaller than n, and the transfer function of the new
system, G, (s),

Gi(s) =G (sl —A) 1B, Yi(9) =G (s)Ur(s)  (10)

iscloseto the original.

3.1 Moment Matching Methods

Up to now, model order reduction of linear systems has usu-
ally gonein one of two directions. Oneis moment matching,
whichincludesPadé, partial realization, and their shifted ver-
sions[7, 9, 11]. These methods usually utilize the Arnoldi
or Lanczos method to find an orthonormal basis for some

combination of Krylov subspaces, K;(A,B), K;(AT,CT),
Ky((A—pl)~%,B), or Ky((AT — pl)~1,CT), where

K;(A,B) = span{B,AB,A%B,--- ,AU-1UB}.  (11)

The result is that moments, when K;((A— pl)~1,B) is used,
or Markov parameters, when K (A, B) is used, of the reduced
system match those of the original to a certain order.

The advantage of these methodsis that they only require
matrix-vector productsor linear matrix solves, and henceare
very efficient. When (A— pl) !B is required, an iterative
solver such as GM RES s often empl oyed so still only matrix-
vector products by A are needed [13]. However, there is
no theoretical error bound for the reduced system’s transfer
function. The error will be small at points where moments
or Markov parameters are matched, but there is no guarantee
that the error will also be small elsawhere. It'smore of an art
than scienceto pick pointswhere momentsare to be matched
so that the overall transfer function error is small. The algo-
rithms for picking matching frequency points are based on
heuristics [2]. Moreover, the reduced system obtained by
these methodsis not guaranteed to be passive or stable, even
if the original system is. Further processing is needed to ob-
tain a passive and stable model [17].

3.2 Truncated Balanced Realization

The other direction in model order reduction is Truncated
Balanced Realization, which produces a guaranteed stable
reduced system and has a theoretical transfer function error
bound. The following summarizes the development in [8].

Given a stable system described by equations (1-2), with
controllability and observability grammians, P and Q, re-
spectively. Let Q have a Cholesky factorization

Q=R'R (12)

then RPRT will be apositive-definite matrix and can be diag-
onalized as

RPRT =Uz2UT, UTu=I (13
> =diag(01,07,...,0n), 01>02..>0,>0 (14)

A balancing transformation is given by
T=3sVTR (15)

In the transformed state space coordinates, with realization
(A, = TAT 1 B, = TB,C, = CT 1), the new controllability
and observability grammians are diagonal and equal,

P, = Qp = Z =diag{01,03,...,0k, 0k} 1,---,0n}  (16)

If ok > Ok, 1, then the kth order truncated balanced real-
ization is given by

(Ao, Bl i) = (Ag,B1,Cy) (17)

where Ay € Rk By € R*P C; € R9*K are sub-matrices of
the balanced realization, (Ay, By, Cy),

A A B
Po=(p A2).Bo=(g}) .Go=(C1 Co). (18)
The resulting transfer function G, (s) hasL®-error

IG(iw) — G (i) [lL» < 2(Oky1+ O2+ ... +0n). (19)



4 Reduction via the Dominant Con-
trollable Subspace

Solving the Lyapunov equations (5-6) is expensive, asis bal-
ancing the grammians. Instead, we proposereducing the sys-
tem to its dominant controllable subspace only, and ignore
observability. Both grammianswill be taken into account in
alater paper [14].

Suppose P = Upzpug is the singular value decomposi-
tion of the controllability grammian. Under the coordinate
transformation, X £ U x, the system

X = Ax+Bu
y = Cx
becomes
X = AX+Bu (20)
y = Cx (21)
A = UjAU,B=U;B,C=CU,. (22)

Thecontrollability and observability grammiansbecome P=
UpPUp = p and Q = Uy QUp. Clearly the system transfer
functionis not affected by thisinvertible coordinatetransfor-
mation.

Supposethediagonal of X isin oNIec~ree~as ng order, we can
then truncated the new realization (A, B,C) to the first k co-
ordinates, which are precisely the k most controllable modes.
Partition Up as [UK,UR~X], U being the k most controllable
modes of the original realization (A,B,C), the reduced sys-
temis

¥ = AX+BuU (23)
Y= G (24)
A = ukTaukBE=UK'B.CK=cUK.  (29)

Therefore, to obtain akth order reduced system, only the
k-dim dominant controllable subspace U'g is needed. Note

that (25) isintheform of acongruencetransformation, which
has a side benefit of aiding in the preservation of passivity

[12]. Inthe next section we describe how U'g can be obtained
efficiently via Vector ADI.

