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ABSTRACT
Flash memory is among the top choices for storage media
in ubiquitous computing. With a strong demand of high-
capacity storage devices, the usages of flash memory quickly
grow beyond their original designs. The very distinct char-
acteristics of flash memory introduce serious challenges to
engineers in resolving the quick degradation of system per-
formance and the huge demand of main-memory space for
flash-memory management when high-capacity flash mem-
ory is considered. Although some brute-force solutions could
be taken, such as the enlarging of management granular-
ity for flash memory, we showed that little advantage is
received when system performance is considered. This pa-
per proposes a flexible management scheme for large-scale
flash-memory storage systems. The objective is to efficiently
manage high-capacity flash-memory storage systems based
on the behaviors of realistic access patterns. The proposed
scheme could significantly reduce the main-memory usages
without noticeable performance degradation.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]:
Real-time and embedded systems; D.4.2 [Operating Sys-
tems]: Garbage collection; B.3.2 [Memory Structures]:
Mass Storage

General Terms
Design, Performance, Algorithm.
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1. INTRODUCTION
Flash-memory is non-volatile, shock-resistant, and power-

economic. With recent technology breakthroughs in both
capacity and reliability, flash-memory storage systems are
much more affordable than ever. As a result, flash-memory
is now among the top choices for storage media in ubiquitous
computing.

Researchers have been investigating how to utilize flash-
memory technology in existing storage systems, especially
when new challenges are introduced by the characteristics
of flash memory. In particular, Kawaguchi, et al. [1] pro-
posed a flash-memory translation layer to provide a trans-
parent way to access flash memory through the emulating
of a block device. Wu, et al. [6], proposed to integrate a vir-
tual memory mechanism with a non-volatile storage system
based on flash memory. Native flash-memory file systems
were designed without imposing any disk-aware structures
on the management of flash memory [7, 8]. Douglis, et al.
[2] evaluated flash memory storage systems under realistic
workloads for energy consumption considerations. Chang,
et al. focused on performance issues for flash-memory stor-
age systems by considering an architectural improvement [5],
an energy-aware scheduler [4], and a deterministic garbage
collection mechanism [3]. Beside research efforts from the
academics, many implementation designs and specifications
were proposed from the industry, such as [9, 10, 11, 12].

While a number of excellent research results have been
done on flash-memory storage systems, much work is done
on garbage collection, e.g., [1, 5, 6]. Existing implementa-
tions on flash-memory storage systems usually adopt static
table-driven schemes (with a fixed-sized granularity of flash-
memory management, e.g., 16KB.) to manage used and
available space of flash-memory [1, 5, 6, 9, 10, 11]. The gran-
ularity size of flash-memory management is a permanent
and unchangeable system parameter. Such traditional de-
sign works pretty well for small-scale flash-memory storage
systems. With the rapid growing of the flash-memory ca-
pacity, severe challenges on the flash-memory management
issues might be faced, especially when performance degra-
dation on system start-up and on-line operations would be-
come a serious problem.

The purpose of this research is on the minimization of the
main-memory footprint and the amount of house-keeping
data written for flash-memory management. We investigate
the behaviors of access patterns generated by realistic and



typical workloads with the considerations of flash-memory
management issues. Variable granularities of management
units are adopted with the issues for address translation,
space management, and garbage collection are considered.
Significant advantages in resource usages and system per-
formance of the proposed scheme are shown by conducting
a series of experiments.

2. MOTIVATION

2.1 Fundamental Management Issues
In this section, we shall first summarize the character-

istics of flash memory and then issues for the logical-to-
physical address translation and the space management for
flash memory:

A NAND flash memory 1 is organized in terms of blocks,
where each block is of a fixed number of pages. A block
is the smallest unit for erase operations, while reads and
writes are processed in terms of pages. The typical block
size and the page size of a NAND flash memory are 16KB
and 512B, respectively. There is a 16-byte “spare area” ap-
pended to every page, where out-of-band data (e.g., ECC
and bookkeeping information) could be written to the spare
areas.

