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ABSTRACT Recently, a new strong optimization algorithm called marine predators algorithm (MPA) has

been proposed for tackling the single-objective optimization problems and could dramatically fulfill good

outcomes in comparison to the other compared algorithms. Those dramatic outcomes, in addition to our

recently-proposed strategies for helping meta-heuristic algorithms in fulfilling better outcomes for the multi-

objective optimization problems, motivate us to make a comprehensive study to see the performance of

MPA alone and with those strategies for those optimization problems. Specifically, This paper proposes four

variants of the marine predators’ algorithm (MPA) for solving multi-objective optimization problems. The

first version, called the multi-objective marine predators’ algorithm (MMPA) is based on the behavior of

marine predators in finding their prey. In the second version, a novel strategy called dominance strategy-

based exploration-exploitation (DSEE) recently-proposed is effectively incorporated with MMPA to relate

the exploration and exploitation phase of MPA to the dominance of the solutions—this version is called

M-MMPA. DSEE counts the number of dominated solutions for each solution—the solutions with high

dominance undergo an exploitation phase; the others with small dominance undergo the exploration phase.

The third version integrates M-MMPA with a novel strategy called Gaussian-based mutation, which uses

the Gaussian distribution-based exploration and exploitation strategy to search for the optimal solution. The

fourth version uses the Nelder-Mead simplex method with M-MMPA (M-MMPA-NMM) at the start of the

optimization process to construct a front of the non-dominated solutions that will help M-MMPA to find

more good solutions. The effectiveness of the four versions is validated on a large set of theoretical and

practical problems. For all the cases, the proposed algorithm and its variants are shown to be superior to a

number of well-known multi-objective optimization algorithms.

INDEX TERMS Multi-objective optimization problem, dominance strategy-based exploration-exploitation,

Gaussian-based mutation, Nelder-Mead simplex, marine predators algorithm.

I. INTRODUCTION

Recently, multi-objective optimization problems (MOP) have

gained significant attention from researchers looking to assist

decision-makers (DM) to make better choices than now.

Unlike single objective problems (SOP), MOP does not have

The associate editor coordinating the review of this manuscript and

approving it for publication was Ioannis Schizas .

a single solution but have a set of solutions representing

the best trade-offs among the multiple objectives, which are

often in conflict. However, the presence of multiple optimal

solutions might help the DMs finding the more relevant solu-

tion to their problem [1], [2]. The set of optimal solutions

called the non-dominated solutions are the solutions that may

degrade an objective if any one of the others can be improved.

Many real-world problems are multi-objective such as task
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scheduling [3], water distribution networks (WDNs) [4],

wind speed forecasting [5], protein structure [6], and the

traveling salesman problem [7].

In MOP, the focus is to find a set of solutions to a problem

for which there are multiple objectives that must be maxi-

mized/minimized. The mathematical model of the MOP is as

follows:

Max/Min f (x) = {f1 (x) , f2 (x) , f3 (x) , f4 (x) , . . . ,

fm (x)} ,m ≥ 2

subject to nqi (x) ≥ 0, i = 1, 2, . . . , z

qi (x) = 0, i = 1, 2, . . . , k

Li ≤ xi ≤ Ui, i = 1, 2, . . . , p (1)

where m is the number of objectives. nqi determines the

ith inequality constraint, z determines the number of inequal-

ity constraints , qi represents the ith equality constraint,

k determines the number of equality constraints, p is the

number of variables, and Li and Ui are the lower and upper

bounds for the ith variable (xi).

Priori and posteriori [2], [8] approaches have been pro-

posed for solving MOP. In a priori approach, the MOP is

converted into a SOP using a weights vector that speci-

fies the significance of each objective, and then the SOP

is solved for an optimal solution. Such approaches are not

normally practicable due to the need to have theDMprovide a

weight for each objective. As a result, the posteriori approach

extracts the set of non-dominated solutions (or at least a

well-distributed set of solutions) from which the DM can

select an appropriate solution. Although the DM has a range

of optimal solutions available, they may find difficulty in

extracting an appropriate solution when there is a number to

choose among. Due to their success in solving many real-

world problems, meta-heuristics [9]–[12] and evolutionary

algorithms [13]–[16] have been applied to MOP in many

works briefly reviewed in the following paragraphs, begin-

ning with evolutionary algorithms (EA).

Zapotecas-Martínez [17] suggested a Lebesgue indicator-

based evolutionary algorithm (LIBEA) to maximize the

Hybervolume of the non-dominated solutions extracted dur-

ing the optimization process to reduce the high computational

time with an increasing number of objectives result of using

Hybervolume with EA as an indicator of solutions towards

the true Pareto optimal solutions. LIBEA solved the contin-

uous MOPs with complicated properties using the regularity

property of those MOPs.

