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Abstract
In this paper we present a new algorithm for computing
reduced-order models of interconnect which utilizes the
dominant controllable subspace of the system. The dom-
inant controllable modes are computed via a new itera-
tive Lyapunov equation solver, Vector ADI. This new al-
gorithm is as inexpensive as Krylov subspace-based mo-
ment matching methods, and often produces a better ap-
proximation over a wide frequency range. A spiral in-
ductor and a transmission line example show this new
method can be much more accurate than moment match-
ing via Arnoldi.

1 Introduction
Designers of analog and high performance digital integrated
circuits rely heavily on circuit-level simulation programs
which can efficiently incorporate accurate models of the in-
terconnect. The now-standard approach to efficient circuit-
interconnect simulation is to represent the interconnect with
moment matching-based reduced-order models [19, 2, 9].
Accurate computation of such models can be accomplished
using bi-orthogonalization algorithms like Padé via Lanczos
(PVL) [5], or with methods based on orthogonalized Krylov
subspace methods [17, 1, 20].

Another approach to computing these reduced-order
models is the Truncated Balanced Realization (TBR) [8].
TBR produces a reduced model which is often close
to the optimal Hankel-norm approximation, and also
has a known Ł∞-transfer function error bound. How-
ever, TBR has been largely abandoned for the intercon-
nect model order reduction application, because it re-
quires solving two Lyapunov equations for the control-
lability and observability grammians, as well as balanc-
ing the grammians using several matrix factorizations

and products. These requirements made TBR too computa-
tionally expensive to use on large problems.

In this paper we propose reducing the system so only the
dominant controllable subspace remains. This only requires
the dominant singular subspace of the controllability gram-
mian. We present a new algorithm, Vector ADI, to compute
this dominant singular subspace. Vector ADI comes from re-
formulating the well-known ADI method for the case of Lya-
punov equations with low rank right hand side. It is shown
that Vector ADI in fact generates a particular rational Krylov
subspace of the system matrix A and the input coefficient ma-
trix B. This new method requires only linear matrix-vector
solves, and hence enables one to take advantage of any sys-
tem sparsity.

Section 2 gives brief background on state-space descrip-
tion of linear time-invariant systems, and system grammians
as solution of low rank right hand side (LRRHS) Lyapunov
equations. Section 3 describes two existing approaches to
model order reduction, moment matching via Lanczos or
Arnoldi and Truncated Balanced Realization. Section 4 de-
scribes reducing the system via the dominant controllable
subspace. In section 5, we derive the Vector ADI method
for computing the dominant controllable subspace, and show
that it is equivalent to generating a rational Krylov subspace.
Section 6 compares the work required for Vector ADI and for
moment matching via Arnoldi (MMVA). In section 7 the new
Vector ADI-controllable subspace method is compared with
MMVA and TBR in two numerical examples. Section 8 con-
tains concluding remarks.

2 State-Space Representation

A linear time-invariant system with realization (A, B, C) is
characterized by the equations:

ẋ = Ax+Bu (1)
y = Cx (2)

where x 2 Rn�1 , u 2 Rp�1 , and y 2 Rq�1 are the vectors of
state variables, input, and output, respectively. A 2 R

n�n ,
B 2 Rn�p , C 2 Rq�n , are the system matrix, the input coeffi-
cient matrix, and the output coefficient matrix, respectively.
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In single-input single-output (SISO) systems, p = 1;q =
1. Even in multiple-input, multiple-output (MIMO) systems,
p and q are both very small compared to the number of state
variables n.

If the system matrix A is stable, ie, the eigenvalues of A
are in the left open half plane, we can define the controllabil-
ity grammian as

P,
Z ∞

0
eAtBBTeATtdt (3)

and the observability grammian as

Q,
Z ∞

0
eATtCTCeAtdt: (4)

It can be seen that the grammians P and Q are symmetric, and
satisfy the following Lyapunov equations

AP+PAT +BBT = 0 (5)

AT Q+QA+CTC = 0 (6)

Since rank(BBT ) = rank(B) � p � n and rank(CTC) =

rank(C)� q� n, equations (5-6) both have a low rank right
hand side (LRRHS).

The grammians provide information about the reachabil-
ity and observability of the system, and are needed in optimal
Hankel-norm or Truncated Balanced Realization-type model
reductions[4, 8, 18]. Frequently the bottleneck of these ’op-
timal’ model reduction methods occurs in the solution of the
two Lyapunov equations for the system grammians. So far,
all methods of solving Lyapunov equations, exact or iterative,
have been O(n3) work [3, 10, 15, 22].