When a portion of free space on flash memory is written
(/programmed), the space is no longer available unless it is
erased. Out-place-updating is usually adopted to avoid eras-
ing operations on every update. The effective (/latest) copy
of data is considered as “live”, and old versions of the data
are invalidated and considered as “dead”. Pages which store
live data and dead data are called “live pages” and “dead
pages”, respectively. “Free pages” constitute free space on
flash memory. After the processing of a large number of page
writes, the number of free pages on flash memory would be
low. System activities (called garbage collection) are needed
to reclaim dead pages scattered over blocks so that they
could become free pages. Because an erasable unit (a block)
is relatively larger than a programmable unit (a page), copy-
ings of live data might be involved in the recycling of blocks.
A potentially large amount of live data might be copied to
available space before a to-be-recycled block is erased. On
the other hand, a block of a typical NAND flash memory
could be erased for 1 million (106) times. A worn-out block
could suffer from frequent write errors. “Wear-levelling” ac-
tivities is needed to erase blocks on flash memory evenly
so that a longer overall lifetime could be achieved. Obvi-
ously, garbage-collection and wear-levelling activities intro-
duce significant performance overheads to the management
of flash memory.

Due to the needs of out-place updating, garbage collec-
tion, and wear-levelling on flash memory, the physical loca-
tions of live data could be moved around over flash-memory
from time to time. A common technique in the industry
is to have a logical address space indexed by LBA (Logical
Block Address) through block device emulation [1, 10, 11] or
native flash-memory file systems with tuples of (file ID, off-
set, physical location) [7, 8]. The logical addresses of data
are recorded in the spare area of the corresponding pages
(under both approaches). To provide an efficient logical-to-
physical address translation, some index structures must be

1We focus on NAND flash memory because it is widely
adopted in storage systems.

adopted in main memory (RAM). On the other hand, the
management of available space (which includes free and dead
pages) on flash memory must be properly managed as well.
An space management mechanism is adopted to resolve this
issue. Such mechanism is important for garbage collection.

Most of the traditional approaches adopt static tables to
deal with address translation and space management. Be-
cause the granularity of the flash-memory management unit
is a fixed system parameter, the granularity size would be
an important factor on the trade off between the main-
memory overheads and the system performance. For ex-
ample, a 20GB flash-memory storage system would need
roughly 320MB to store the tables in main memory when
the granularity is 512B (1 page), and each table entry is of
4 bytes. A similar phenomenon was reported in [6], where
24MB of RAM was needed to manage a 1GB NOR flash
memory when the granularity size is 256B. One brute-force
solution in the minimization of main-memory usage is to en-
large the granularity size (e.g., 16KB per management unit,
i.e., a block, [10]). However, such a solution could introduce
a significant number of data copyings and result in bad per-
formance because any update of a small piece of data results
in the write of all data in the same management unit.

2.2 Observations
The purpose of this section is to illustrate the motivations

of this research based on the access patterns of realistic and
typical workloads:

The first observation is on a realistic workload over the
root disk of an IBM-X22 ThinkPad mobile PC, where a
20GB hard disk is accessed through NTFS. The activities
on the mobile PC consisted of a web surfing, emails send-
ing/receiving, movie playing and downloading, document
typesetting, and gaming. The disk traces were collected
under a typical workload of common people for one month.
The second workload was collected over a storage system
of multimedia appliances, and we created a process to spo-
radically write and delete files over a disk to emulate the
access patterns of multimedia appliances. The file size was
between 1MB and 1GB.

The characteristics of the traces collected from the root
disk are as follows: 30GB and 25GB data were read from
and written to the disk, respectively. The average read size
was 38 sectors, and the average write size was 35 sectors.
Among all of the writes, 62% of the sizes of writes were no
more than 8 sectors (that were called small writes), and 22%
of the sizes of writes were no less than 128 sectors (that
were called bulk writes). The amount of data written by
small writes and bulk writes contributed 10% and 77% of
the total amount of data written, where the logical block
address space (LBA space) touched by small writes and bulk
writes were 1% and 32% of the entire logical address space,
respectively. It was obvious that small writes had a strong
spatial locality. We also observed that bulk writes tended
to access the root disk sequentially. Regarding the workload
over a multimedia storage (i.e., the second workload), it was
observed that most of the writes were bulk and sequential.