Liu and Wang [18] also proposed EA as the first attempt

to solve constrained MOP simultaneously taking into con-

sideration the constraints of both objective and decision

spaces. Chen et al. [19] integrated EA with two meth-

ods: reference vector adaptation for tackling the problem of

the different shapes of Pareto front, and diversity ranking

to manage diversity. Based on the decomposition strategy,

Zhang [20] proposed the EA which breaks the problems

into various sub-problems, and then each is solved based

on the information from the neighboring sub-problems.

Additionally, Tian, Y. et al. [21] used an improved inverted

generational distance indicator to address the different shapes

of Pareto fronts using a multi-objective EA.

Seifollahi-Aghmiuni and Haddad [22] introduced a com-

prehensive EA to optimize SOPs and MOP by applying a

unique structure. Although the set of the parameters involved

didn’t need more sensitivity analysis, the approach consumes

considerable time. Pedroso et al. [23] introduced a paral-

lel EA using differential and genetic evolution operators.

To reduce the high computational time result of using the

hypervolume as a performance measure to guide the search

during the optimization process, Gómez et al. [24] provided

a parallel EA based on an asynchronous separated approach

with micro-populations. However, the performance of this

algorithm (parallel EA) was only investigated on the walking-

fishing group (WFG) test suite, in relative to the other

benchmarks such as CEC [25], [26], and GLT [27] its perfor-

mance is not known. The Pareto archived evolution strategy

(PAES) [28] has been proposed as a local search method,

to maintain an archive of the obtained non-dominated solu-

tions so far, for identifying the dominance between the current

solutions and the archiving solution.

Yen and Lu [29] proposed an EA approach based on the

dynamic population size for solving MOPs. This algorithm

was not able to achieve all the challenging characteristics of

the test functions used to check their performance. Further-

more, differential evolution (DE) [30] has been developed for

solvingmulti-modalMOPs. Further, it needs an improvement

to increase the coverage of the solutions on the objective

space.

In terms of meta-heuristic algorithms, a parallel particle

swarm optimization (PSO) [31] was incorporated with a

cooperative co-evolutionary approach and a strategy to con-

trol the velocity of the particles to get rid of erratic move-

ments. Mokarram and Banan [32] also used PSO to overcome

MOPs based on the selection of the leader to guide the parti-

cles in the search space to increase the diversity and conver-

gence towards the optimal solution. Moreover, as an attempt

to guide the other particles within their flight, PSO [33]

was integrated with an alternative repository of particles.

Mousa et al. [1] have been proposed PSO for solving MOPs

based on two features: (1) initializing the particles randomly

to fly through the search space, (2) using a local search

method with PSO to search through the less-crowded area

for more non-dominated solutions. Furthermore, the niching

PSO [34] has been combined with a local search method to

enhance the local search ability when solving themulti-model

MOPs. Zhang et al. [35] used ring topology and an updating

strategy for the leader with a novel cluster-based approach

with PSO to solve the multimodal MOPs.

The crow search algorithm (CSA) [36] has been developed

for tackling MOPs., Nobahari and Bighashdel [37] proposed

a multi-objective CSA that used an objective function based

on the weight vectors, in addition to suggesting a chasing

strategy for faster convergence toward the optimal solutions.

In [38], The CSA and the sine cosine algorithm (SCA)
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cooperated to tradeoff between the exploration and the

exploitation operators. Furthermore, to preserve the diversity

among the solutions, the SCA [39] integrated by the crowding

distance approach has been suggested for tackling multi-

model MOP.

The performance of the salp swarm algorithm (SSA) [40]

was enhanced with DE for multi-objective big-data optimiza-

tion. In the same context, SSA [41] was integrated with PAES

to solve MOPs. In [42], a new multi-objective optimization

algorithm called evolutionary multi-objective seagull opti-

mization algorithm (EMoSOA) has been recently proposed.

This algorithm used a grid mechanism, leader selection,

dynamic archive concept, and genetic operators to cache

the non-dominated solutions, in addition to employing the

roulette wheel method to select a solution from the archived

ones. EMoSOA was extensively compared with a number of

the optimization algorithms on 24 benchmark functions to

observe its effectiveness.

Jiang, S. and Z. Chen [43] proposed a two-phase evolu-

tionary algorithm framework for tackling the multi-objective

optimization problems; in the first stage, it adopted a spe-

cific set of the multi-objective evolutionary algorithms with

a small population size to accelerate the convergence speed

toward the true Pareto optimal solutions; in the second one,

a selectionmechanism based onmeasure function and crowd-

edness function has been employed to improve the popula-

tion’s uniformity in the objective space. The performance of

this framework was observed on problems with conflicting

objectives up to 10; this observation showed its effective-

ness in comparison to several multi-objective evolutionary

algorithms.