5 Vector ADI

We seek a good approximation to the dominant singular sub-
space UE of the solution P of equation (5). We start with the
origina ADI method.

51 TheADI Method

The Alternate Direction Implicit method is an iterative
method for solving the Lyapunov equation,

AX+XAT +D=0. (26)

Formulated in [3, 15], it hasthe form:

X =0 (27)
(Pl =A)X;_1 = D+X1(AT+pjl), (29
(pjl —AX; = D+XJ.T (AT +pjl). (29

1
2

A must first be reduced to tridiagonal formin O(n®) work for
ADI to be competitive with standard techniques. The flop
count for ADI calculated in [15] is 2n®+ 12Jn? where J is
the number of ADI iterations.

If X isthe ADI approximation after J iterations, the error
is bounded by,

1= Xle < ITIZITHI3k(P)?1%0 — Xllr,

J (pj—X) (30)
k =
P)= JD. (Pj +%) .

where T is a matrix of eigenvectors of A, and p =
{p1, P2, -, Ps} arethe ADI parameters. Parameter selection
for ADI was investigated in several papers, [3, 15, 21, 22].
It was noted in [15] that with good parameters ADI usually
convergesin afew iterations.

5.2 Vector ADI Derivation

Thekey in developing Vector ADI liesin an alternate formu-
lation of the ADI method [3].

Xo=0; (31)
X; =2p;(A—pjl) 'D(A—p;)7"

+(A=pi)THA+ p)Xj_1(A+ pi)T(A—p) .
(32

Since D = BBT for equation (5), it is clear from (32) that X;
will always be symmetric, and that it will have rank at most
the sum of theranksof X;_; and B. Sinceiteration startswith
Xo =0, Xj will haverank at most jp, p being the number of
vectorsin B. Therefore, Xj needs not be represented by more
than j p vectors.

Wewrite X; =V,V;T, whereV; = [vy,Vy, - ,vj] isama
trix square root of X, and eachv; € R"*P isthe same size as
B. Replacing X; by V;V;T, and D by BBT in equations (31)
and (32), we obtain,

VViT = 2pj(A—p;l) BBT(A—pjl) "
+(A=pih) A+ PV VL (A+ p) T (A= p)) .
(34)

It becomes clear that the algorithm can be reformulated in
terms of the matrix square root Vj. Thereis no need to cal-

culate X; at each iteration, only V;, which can be chosen so
that it is easily found fromV;_.
Here isthe preliminary form of Vector ADI;

Vi=\/2pi(A-p)iB, V;eR™P (35)
Vi =[V/2pj(A~pjl) 'B.(A—pjl) {(A+ pj)V;-i]

Vj € R™IP (30



Inthisform, at each step, the number of vectorsneedingto be
modified is increased by p. The next step in developing the
algorithm involves keeping the number of vectors modified
at each step constant.

5.3 Rational Krylov Subspace Formulation

In the original ADI method, the number of iterations needed
to achieve a required error tolerance is determined a priori
[15]. Thenthe ADI parameters { p; } are calculated asafunc-
tion of the required number of iterations and A's spectral
bounds.

Suppose the number of iterationsto be performed is J, it
isthen possibleto write Vector ADI inaform which requires
only p vectors to be modified at each iteration, p being the
number of vectorsin B. The Jp vectors of V; are,

Vi;=[Sv2p:B, ST1S-11/2p;-1B,

STS-1T1-1S5-2v/2p3—2B, -+, (37)
STy STS1v/2p;B]
S=A-ph)t  Ti=(A+pl). (39)

]Ic_t’seasily shown that § and T, commutefor any i and k. De-
ine:

Wy = /2p3SB = /2p;(A—pyl) 7B (39)
A=Y gn, (40)

S
oy
:

= I+ (pyatp)(A—ph) Y (4D)

N
e)
1
iR

V/; then becomes:

Vy=[wy, Pyqwy, PyioPyiawg, -,

42
PP - - Py_1w] “2

In this form, V; can be obtained from the starting vector wj,
(which is actually a p-vector, the same sizeas B), and J — 1
products of the form Bw. The cost of applying P, to avector
Is essentially that of asingle linear matrix-vector solve. The
starting vector wj is obtained from alinear matrix solve with
B as the right-hand side, and each succeeding p-vector can
be obtained from the previous p-vector at the cost of alinear
matrix solve.