These observations show the needs of a flash-memory man-
agement scheme with variable granularities, while traditional
approaches usually adopt a fixed-sized granularity with two
static tables for logical-to-physical address translation and
space management, as shown in Figure 1. A significant
tradeoff does exist between the usage of main memory and
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Figure 1: The table-driven method for flash-memory
management, in which one block consists of eight
pages.

the system performance. A small granularity for flash-memory
management could prevent the system from unnecessarily
copying of a lot of data, where a small granularity results in
huge static tables (also referred to as a main-memory foot-
print for the rest of this paper). A brute-force way to reduce
the main-memory footprint is to enlarge the management
granularity. The price paid for the benefit is on the inef-
ficiency and the overheads in the handling of small writes.
Such a tradeoff introduces serious challenges on the scala-
bility of flash-memory storage systems. We shall keep the
main-memory footprint as low as that with a coarse man-
agement granularity and, at the same time, maintain the
system performance similar to that with a fine management
granularity.

3. A MANAGEMENT SCHEME FOR LARGE-
SCALE FLASH-MEMORY STORAGE SYS-
TEMS

3.1 Space Management

3.1.1 Physical Clusters
This section focuses on the manipulation of memory-resident

information for the space management of flash memory.
A physical cluster (PC) is a set of contiguous pages on

flash memory. The corresponding data structure for each
PC is stored in the main memory. The status of a PC could
be a combination of (free/live) and (clean/dirty). A free
PC simply means that the PC is available for allocation,
and a live PC is occupied by valid data. A dirty PC is a
PC that might be involved in garbage collection for block
recycling, where a clean PC does not. In other words, An
LCPC, an FCPC, and an FDPC are a set of contiguous live
pages, free pages, and dead pages, respectively. Similar to
LCPC’s, an LDPC is a set of contiguous live pages, but it
could be involved in garbage collection.

Example 3.1.1. An LDPC Example:
Consider an LCPC that denotes 16 contiguous pages with

a starting LBA as 100, as shown in Figure 2. The starting
LBA and the size of the LCPC are recorded in the spare
area of the first page of the LCPC. Suppose that pages with
LBA’s ranged from 108 to 111 are invalidated because of
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Figure 2: An LCPC example with a partial invali-
dation.

data updates. We propose to split the LCPC into three
PC’s to reflect the fact that some data are invalid now: A,
B, and C. At this time point, data in B are invalid, and
the most recent version is written at another space on flash
memory. Instead of directly reflecting this situation on the
flash memory, we choose to the keep this information in the
main memory to reduce the maintenance overheads of PC’s,
due to the write-once characteristics of flash memory. B is
an FDPC, and A and C are LDPC’s because they could be
involved in garbage collection when the space of the original
LCPC is recycled. 2

The handling of PC’s is close to the manipulation of mem-
ory chunks in a buddy system, where each PC is consid-
ered as a leaf node of a buddy tree. PC’s in different lev-
els of a buddy tree correspond to PC’s with different sizes
(in a power of 2). A tree structure of PC’s is maintained
in the main memory. The initial tree structure is a hi-
erarchical structure of FCPC’s based on their LBA’s. In
the tree structure all internal nodes are initially marked
with CLEAN MARK. On the splitting of an FCPC and a
live PC (LCPC/LDPC) the internal nodes generated are
marked with CLEAN MARK and DIRTY MARK, respec-
tively. When a write request arrives, the system will lo-
cate an FCPC with a sufficiently large size. If the allocated
FCPC is larger than the requested size, then the FCPC will
be split until an FCPC with the requested size is acquired.
New data will be written to the resulted FCPC (i.e., the
one with the requested size), and the FCPC becomes an
LCPC. Because of the data updates, the old version of the
data should be invalidated. A similar procedure as shown
in Example 3.1.1 could be done to handle the invalidation.
When a new FDPC appears (due to invalidations), and the
sibling of the same parent node is also an FDPC, we should
replace the parent node with a new FDPC of its FDPC’s.
The merging could be propagated all the way to the root.

3.1.2 PC-Based Garbage Collection
The purpose of garbage collection is to recycle the space

occupied by dead (invalidated) data on flash memory. In this
section, we shall propose a garbage collection mechanism
based on the concept of PC.