Tian, Y., et al. [44] proposed an evolutionary algorithm

for tackling the large-scale multimodal multiobjective opti-

mization problems with spare Pareto optimal solutions. This

algorithm used multiple subpopulations to explore the deci-

sion space as possible, in addition to using a guiding vector

to guide the search behavior of the subpopulations. In [45],

a novel multiobjective evolutionary algorithm was proposed

with incorporating the concept of sum of objectives in the

adaptive mating and environment selection mechanisms to

preserve the diversity among the individuals in addition to

fast move for converging to the true Pareto. This algorithm

was validated on 26 test functions, and compared with some

state-of-the-art methods to see its effectiveness.

Wang [46] proposed a multiobjective evolutionary algo-

rithm integrated with a uniformly evolving scheme to pro-

duce non-dominated solutions uniformly distributed on the

true Pareto optimal curve to give the decision-makers the

flexibility in selecting the satisfactory solutions. Many other

multi-objective algorithms are designed for dealing with

MOPs such as flowers pollination algorithm [47], sym-

biotic organism search [48], bat algorithm [49], ant lion

optimizer [50], whale algorithm [51], artificial sheep algo-

rithm [52], immune algorithm [53], moth flame algorithm

[54], [55], grey wolf optimizer [56], grasshopper algo-

rithm [57], [58], multi-objective equilibrium optimizer [59],

multi-objective whale optimization algorithm [60], and

several else [61]–[66].

Recently, a new meta-heuristic optimization algorithm

called the marine predators algorithm (MPA) has been pro-

posed for solving continuous optimization problems [67].

MPA simulates the behavior of predators in attacking their

prey and uses Brownian and Lévy steps as themeans of preda-

tors searching for their prey, in which the velocity ratio from

the prey to the predators is used to tradeoff between those

two strategies. Besides, due to surrounding environmental

issues, the predators spend 80% of their time searching for

their prey in the vicinity, while the remaining time is spent

in other environments. This process is called fish aggregating

devices (FADs) and gives the algorithm a powerful ability to

avoid being trapped in local optima. Despite its demonstrated

advantages and significant successes for several optimization

problems [68], [69], MPA has not been applied to the solu-

tion of MOPs–consequently, this paper proposes the multi-

objective version of MPA.

In this paper, four new models have been proposed for

helping the DMs by taking the right decision when solv-

ing a MOP. Before giving a short outline of each proposed

model, our methodology is first illustrated. Our methodol-

ogy is based on proposing new strategies to assist all meta-

heuristic algorithms and especially the MPA when solving

the MOPs. The first strategy is the dominance strategy based

exploration-exploitation (DSEE), in which the dominated

solutions by each solution are counted and the solution with

a high dominated count will be exploited and the others will

undergo the exploration operator. This strategy tries to help

any meta-heuristic algorithm when solving MOPs by relating

the exploration and exploitation phases of the algorithm with

the dominance strategy instead of the iterations.

Besides the Gaussian-based mutation (GM) strategy, based

on exploration and exploitation, is proposed to help the opti-

mization algorithm to reach more good solutions. GM tries

to mutate the current solution with a probability to swap

between moving towards the upper bound or the lower bound

with a small step size (exploitation) or a large step size as

an attempt to find more solutions in the vicinity based on

the Gaussian distribution. Because most of the meta-heuristic

algorithms are based on moving toward the best solutions

(non-dominated solutions) found so-far, the Nelder-Mead

method (NMM) has been suggested as the third strategy.

Executing this strategy at the start of the optimization pro-

cess will build up a front of the non-dominated solutions

that will help all meta-heuristic algorithms in reaching better

solutions.

In this work, the first proposed model is called the multi-

objective marine predators’ algorithm (MMPA)—this model

adapts the standard MPA for addressing MOPs. To improve

the performance of the MMPA, the search methodology is

modified using DSEE to relate its exploration and exploita-

tion phases with the dominance strategy. This model is called

the multi-objective modified marine predators algorithm

(M-MMPA). The thirdmodel, abbreviated asM-MMPA-GM,
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integrates the M-MMPA with the GM to assist in reaching

the optimal solution. In the fourth model, abbreviated as

M-MMPA-NMM, the NMM is applied to a number of the

non-dominated solutions selected randomly at the start of the

optimization process to construct a front of the solutions that

will help M-MMPA in reaching better solutions within less

time possible.

The main contributions of this paper are summarized as

follows:

1) Proposing three versions of MPA, in addition to the

standard version for solving MOP.