It can be seen that the columns of V; span a rationa
Krylov subspace, K (w3, P(A),J), with starting vector w; =
V2p3(A— p;1)~1B and successive matrix productsby P (A),
which are non-identical rational functions of A.

The ADI solution isthen X = V,VJ . If k < J, it can be
easily seen that U, the k-dim dominant singular space of X,
is the same as the k-dim dominant left singular space of V;,
Vy = [UK,U3K]5, Wi, 5, which can be obtained cheaply be-
cause V; containsonly Jp vectors.

If Aisthe system matrix and B the input coefficient ma-

trix, then UK is the desired approximate dominant control-
lable subspace in equations (23 -25).

6 Work Comparison with Moment
Matching

If Jiterationsof Vector ADI are performed, the matrix square
root V; of the ADI solution can be obtained after J linear ma-
trix solvesand J — 1 vector additions. Moment matching via
Arnoldi [16, 11], calculates the following Krylov subspace,

Ki((A=pl)™,B)

(43)
= span{B, (A—pl)~'B,---,(A— pl)~"B}
whichrequiresJ — 1 linear matrix solves. Therefore, Arnoldi
and Vector ADI require comparablework to generateagiven
order model.

7 Numerical Examples

The Vector ADI-controllable subspace method was tested on
several systems with large sparse state-space matrices, and
compared with TBR and moment matching around s= 0 via
Arnoldi (MMVA).

Thefirst example comesfrominductance extraction of an
on-chip planar square spiral inductor suspended over a cop-
per plane. This example was used in [11] to demonstrate a
combined moment matching and TBR method. The spiral in-
ductor wasoriginally discretized into a500 x 500 system and
good approximation is expected by a reduced model of order
10 or so.

Reduced models of order 7 obtained by TBR, MMVA,
and Vector ADI (in solid), are shown in Figure 1. It can be
seen that even though MMVA around s = 0 gives very ac-
curate frequency response near s= 0, it loses accuracy away
fromit. TBR seeksto minimizethemaximumerrorinthefre-
guency response, and hence showssimilar error along theen-
tire frequency range and looksflat. Vector ADI follows TBR
throughout the entire range of frequencies and has the same
flat shape. It gives somewhat larger error than TBR for both
resistance and inductance, but is much better than MMVA.

a‘lgﬂe work required for each of the three methodsis given
intable 1.

TBR | MMVA | VADI
10.2e9 | 0.60e9 | 0.67€9

Flop Count

Table 1: Spiral Inductor Flop Count

VADI and MMVA require about the same amount of work,
which isaround 6 percent of the work required for TBR.

The results for this example are quite encouraging and
show that VADI can produce a reduced model that has uni-
formly small error over awidefrequency rangeat asmall per-
centage of the cost of TBR.

The second example comes from the discretization of a
transmissionlineusing theformulationin[16], with the orig-
inal system having 256 states. In Figure 2 Vector ADI clearly
captures the behavior of both the amplitude and phase of the
frequency response much better than MMVA. With a20th or-
der system, Vector ADI is able to capture 5 peaks of the am-
plitude, whereas MMVA only thefirst 2 and somewhat of the
4th. Vector ADI also matches more peaksin the phase of the
original response, (with an extrapeak at theend), whereasthe
phase from MMVA essentialy liesflat after thefirst dip.



8 Conclusions and Acknowledgments

In this paper we presented a new algorithm for computing
reduced-order models of interconnect, using the dominant
controllable subspace of a system, which is computed via
a new low rank right hand side Lyapunov equation solver,
Vector ADI. This method of model reduction requires only
shifted linear matrix solves, and hence enables one to take
advantage of any system sparsity. We demonstrated that this
Vector ADI-controllable subspace method produces much
better models than the moment matching approach if wide-
band fidelity isimportant.
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Figure 1: Spiral Inductor. Vector ADI isseen to follow TBR throughout the frequency range.
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Figure 2: Transmission Line. Vector ADI isseen to match significantly more peaksthan moment matching around s= 0.