Consider the results of a partial invalidation on an 128KB
LCPC (in the shadowed region) in Figure 3. Let the partial
invalidation generate internal nodes marked with DIRTY MARK.
Note that the statuses of pages covered by the subtree with
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Figure 3: A proper dirty subtree (in the shadowed
region) with two FDPC’s and one LDPC.

a DIRTY MARK root have not been updated on flash mem-
ory. A subtree is considered dirty if its root is marked with
DIRTY MARK. The subtree in the shadowed region in Fig-
ure 3 is a dirty subtree, and the flash-memory address space
covered by the dirty subtree is 128KB. The proper dirty sub-
tree of an FDPC is the largest dirty subtree that covers all
pages of the FDPC.

Definition 3.1.2. The Garbage Collection Problem
Suppose that there is a set of n available FDPC’s FD =

{fd1, fd2, fd3, ..., fdm}. Let Dtree = {dt1, dt2, dt3, ..., dtn}
be the set of the proper dirty subtrees of all FDPC’s in FD
(m ≥ n), fsize(dti) a function on the number of dead pages
of dti, and fcost(dti) a function on the cost in recycling dti.
Given two constants S and R, the problem is to find a subset
D′

tree ∈ Dtree such that the number of pages reclaimed in a
garbage collection is no less than S, and the cost is no more
than R.

Theorem 3.1.3. The Garbage Collection Problem is NP-
Complete.

Proof. The Garbage Collection Problem could be re-
duced from the Knapsack Problem. 2

A PC-based garbage collection mechanism is based on
CLEAN MARK and DIRTY MARK proposed in the previ-
ous paragraphs: When an FDPC is selected to recycle (by a
garbage collection policy), we propose to first find its proper
dirty subtree. All LDPC’s in the proper dirty subtree must
be copied to somewhere else before the space occupied by
the proper dirty subtree could be erased. After the copying
of the data in the LDPC’s, the LDPC’s will be invalidated
as FDPC’s, and the FDPC’s will be merged as one large
FDPC. Erase operations are then executed over the blocks
of the one large FDPC and turn it into a FCPC. We shall
use the following example to illustrate the activities involved
in garbage collection:

Example 3.1.4. An example on garbage collection:
Suppose that FDPC A is selected to recycle, as shown

in Figure 3. The proper dirty subtree of FDPC A is the
subtree with the internal node B as the root. All data in the
LDPC’s (i.e., LDPC C) of the dirty subtree must be copied
to somewhere else. After the data copying, every LDPC in
the subtree become a FDPC. All FDPC’s in the subtree will
be merged into a single FDPC (at the node corresponding

Page Attribute Cost Benefit
Hot (contained in LCPC/LDPC) 2 0
Cold (contained in LCPC/LDPC) 2 1

Dead (contained in FDPC) 0 1
Free (contained in FCPC) 2 0

Table 1: The cost and benefit for each type of page.

to B). The system then applies erase operations on blocks
of the FDPC. In this example, 96KB (=64KB+32KB) is
reclaimed on flash memory, and the overheads for garbage
collection is on the copying of 32KB live data (i.e., those for
LDPC C) and the erasing of 8 contiguous blocks (i.e., the
128KB covered by the proper dirty subtree). 2

Since the garbage collection problem is intractable even
for each garbage collection pass (as shown in Theorem 3.1.3),
an efficient on-line implementation is more useful than the
optimality consideration. We propose to extend the value-
driven heuristic proposed by Chang and Kuo in [5] to man-
age garbage collection over PC’s. Since the management
unit under the proposed management scheme is one PC,
the “weight” of one PC could now be defined as the sum of
the “cost” and the “benefit” to recycle all of the pages of the
PC. The functions cost() and benefit() are integer functions
to calculate the cost and the benefit in the recycling of one
page, respectively. The return values for the cost() and ben-
efit() functions for different types of pages are summarized
in Table 1. Based on the returned values, the weight in the
recycling of a dirty subtree could be calculated by summing
the weights of all PC’s contained in the dirty subtree: Given
a dirty subtree dt and a collection of PC’s {pc1, pc2, ..., pcn}
in dt. Let pi,j be the j − th page in PC pci. The weight of
dt could be calculated by the following formula:

weight(dt) =

nX
i=1

(
X

∀pi,j∈pci

benefit(pi,j)− cost(pi,j)). (1)

For example, let LDPC C in Figure 3 contain hot (and
live) data. The weight of the proper dirty subtree of LDPC
C (i.e., the dirty subtree rooted by node B) could be derived
as (0 − 2 ∗ 64) + (64 − 0) + (128 − 0) = 64. The garbage
collection policy would select the candidate which has the
largest weight for garbage collection.