2) Adapting two recently-published strategies namely

dominance strategy-based exploration-exploitation,

and Gaussian-based strategy with MPA to improve its

performance on MOP.

3) Integrating the MPA with the Nelder-Mead simplex

method to promote its searching ability for reaching

more non-dominated solutions.

4) The results indicate that our proposed algorithms per-

form better or on par with NSGA-II, NSGA-III, CGD,

GDE3, and SMPSO algorithms.

This paper is organized as follows. Section 2 briefly describes

MPA. Section 3 describes the proposed algorithms for tack-

ling MOPs. Section 4 illustrates the experimental settings.

Section 5 provides the discussion and the experimental results

comparing the proposed algorithms using the CEC 2020,

CEC 2009, and GLT test functions. Section 6 provides some

conclusions regarding the proposed approach and future

work.

II. MARINE PREDATORS ALGORITHM (MPA)

Recently, Faramarzi et al. [70] proposed MPA to mimic the

behavior of marine predators in search of their prey, in which

the predators use the velocity ratio between the predators and

prey for the tradeoff between Brownian, and Lévy strategies,

which are considered the optimal strategies for the predator

to find their prey. The mathematical model of MPA is formu-

lated as:

At the initialization step, a number of the prey is distributed

within the search space of the optimization problem using the

following equation:

EX = EXmin + Er ∗ (EXmax − EXmin) (2)

where Er is a vector generated randomly within 0 and 1,

and EXmin, EXmax are vectors containing the maximum

and the minimum of the boundaries of the optimization

problems.

Each distributed solution is then evaluated using the objec-

tive function and the highest solution having the highest

objective value is used as the top predator within the opti-

mization process. Based on the survival of the fitness the-

orem, the top predator is used to build up a matrix known

as Elite, and abbreviated as E. This elite matrix is shown

as follows:

E =













AI1,1 AI1,2 . . . AI1,d
AI2,1 AI2,2 . . . AI2,d

· · · ·
· · · ·

AIN ,1 A
I
N ,2 . . . AIN ,d













where EAI represents the top predator vector and is repeated

N times to construct E ., n is the number of individuals within

the population, and d is the number of dimensions.

The predators will be updated towards another matrix

called as prey, and abbreviated as py, this matrix is formulated

as follows:

py =













A1,1 A1,2 . . . A1,d
A2,1 A2,2 . . . A2,d

· · · ·
· · · ·

AN ,1 AN ,2 . . . AN ,d













In the main loops of the MPA, the optimization process

will be divided into three stages based on the velocity-ratio,

illustrated previously, and is modeled as follows:

A. HIGH-VELOCITY RATIO

In this phase, the predators will wait to watch the motion of

the prey that moves quickly to search for its food. Generally,

this phase is called the exploration phase, where the prey

starts to discover the search space using the Brownian strategy

for finding the promising regions that may include the opti-

mal solution. Accordingly, the location of the current prey

is updated within the first third of the maximum iterations

according to the following:

if t <
1

3
tmax

ESi = ERB ⊗
(

EEi − ERB E⊗Pyi

)

(3)

Epyi = Epyi + P.ER⊗ ESi (4)

where ERB is a numerical vector created randomly based on

the normal distribution, ⊗ represents the entry-wise multi-

plication, P is a fixed numeral (0.5 is recommended), ER is a

numerical vector generated uniformly, . indicates the multi-

plication operator, t is the current iteration, and tmax is the

maximum number of iterations.

B. UNIT VELOCITY RATIO

After exploring the search space within the first third of the

maximum iteration, the promising regions that may include

the optimal solution are so-near; therefore, this phase is

considered as the transition stage between the exploration

and the exploitation. Generally, in this phase, the exploration

phase will be gradually converted into the exploitation phase,

so this is an intermediate phase between the exploration and

exploitation operators. Specifically, in this phase, the preda-

tors are responsible for the exploration, while the prey
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for exploitation. For representing this phase using a mathe-

matical model, half of the population would be moved using

the exploration operator (Brownian motion), and the other

half will be moved using exploitation operator (Levy flight),

as illustrated in the following equations:

if
1

3
tmax < t <

2

3
tmax

- For the first half of the population

ESi = ERL ⊗
(

EEi − ERL E⊗Pyi

)

(5)

Epyi = Epyi + P.ER⊗ ESi (6)

- For the second half of the population

ESi = ERB ⊗
(

ERB ⊗ EEi − EPyi

)

(7)

Epyi = Epyi + P.CF ⊗ ESi (8)

where CF is an adaptive parameter used to monitor the step

size and is formulated as follows:

CF = (1 −
t

tmax
)

(

2 t
tmax

)

(9)

C. LOW-VELOCITY RATIO

In the last stage, the prey location is already detected and

the predators hurry to catch them. This phase is executed in

the last third of the maximum iteration, where the predators

follow the levy step to update its position using the following

equation:

if t >
2

3
tmax

ESi = ERL ⊗
(

ERL ⊗ EEi − EPyi

)

(10)

Epyi = Epyi + P.CF ⊗ ESi (11)

Another advantage ofMPA is that it mimics predators’ behav-

iors to increase the probability of escaping from local optima.