3 Model Order Reduction
The system described by equations (1-2) is characterized by
its transfer function G(s),

G(s) =C(sI�A)�1B; Y(s) = G(s)U(s): (7)

Model order reduction seeks to obtain a smaller system

ẋr = Arxr +Bru (8)
yr = Crxr (9)

such that the number of state variables of this new systems
is much smaller than n, and the transfer function of the new
system, Gr(s),

Gr(s) =Cr(sI�Ar)
�1Br; Yr(s) = Gr(s)Ur(s) (10)

is close to the original.

3.1 Moment Matching Methods
Up to now, model order reduction of linear systems has usu-
ally gone in one of two directions. One is moment matching,
which includes Padé, partial realization, and their shifted ver-
sions [7, 9, 11]. These methods usually utilize the Arnoldi
or Lanczos method to find an orthonormal basis for some

combination of Krylov subspaces, KJ(A;B), KJ(AT ;CT ),
KJ((A� pI)�1;B), or KJ((AT � pI)�1;CT ), where

KJ(A;B) = spanfB;AB;A2B; � � � ;A(J�1)Bg: (11)

The result is that moments, when KJ((A� pI)�1;B) is used,
or Markov parameters, when KJ(A;B) is used, of the reduced
system match those of the original to a certain order.

The advantage of these methods is that they only require
matrix-vector products or linear matrix solves, and hence are
very efficient. When (A� pI)�1B is required, an iterative
solver such as GMRES is often employed so still only matrix-
vector products by A are needed [13]. However, there is
no theoretical error bound for the reduced system’s transfer
function. The error will be small at points where moments
or Markov parameters are matched, but there is no guarantee
that the error will also be small elsewhere. It’s more of an art
than science to pick points where moments are to be matched
so that the overall transfer function error is small. The algo-
rithms for picking matching frequency points are based on
heuristics [2]. Moreover, the reduced system obtained by
these methods is not guaranteed to be passive or stable, even
if the original system is. Further processing is needed to ob-
tain a passive and stable model [17].

3.2 Truncated Balanced Realization
The other direction in model order reduction is Truncated
Balanced Realization, which produces a guaranteed stable
reduced system and has a theoretical transfer function error
bound. The following summarizes the development in [8].

Given a stable system described by equations (1-2), with
controllability and observability grammians, P and Q, re-
spectively. Let Q have a Cholesky factorization

Q = RT R (12)

then RPRT will be a positive-definite matrix and can be diag-
onalized as

RPRT =UΣ2UT
; UTU = I (13)

Σ = diag(σ1;σ2; :::;σn); σ1 � σ2:::� σn > 0 (14)

A balancing transformation is given by

T = Σ�1=2UT R: (15)

In the transformed state space coordinates, with realization
(Ab = TAT�1;Bb = TB;Cb =CT�1), the new controllability
and observability grammians are diagonal and equal,

Pb = Qb = Σ = diagfσ1;σ2; :::;σk;σk+1; :::;σng (16)

If σk > σk+1, then the kth order truncated balanced real-
ization is given by

(Ak
tbr;B

k
tbr;C

k
tbr) = (A11;B1;C1) (17)

where A11 2 Rk�k ;B1 2 Rk�p ;C1 2 Rq�k are sub-matrices of
the balanced realization, (Ab;Bb;Cb),

Ab =

�
A11 A12
A21 A22

�
;Bb =

�
B1
B2

�
;Cb = (C1 C2) : (18)

The resulting transfer function Gk
tbr(s) has L∞-error

kG( jw)�Gk
tbr( jw)kL∞ � 2(σk+1 +σk+2 + :::+σn): (19)



4 Reduction via the Dominant Con-
trollable Subspace

Solving the Lyapunov equations (5-6) is expensive, as is bal-
ancing the grammians. Instead, we propose reducing the sys-
tem to its dominant controllable subspace only, and ignore
observability. Both grammians will be taken into account in
a later paper [14].

Suppose P = UpΣpUT
p is the singular value decomposi-

tion of the controllability grammian. Under the coordinate
transformation, x̃,UT

p x, the system

ẋ = Ax+Bu
y = Cx

becomes

˙̃x = Ãx̃+ B̃u (20)

y = C̃x̃ (21)

Ã = UT
p AUp; B̃ =UT

p B;C̃ =CUp: (22)

The controllability and observability grammians become P̃=

UT
p PUp = Σp and Q̃ = UT

p QUp. Clearly the system transfer
function is not affected by this invertible coordinate transfor-
mation.

Suppose the diagonal of Σp is in decreasing order, we can
then truncated the new realization (Ã; B̃;C̃) to the first k co-
ordinates, which are precisely the k most controllable modes.
Partition Up as [Uk

p;U
n�k
p ], Uk

p being the k most controllable
modes of the original realization (A;B;C), the reduced sys-
tem is

ẋk
r = Ak

rxk
r +Bk

ru (23)

yr = Ck
r xk

r (24)

Ak
r = Uk

p
T

AUk
p;B

k
r =Uk

p
T

B;Ck
r =CUk

p: (25)

Therefore, to obtain a kth order reduced system, only the
k-dim dominant controllable subspace Uk

p is needed. Note
that (25) is in the form of a congruence transformation, which
has a side benefit of aiding in the preservation of passivity
[12]. In the next section we describe howUk

p can be obtained
efficiently via Vector ADI.