3.1.3 Allocation Strategies
There are three cases for space allocation when a new

request arrives: The priority for allocation is on Case 1 and
then Case 2. Case 3 will be the last choice.

Case 1: There exists an FCPC that can accommodate
the request.

The searching of such an FCPC could be done by a best-
fit algorithm. That is to find an FCPC with a size closest to
the requested size. Note that an FCPC consists of 2i pages,
where 0 ≤ i. If the selected FCPC is much larger than the
request size, then the FCFC could be split according to the
mechanism presented in Section 3.1.1.

Case 2: There exists an FDPC that can accommodate
the request.

The searching of a proper FDPC is based on the weight
function value of PC’s (Please see Equation 1 in Section
3.1.2). We shall choose the FDPC with the largest func-
tion value, where any tie-breaking could be done arbitrarily.



Garbage collection needs to be done according to the algo-
rithm in Section 3.1.2.

Case 3: Otherwise (That is no single type of PC’s that
could accommodate the request.).

To handle such a situation, we propose to “merge” avail-
able PC’s (FCPC’s and FDPC’sare all referred to as avail-
able PC’s for the rest of this section) repeatedly until an
FCPC that can accommodate the request size appears. We
shall use the following example to illustrate how available
PC’s are merged:
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Figure 4: An example on the merging of an FCPC
with an FDPC

Example 3.1.5. The merging of available PC’s
Figure 4 shows how to merge C (i.e., an FCPC) and E

(i.e., an FDPC). First, data in the pages of the buddy of E,
i.e., D, are copied to the pages of C, where C and D are an
LCPC and an LDPC, respectively. After the data copying
from the pages of D to the pages of C, D is invalidated
entirely and becomes an FDPC. D (which was an LDPC)
is merged with E, i.e., an FDPC, and the merging creates
an FDPC, i.e., F , as shown in the right-hand-side of Figure
4.2

Note that once a sufficiently large FDPC is obtained, it
is then recycled to be an FCPC. The space allocation algo-
rithm always assigns 2i pages to a request, where i is the
smallest integer such that the request size is no larger than
2i pages. Every PC consists of 2i pages for some i ≥. We
shall show that the above allocation algorithm always suc-
ceeds if the total size of existing FCPC’s and FDPC’s is
larger than the request size. Note that the correctness of
this algorithm is proven with requests of 2i pages.

Theorem 3.1.6. Let the total size of available PC’s be
M pages. Given a request of N pages (M ≥ N), the space
allocation algorithm always succeeds.

Proof. If there exists any available PC that can accom-
modate the request, then the algorithm simply chooses one
proper PC (an FCPC or an FDPC) and returns (and proba-
bly do some splitting as described in Section 3.1.1), as shown
in Case 1 and Case 2 mentioned above. Otherwise, all avail-
able PC’s can not accommodate the request. The available
PC’s are all smaller than the requested size N , as shown in
Case 3. To handle the request, the merging of available PC’s
will be proceeded to produce an FCPC to accommodate the
request. To prove that the procedure illustrated in Case 3
could correctly produce an FCPC to accommodate the re-
quest, we first assume that the procedure in Case 3 can not
correctly produce an FCPC to accommodate the request: It
is proved by a contradiction.
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Figure 5: An example layout of the hash table for
logical-to-physical address translation.

Let N = 2k for some non-negative integer k. If Case 3 is
true, the sizes of all available PC’s are smaller than N , and
the sizes of available PC’s could only be one of the collection
T = {20, 21, ......, 2k−1}. Consider a merging process. If
there do not exist any two available PC’s of the same size,
then there should be no duplication of any available PC size
in T . In other words, the total size of the available PC’s
is a summation of 20, 21, · · · , 2k−1 and is less than N =
2k. It contradicts with the assumption that the total page
number of available PC’s M is no less than N . There must
exist at least two available PC’s of the same size. The same
argument could be applied to any of the merging process
such that we can always find and merge two available PC’s
of the same size until an FCPC of a proper size is created to
accommodate the request. We conclude that the procedure
illustrated in Case 3 will produce an FCPC to accommodate
the request, and the allocation algorithm is correct. 2.