This advantage is that the surrounding environment effects

such as eddy formulation and fish aggregating devices (FADs)

would affect the behavior of the predators. As a result, 20%

of the time, the predators would jump into other regions with

abundant prey, while the remainder of the time, they search

for their prey in the local vicinity. FADs can be formulated as

follows:

Epyi =



















Epyi + CF[Xmin + ER⊗ (EXmax − EXmin)] ⊗ EU

if r < FADS

Epyi + [FADS (1 − r) + r]
(

Epyr1 − Epyr2
)

if r ≥ FADS

(12)

where r is a random number in the range of [0,1]. FADs = 0.2

refers to the impact of the FADs on the optimization process.
EU is a binary vector containing 0 and 1 values, which are

assigned based on creating a random number vector equal to

the size of EU and assigning it with random numbers between

0 and 1. The values inside this vector that are smaller than

the FADs’ value is assigned a value of 1 in EU , otherwise,

they are assigned 0. r1, and r2 are numerical values randomly

generated within the range of the population size.

MPA accomplishes memory saving by saving the old posi-

tion of the prey. After updating the current solutions, the fit-

ness values of each current solution and each old solution are

compared, and if the fitness of the old one is better than the

current one, they are swapped. The steps of MPA are listed

in Algorithm 1.

Algorithm 1 The Marine Predator Algorithm (MPA)

1. Initialize py,P = 0.5

2. while (t < tmax)

3. Calculate the fitness value for each pyi|i = 0, 1, 2, 3,

. . . . . . ,N

4. if (t == 0)

5. Construct E matrix

6. Else

7. Update E , if there is better

8. end if

9. Assign CF using Eq. (9)

10. for each i py

11. Update the current pyi using one of the

following equations Eq. (4), (5 or 7), and (11)

12. end for

13. Calculate the fitness value of py

14. Update E , if there is better

15. Accomplish the memory saving

16. implement the FADS using Eq. (12)

17. t + +
18. end while

III. MULTI-OBJECTIVE MARINE PREDATORS

ALGORITHMS VERSIONS

This section proposes four multi-objective variants of MPA.

Our proposed versions will use an external archive to handle

the non-dominated solutions found within the optimization

process. In addition, the crowded distance strategy has been

used to preserve the diversity among the non-dominated

solutions.

A. INITIALIZATION

In this phase, a N prey is generated, and each prey has n

variables at the expense of the size of MOP. Those variables

are initialized using the following formula:

∀i ∈ N, pyi,j = XL j + r ∗ (XU j − XU j) (13)

where XU j, and XL j are the upper and lower bound of vari-

able j, pyi,j refers to the jth variable of the ith prey and r is a

random number in the range [0, 1]. Finally, the steps of the

multi-objective version for the standardMPAwith the archive

is illustrated in Algorithm 2. This standard version is called

multi-objective marine predators algorithm (MMPA).

VOLUME 9, 2021 42821



M. Abdel-Basset et al.: Efficient MPA for Solving MOP: Analysis and Validations

Algorithm 2 The Multi-Objective Marine Predator

Algorithm (MMPA)

1. Initialize py, P = 0.5

2. Create an archive, namely archive, containing

the non-dominated solutions within the

optimization process

3. while (t < tmax)

4. Calculate the fitness value of py

5. Update archive

6. Initialize E matrix from archive randomly

7. Assign CF using Eq. (9)

8. for each i prey

9. Based on the current iteration, Update the current

pyi using one of the following equations Eq. 3, (5 or 7),

and 10

10. end for

11. Calculate the fitness value of py

12. Update archive

13. Accomplish the memory saving

14. implement the FADS using Eq. (12)

15. t + +
16. end while

B. DOMINANCE STRATEGY BASED EXPLORATION

AND EXPLOITATION (DSEE)

Before demonstrating the modifications on MPA for solv-

ing MOP, this section briefly describes how meta-heuristics

algorithms search for the optimal solution. Meta-heuristic

algorithms first explore the search space to identify the most

promising region. The exploration then gradually reduces

until it is converted into the exploitation phase, which focuses

on the optimal solution found so far. If the optimal solu-

tion found so far is a local optima solution, the algorithm

will focus on that solution and not be able to escape to

reach a global optimum due to fading away from the diver-

sity of the solutions that ensure exploring more regions to

reach better solutions. So, a new methodology is proposed

in [71] to avoid being trapped in local optima when solv-

ing MOP and this methodology is consist of the following

steps:

1) Calculate the number of solutions dominated by each

solution [72].