5 Vector ADI

We seek a good approximation to the dominant singular sub-
space Uk

p of the solution P of equation (5). We start with the
original ADI method.

5.1 The ADI Method

The Alternate Direction Implicit method is an iterative
method for solving the Lyapunov equation,

AX +XAT +D = 0: (26)

Formulated in [3, 15], it has the form:

X0 = 0; (27)

(p jI�A)Xj� 1
2

= D+Xj�1(A
T + p jI); (28)

(p jI�A)Xj = D+XT
j� 1

2
(AT + p jI): (29)

A must first be reduced to tridiagonal form in O(n3) work for
ADI to be competitive with standard techniques. The flop
count for ADI calculated in [15] is 19

3 n3 + 12Jn2 where J is
the number of ADI iterations.

If XJ is the ADI approximation after J iterations, the error
is bounded by,

kXJ �XkF � kTk2
2kT�1k2

2k(p)2kX0�XkF;

k(p) = max
x2spec(A)

j
J

∏
j=1

(p j � x)

(p j + x)
j;

(30)

where T is a matrix of eigenvectors of A, and p =

fp1; p2; � � � ; pJg are the ADI parameters. Parameter selection
for ADI was investigated in several papers, [3, 15, 21, 22].
It was noted in [15] that with good parameters ADI usually
converges in a few iterations.

5.2 Vector ADI Derivation
The key in developing Vector ADI lies in an alternate formu-
lation of the ADI method [3].

X0 = 0; (31)

Xj = 2p j(A� p jI)
�1D(A� p jI)

�T

+(A� p jI)
�1(A+ p jI)Xj�1(A+ p jI)

T (A� p j)
�T

:

(32)

Since D = BBT for equation (5), it is clear from (32) that Xj
will always be symmetric, and that it will have rank at most
the sum of the ranks of Xj�1 and B. Since iteration starts with
X0 = 0, Xj will have rank at most jp, p being the number of
vectors in B. Therefore, Xj needs not be represented by more
than jp vectors.

We write Xj =VjVj
T , where Vj = [v1;v2; � � � ;v j] is a ma-

trix square root of Xj, and each vi 2 Rn�p is the same size as
B. Replacing Xj by VjVj

T , and D by BBT in equations (31)
and (32), we obtain,

V0 = 0; (33)

VjVj
T
= 2p j(A� p jI)

�1BBT
(A� p jI)

�T

+(A� p jI)
�1(A+ p jI)Vj�1VT

j�1(A+ p jI)
T (A� p j)

�T
:

(34)

It becomes clear that the algorithm can be reformulated in
terms of the matrix square root Vj. There is no need to cal-
culate Xj at each iteration, only Vj, which can be chosen so
that it is easily found from Vj�1.

Here is the preliminary form of Vector ADI:

V1 =
p

2p1(A� p1)
�1B; V1 2 Rn�p (35)

Vj = [
p

2p j(A� p jI)
�1B;(A� p jI)

�1(A+ p jI)Vj�1]

Vj 2 Rn� jp
(36)



In this form, at each step, the number of vectors needing to be
modified is increased by p. The next step in developing the
algorithm involves keeping the number of vectors modified
at each step constant.

5.3 Rational Krylov Subspace Formulation

In the original ADI method, the number of iterations needed
to achieve a required error tolerance is determined a priori
[15]. Then the ADI parameters fp jg are calculated as a func-
tion of the required number of iterations and A’s spectral
bounds.

Suppose the number of iterations to be performed is J, it
is then possible to write Vector ADI in a form which requires
only p vectors to be modified at each iteration, p being the
number of vectors in B. The Jp vectors of VJ are,

VJ = [SJ

p
2pJB; SJTJSJ�1

p
2pJ�1B;

SJTJSJ�1TJ�1SJ�2

p
2pJ�2B; � � � ;

SJTJ � � �S2T2S1

p
2p1B]

(37)

Si = (A� piI)
�1

; Ti = (A+ piI): (38)

It’s easily shown that Si and Tk commute for any i and k. De-
fine:

wJ =
p

2pJSJB =
p

2pJ(A� pJI)�1B (39)

Pl =

p
2plp

2pl+1
SlTl+1 (40)

=

p
2plp

2pl+1
[I+(pl+1 + pl)(A� plI)

�1] (41)

VJ then becomes:

VJ = [wJ; PJ�1wJ; PJ�2PJ�1wJ; � � � ;
P1P2 � � �PJ�1wJ]

(42)

In this form, VJ can be obtained from the starting vector wJ ,
(which is actually a p-vector, the same size as B), and J� 1
products of the form Piw. The cost of applying Pi to a vector
is essentially that of a single linear matrix-vector solve. The
starting vector wJ is obtained from a linear matrix solve with
B as the right-hand side, and each succeeding p-vector can
be obtained from the previous p-vector at the cost of a linear
matrix solve.