3.2 Logical-to-Physical Address Translation
In this section, we shall propose a hash-based approach to

handle logical-to-physical address translation.
As pointed out in the previous sections, the physical loca-

tions of live data might change from time to time, due to the
out-place updates on flash memory. Traditional approaches
usually maintain a static array to resolve the correspond-
ing physical addresses by given some logical addresses, as
shown in Figure 1. The static array is indexed by logical
addresses, and the element in each array entry is the corre-
sponding physical address.

The space management unit for our approach is a physical
cluster (PC), instead of one page. We propose to adopt a
main-memory-resident hash table, where each hash entry is
a chain of tuples for collision resolution. Each tuple (start-
ing logical address, starting physical address, the number of
pages) represents a logical chunk (LC) of pages in consecu-
tive locations, and the number of pages in an LC does not
need to be a power of 2.

The logical address space of flash memory is first exclu-
sively partitioned into equal-sized regions referred as logical
regions (LR’s) for the rest of this paper. Suppose that the
total logical address space is from page number 0 to page
number 2n − 1, and each LR is of 2m pages. We propose a
dynamic-hashing-based method. Initially we have a direc-
tory which is a static array with 2n−m entries, where one



entry points to one bucket. Each LC is an LR in the begin-
ning, and all LC’s are hashed into the hash table, as shown
in Figure 5(a). The hash function is defined as the first
(n − m) bits of a given logical address. When a bucket is
overflowed, it is split into two buckets, and all of the LC’s in
the old bucket are distributed among the two bucket based
on their corresponding logical addresses, as shown in Figure
5(b). Note that the LC’s in the hash table could also be split
and merged to reflect the new logical addresses of a piece of
data when invalidations and/or garbage collection occur.

4. PERFORMANCE EVALUATION
We conducted a series of simulations to evaluate the ca-

pability of the proposed flash-memory management scheme,
especially on the speedup of system start-up, the reducing
of main-memory usage, and the performance improvement
on on-line access.

4.1 Experimental Setup and Performance Met-
rics

The proposed scheme was evaluated under different work-
loads in terms of several performance metrics. The charac-
teristics of the workloads were described in Section 2. The
workload were to reflect the access patterns exhibited by a
root disk of a mobile PC (referred to as an ordinary user
access pattern) and a storage system of a multimedia appli-
ance (referred to as a multimedia data access pattern). We
simulated the proposed flash-memory management scheme
and compared the performance of the proposed scheme and
a traditional scheme based on a fixed granularity size, re-
ferred to as a fixed-granularity scheme for the rest of this
section.

The simulated flash-memory storage system consisted of
a 20GB logical address space. The physical capacity of the
flash memory under experiments was 20GB + 128MB. The
block size and the page size of the NAND flash-memory were
16KB and 512B, respectively. There were 18GB live data
resided on flash memory before each run of the experiments
began. In other words, garbage collection would be activated
after approximately 2GB data were written.

The fixed-granularity scheme was implemented as follows:
There were two static tables resided in the main memory:
one for logical-to-physical address translation and the other
for space management. Each entry of the tables occupied 4
bytes of main memory. The granularity size for management
in the experiments varied from 512B (1 page) to 32,768B (1
block).

There were two major performance metrics adopted: The
first was the size of the required main-memory footprint,
that reflected the memory overheads of the adopted ap-
proach. For the proposed scheme, since PC’s and LC’s
were dynamically allocated and freed, the size of the main-
memory footprint would denote the peak size observed in
each experiment. The second performance metric was the
total amount of data written in each experiment. The per-
formance metric was to show the performance deteriorations
caused by a large granularity size for management. Fur-
thermore, extra overheads introduced by garbage collection
activities were also accounted.

4.2 Experimental Results

4.2.1 Memory Usages v.s. Number of Pages Written
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Figure 6: The fixed-granularity scheme under the
ordinary user access patterns with different granu-
larity sizes.