2) The solution with the highest number of dominated

solutions will be used for the exploitation phase, due to

its probability of being near to the true Pareto optimal

solution.

3) The solution with the smallest number of (or no)

dominated solutions will have an exploration phase to

explore another region seeking a better solution.

After calculating the dominated solutions count for each

solution in the population using Algorithm 3 and storing it

into ER, the new implementation of MPA is as follows:

Eq. (4) is implemented if Ri of the ith prey is smaller

than LC (predefined by users), so Eq. (4) is reformulated

Algorithm 3 Ranking Solution Based on Dominated

Solutions [72]

1. R : a vector of size N initializing with 0’s value

2. i = 0

3. while (i < N )

4. j = 0

5. While(j < N )

6. If (i != j)

7. If (pyidominatedpyj)

8. Ri + +
9. End if

10. end if

11. end while

12. i+ +
13. end while

14. return R

as follows:

if Ri < LC

ESi = ERB ⊗
(

EEi − ERB ⊗ EPyi

)

(14)

Epyi = Epyi + P.ER⊗ ESi (15)

where LC indicates the maximum value of dominated solu-

tions count used to determine if the ith solution will be

updated using Eq. (15) or not. If Ri of the i
th solution is lower

than LC, then this solution is updated using Eq. (15).

Also, Eq. (11) is implemented if Ri of the ith prey is

greater than UC (predefined by users), so Eq. (11) will be

reformulated as follows:

if Ri > UC

ESi = ERL ⊗
(

ERL ⊗ EEi − EPyi

)

(16)

Epyi = Epyi + P.ER⊗ ESi (17)

where UC indicates the minimum value of dominated solu-

tions count used to determine if the ith solution will be

updated using Eq. (17) or not. Eq. (6), and (8) are also

reformulated as follows:

if LC < Ri < UC

- For the first half of the population

ESi = ERL ⊗
(

EEi − ERL ⊗ EPyi

)

(18)

Epyi = Epyi + P.ER⊗ ESi (19)

- For the second half of the population

ESi = ERB ⊗
(

ERB ⊗ EEi − EPyi

)

(20)

Epyi = Epyi + P.CF ⊗ ESi (21)

The steps of the multi-objective modified MMPA using

DSEE are elaborated in Algorithm 4.
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Algorithm 4 The Multi-Objective Modified Marine Predator

Algorithm (M-MMPA)

1. Initialize py, P = 0.5

2. Create an archive, namely archive, containing the

non-dominated solutions within the optimization

process

3. while (t < tmax)

4. Calculate the fitness value for each pyi|i = 0, 1, 2, 3,

. . . . . . ,N

5. Update archive

6. Initialize E matrix from archive randomly

7. Assign CF using Eq. (9)

8. for each i prey

9. Based on the value of Ri, Update the current pyi
using one of the following equations Eq. 14, (18 or 20),

and 16

10. end for

11. Calculate the fitness value of py

12. Update archive

13. Accomplish the memory saving

14. implement the FADS using Eq. (12)

15. t++
16. end while

Algorithm 5 ASF Algorithm

1. Max_Ratio : Negative_Infinity
2. W : a vector of size equal to the number of objectives

and contain random values their sum equal 1

3. f : a vector contains the objective function values of the
current solution

4. i = 0

5. while (i < N )

6. Max_Ratio = Max(Max_Ratio,
fi
wi
)

7. i+ +
8. end while

9. return Max_Ratio

C. ACHIEVEMENT SCALARIZATION FUNCTION (ASF)

The ASF [73] is used to convert MOP into SOP using a

predefined weight vector containing several weights equal

to the number of objectives of the MOP, where the weights

express the significance of each objective. ASF can produce

weakly Pareto optimal solutions. The mathematical model of

ASF as follows:

uasf (f ;w) = max

(

fi

wi

)

(22)

where fi is the value of the objective i
th and wi is the weight

of the same objective ith. Algorithm 5, illustrates the steps of

converting a MOP with N objectives into a single objective

(ASF steps) [73].

D. NELDER-MEAD METHOD (NMM)

NMM is a method used to extract the maximum or the min-

imum of an objective function in a multidimensional space.