It can be seen that the columns of VJ span a rational
Krylov subspace, K (wJ;P(A);J), with starting vector wJ =p

2pJ(A� pJI)�1B and successive matrix products by Pi(A),
which are non-identical rational functions of A.

The ADI solution is then X̃ = VJVT
J . If k � J, it can be

easily seen that Uk, the k-dim dominant singular space of X̃,
is the same as the k-dim dominant left singular space of VJ,
VJ = [Uk;UJ�k]ΣVJWJ�J , which can be obtained cheaply be-
cause VJ contains only Jp vectors.

If A is the system matrix and B the input coefficient ma-
trix, then Uk is the desired approximate dominant control-
lable subspace in equations (23 -25).

6 Work Comparison with Moment
Matching

If J iterations of Vector ADI are performed, the matrix square
root VJ of the ADI solution can be obtained after J linear ma-
trix solves and J�1 vector additions. Moment matching via
Arnoldi [16, 11], calculates the following Krylov subspace,

KJ((A� pI)�1
;B)

= spanfB;(A� pI)�1B; � � � ;(A� pI)�(J�1)Bg
(43)

which requires J�1 linear matrix solves. Therefore, Arnoldi
and Vector ADI require comparable work to generate a given
order model.

7 Numerical Examples

The Vector ADI-controllable subspace method was tested on
several systems with large sparse state-space matrices, and
compared with TBR and moment matching around s = 0 via
Arnoldi (MMVA).

The first example comes from inductance extraction of an
on-chip planar square spiral inductor suspended over a cop-
per plane. This example was used in [11] to demonstrate a
combined moment matching and TBR method. The spiral in-
ductor was originally discretized into a 500�500 system and
good approximation is expected by a reduced model of order
10 or so.

Reduced models of order 7 obtained by TBR, MMVA,
and Vector ADI (in solid), are shown in Figure 1. It can be
seen that even though MMVA around s = 0 gives very ac-
curate frequency response near s = 0, it loses accuracy away
from it. TBR seeks to minimize the maximum error in the fre-
quency response, and hence shows similar error along the en-
tire frequency range and looks flat. Vector ADI follows TBR
throughout the entire range of frequencies and has the same
flat shape. It gives somewhat larger error than TBR for both
resistance and inductance, but is much better than MMVA.

The work required for each of the three methods is given
in table 1.

TBR MMVA VADI
Flop Count 10.2e9 0.60e9 0.67e9

Table 1: Spiral Inductor Flop Count

VADI and MMVA require about the same amount of work,
which is around 6 percent of the work required for TBR.

The results for this example are quite encouraging and
show that VADI can produce a reduced model that has uni-
formly small error over a wide frequency range at a small per-
centage of the cost of TBR.

The second example comes from the discretization of a
transmission line using the formulation in [16], with the orig-
inal system having 256 states. In Figure 2 Vector ADI clearly
captures the behavior of both the amplitude and phase of the
frequency response much better than MMVA. With a 20th or-
der system, Vector ADI is able to capture 5 peaks of the am-
plitude, whereas MMVA only the first 2 and somewhat of the
4th. Vector ADI also matches more peaks in the phase of the
original response, (with an extra peak at the end), whereas the
phase from MMVA essentially lies flat after the first dip.
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In this paper we presented a new algorithm for computing
reduced-order models of interconnect, using the dominant
controllable subspace of a system, which is computed via
a new low rank right hand side Lyapunov equation solver,
Vector ADI. This method of model reduction requires only
shifted linear matrix solves, and hence enables one to take
advantage of any system sparsity. We demonstrated that this
Vector ADI-controllable subspace method produces much
better models than the moment matching approach if wide-
band fidelity is important.
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Figure 1: Spiral Inductor. Vector ADI is seen to follow TBR throughout the frequency range.

10
−4

10
−3

10
−2

10
15

10
16

10
17

10
18

10
19

256 States System Reduced to 20 States

A
m

pl
itu

de

Frequency

Exact  
MM−20  
VADI−20

(a) Amplitude

10
−4

10
−3

10
−2

−3

−2

−1

0

1

2

3
256 States System Reduced to 20 States

P
ha

se

Frequency

Exact  
MM−20  
VADI−20

(b) Phase

Figure 2: Transmission Line. Vector ADI is seen to match significantly more peaks than moment matching around s = 0.