The fixed-granularity scheme was evaluated under the or-
dinary user access patterns. The tradeoff between the mem-
ory usage and the system performance was shown in Figure
6: The total number of pages written (i.e., 55,231,743 pages
= 26.3 GB) under the fixed-granularity scheme was very
close to the number of pages actually written by the clients
of the flash-memory storage system (i.e., 54,131,785 pages =
25.8 GB) under a 512B granularity (1 page). The number of
extra writes came from garbage collection activities. How-
ever, the main-memory footprint was about 321MB with
a 512B granularity size. It could be unaffordable for many
systems. The main-memory overheads could be significantly
reduced by enlarging the granularity to 32,768B (1 block).
The size of the main-memory footprint became 10MB. Due
to the tradeoff between main-memory overheads and sys-
tem performance, the total number of pages written (i.e.,
102,619,584 pages = 48.9 GB) under the fixed-granularity
scheme was more than twice of the total number of pages
actually written by the clients (i.e., 54,131,785 pages = 25.8
GB). The significant number of extra page writes were intro-
duced by the copyings of live data, due to a large granularity
of management.

The proposed scheme was also evaluated in terms of the
same performance metrics under the ordinary user access
patterns. Note that the size of management granularity
is no longer a parameter for the proposed scheme. Com-
pared with the results shown in Figure 6, the proposed
scheme greatly outperformed the fixed-granularity scheme
in many aspects: The peak size of the main-memory foot-
print was only 22.6MB, while the footprint size of the fixed-
granularity scheme varied from 10MB to 320MB. The to-
tal number of pages written by the proposed scheme was
54,897,244 pages (=26.18 GB), which was very close to
the total number of pages actually written by the clients.

Scheme Footprint Size Pages Written
F-scheme, (1 page) 321MB 41,943,168
F-scheme, (1 block) 10MB 52,106,912

The proposed scheme 3.18MB 41,943,168

Table 2: Results of evaluated schemes under the
multimedia data access patterns.

The fixed-granularity scheme and the proposed scheme



were evaluated again with the multimedia data access pat-
terns. In this part of experiments, the total number of pages
actually written by the clients of the storage system was
41,943,168 pages. As shown in Table 2 (note that the F-
scheme denotes the fixed-granularity scheme, with a gran-
ularity size provided.). The proposed scheme could still re-
duce both the memory usage and the number of pages writ-
ten in the experiments, and was proven to be significantly
better than the fixed-granularity scheme.

4.2.2 System Startup Time
Table 3 shows the system startup time needed to scan

and initialize an 20GB flash-memory, where the data on the
flash-memory were produced by the corresponding experi-
ments for the ordinary user access pattern in 4.2.1. It was
clearly showed that the granularity size was the dominated
factor for the startup time for the fixed-granularity scheme.
It was because only the spare area of the first page of every
management unit was needed to scan during the system ini-
tialization. For the proposed scheme, only the spare area of
the first page of every PC was needed to scan during the sys-
tem initialization. As shown in Table 3, the system startup
time for the proposed scheme was significantly shorter than
the fixed-granularity scheme.

Scheme # of spare area read
F-scheme, 512B (1 Page) 42,205,184

F-scheme, 1024B (2 Pages) 21,102,592
F-scheme, 2048B (4 Pages) 10,551,296
F-scheme, 4096B (8 Pages) 5,275,648
F-scheme, 8192B (16 Pages) 2,637,824
F-scheme, 16384B (1 Block) 1,318,912

The Proposed Scheme 516,558

Table 3: The system startup time needed to initial-
ize a 20GB flash memory under different schemes.

5. CONCLUSION
With a strong demand of high-capacity storage devices,

the usages of flash-memory quickly grow beyond their origi-
nal designs. With the rapid growing of the flash-memory ca-
pacity, severe challenges on the flash-memory management
issues might be faced, especially when performance degra-
dation on system start-up and on-line operations would be-
come a serious problem. Little advantage could be received
with brute-force solutions, such as the enlarging of manage-
ment granularity for flash memory.

This paper proposes a flexible management scheme for
large-scale flash-memory storage systems. The objective
is to efficiently manage high-capacity flash-memory stor-
age systems based on the behaviors of realistic access pat-
terns. We first propose a tree-based management scheme
with variable allocation granularities. The resulted garbage
collection problem is first proven being NP-Complete, and
an efficient heuristic is then proposed. A space allocation
algorithm is proposed and proven being correct. As an
integrated solution, an efficient logical-to-physical address
translation method is proposed for variable allocation gran-
ularities. By conducting a series of experiments, the pro-
posed scheme shows significant improvements over the sys-
tem startup time, the memory usages, and the performance
on on-line access.
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