The NMM algorithm is listed as follows:

1) INITIAL SIMPLEX

At the start, a simplex consisting of n + 1 points

P0,P1,P2 . . . . . . . . . . . . ,Pn around the input point Pin is

constructed. Those points are generated around the input as

follows:

1) P0 = Pin
2) Pi = P0 + hi.ei, j = 1, . . . ., n

Where hi is a stepsize in the same direction of the unit

vector ei

2) MAIN STEPS

Each iteration, the NMM implements the steps given

in Algorithm 6.

For more information regarding NMM, see [74]. In addi-

tion, Algorithm 7 illustrates the steps of integrating the mod-

ified version of MPA with NMM (M-MMPA-NMM). NMM

is implemented within the first MIter iterations to construct a

front of the non-dominated solutions that will helpM-MMPA

to reach better solutions within the optimization process.

Because NMM only deals with SOP, ASF has been used to

convert the multiple objectives into a single objective. In each

iteration of the first MIter ,NSS non-dominated solutions will

be selected randomly from the archive, and then updated

using NMM and, if better, added again into the archive.

E. GAUSSIAN-BASED MUTATION

In this section, the Gaussianmutation proposed in [71] is used

as a tool to increase the convergence towards the true Pareto

optimum by searching widely around the current solution

(exploration) and narrowly (exploitation). This will help in

accelerating the convergence toward a better non-dominated

solution in the case of finding one near the current one. On the

other hand, if this current solution is local minima, the explo-

ration capability will update it to a long-distance up to the

upper bound of each variable and down to the lower bound,

and subsequently falling into local minima is substantially

avoided. The mathematical model of the Gaussian equation

is formulated as follows:

g = σ ∗
√

(−2.0 log (r1)) ∗ sin (2.0πr2) (23)

where σ is the sigma value and is between 0 and 1, r1, and

r2 are random numbers at the range of 0 and 1. The steps

of Gaussian-based mutation are illustrated in Algorithm 8.

In Algorithm 8, the GM is applied a number of times Nt ,

predefined by users, on the solution X . According to the

mutation probability (MP), for each time out of Nt , a number,

r4, is generated randomly at the range of [0,1], and if r4
is greater than 0.5, then the updating of the ith variable of

the solution X will be towards the difference between the
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Algorithm 6 The Main Steps of NMM

1. Calculate the value of each point Pi and store this value

into yi.

2. Define h as the suffix such that yh = max (yi), and l as

the suffix such that yl = min (yi).

3. Define the centroid of the points Pi|i 6= h and call it P̄.

4. Compute the reflection point P∗ using the following

equation :

P∗ = (1 + α) P̄− αPh

where α is the reflection constant.

5. Compute y∗ of the P∗.

6. If (y∗ > yl and y
∗ < yh) :

Ph = P∗

7. If (y∗ < yl) Then:

P∗ are expanded to P∗∗ using the following formula:

P∗∗ = γ P̄+ (1 − γ )Ph

where γ > 1 is the expansion coefficient

8. Compute y∗∗ of the P∗∗

9. If (y∗∗ < yl) Then:

Ph = P∗∗ and restart the process

10. If (y∗∗ > yl) Then

Ph is replaced with P∗ before restarting.

11. If (y∗ > yi∀i 6= h) Then:

Ph are contracted to P∗∗ using the following

formula:

P∗∗ = βP̄+ (1 − β)Ph

where β is the contraction coefficient and lies

between 0 and 1.

12. Compute y∗∗ of the P∗∗

13. if (y∗∗ < yh) :
Ph = P∗∗ and restart the process

Else:

∀iPi = ((Pi + Pl)/2) and restart the process

upper bound (XU i) and the current Xi values of the same

variable otherwise it will be moved toward the difference

between the current Xi and the lower bound (XL i). 0.5 is

the recommended value. The calculated difference either

toward the upper bound or the lower bound is stored into Del

variable. After that, a new random number r5 is generated to

tradeoff between the exploration and the exploitation phase.

If r5 is lower than the exploitation probability (EP) (r5<EP),

then the ith variable is updated according to lines 19 and 20

in Algorithm 8, otherwise is updated according to

lines 22 and 23. σ is recommended for the exploitation with a

value between 0 and 0.3, and for the exploration with a value

between 0.3 and 1.0.

Finally, Algorithm 9 illustrates the steps of integrating

the modified version of MPA with Gaussian-based mutation

(M-MMPA-GM) for tacklingMOP. Gaussian-basedmutation

Algorithm 7 The Multi-Objective Modified Marine Predator

Algorithm With NMM ( M-MMPA-NMM)

1. Initialize py, P = 0.5

2. Create an archive, namely archive, containing the

non-dominated solutions within the optimization

process

3. while (t < tmax)

4. Calculate the fitness value for each pyi|i = 0, 1, 2, 3,

. . . . . . ,N

5. Update archive

6. Initialize E matrix from archive randomly

7. Assign CF using Eq. (9)

8. for each i prey

9. Based on the value of Ri, Update the current pyi
using one of the following equations Eq. (15), (18 or 20),

and (17)

10. end for

11. Calculate the fitness value of py

12. Update archive

13. Accomplish the memory saving

14. implement the FADS using Eq. (12)

15. Within minimum iterations(MIter), Calling NMM to

update a randomly selected solution NSS from the

archive

16. t++
17. end while

works on searching around the current solution widely

(exploration) and narrowly (exploitation) finding more good

solutions in fewer iterations, and also helps to reach solu-

tions that M-MMPA cannot reach. In each iteration, NSS of

the non-dominated solutions will be selected randomly from

the archive, and each one will be updated a number Nt of

times using Gaussian-based mutation and, if a better solution,

added again into the archive.

IV. EXPERIMENTAL SETTINGS

In this section, the parameter settings, performance metrics,

and multi-objective test functions are described in detail.

A. MULTI-OBJECTIVE TEST FUNCTIONS

CEC 2020, CEC 2009, and GLT benchmark problems are

used to validate the performance of our proposed algo-

rithms statistically compared with some state of art algo-

rithms such as non-dominated sorting genetic algorithm II

(NSGA-II) [75], non-dominated sorting genetic algorithm III

(NSGA-III) [76], speed-constrained multi-objective particle

swarm optimization (SMPSO) [77], generalized differential

evolution (GDE3) [78], and constrained decomposition

with grids for evolutionary multi-objective optimization

(CDG) [79]. These datasets contain the most recent and chal-

lenging test functions with different shapes for Pareto optimal

fronts such as convex, non-convex, and disconnected. Sixteen

test functions are selected from CEC 2020. CEC 2009 con-

sists of 10 test functions having two or three objectives and
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Algorithm 8 Gaussian-Based Mutation (GM)

1. Input: is a vector containing the solution to mutate,

namely X

2. Output: the mutated X

3. MP : the mutation probability

4. Y = X

5. i = 0

6. EP: the exploitation probability

7. j = 0

8. While (j < Nt)

9. while (i<n)

10. r3 is a number generated randomly within 0 and 1

11. If (r3< MP)

12. r4 is a number generated randomly within

0 and 1

13. If (r4 ≤ 0.5)

14. Del=Xi − XL i
15. Else

16. Del=XU i − X i
17. End If

18. If (r5 < EP)

19. Calculate g using Eq. (26) with σ value

between 0 and 0.3

20. Xi = Xi + g ∗ Del
21. Else

22. Calculate g using Eq. (26) with σ value

between 0.3 and 1.0

23. Xi = Xi + g ∗ Del
24. End If

25. End if

26. i+ +
27. end while

28. If (X dominated Y)

29. Y = X

30. Else

31. X = Y

32. j++
33. end while

thirty variables andGLT problems consist of six test functions

with two or three objectives. All GLT problems have ten

variables.

The CEC 2020 problem set is considered to bemulti-modal

multi-objective because it includes problems with a point on

the Pareto front in the objective space that can be obtained by

more than one Pareto optimal solution in the decision space.

However, CEC 2009 and GLT problems are only are multi-

objective since each point on the Pareto front in the objective

space corresponds to only one point on the optimal Pareto

solution. Fig.1 shows an example of multi-modal multi-

objective—point P1 in the objective space can be obtained by

either S2 or S3 Pareto solutions in the decision space. Sim-

ilarly, point P2 can also be obtained by two different Pareto

solutions S1 and S4 in the decision space. Table 1 provides

a description of the three benchmark problem sets. We used

Algorithm 9 The Multi-Objective Modified Marine Predator

Algorithm With Gaussian ( M-MMPA-GM)

1. Initialize py, P = 0.5

2. Create an archive, namely archive, containing the

non-dominated solutions within the optimization

process

3. while (t < tmax)

4. Calculate the fitness value for each pyi|i = 0, 1, 2, 3,

. . . . . . ,N

5. Update archive

6. Initialize E matrix from archive randomly

7. Assign CF using Eq. (9)

8. for each i prey

9. Based on the value of Ri, Update the current pyi
using one of the following equations Eq. (15), (18 or 20),

and (17)

10. end for

11. Calculate the fitness value of py

12. Update archive

13. Accomplish the memory saving

14. implement the FADS using Eq. (12)

15. Calling Algorithm 5 to update a number NSS of

solutions selected randomly from the archive

16. t + +
17. end while

a device with Intelr CoreTM i3-2330M CPU @ 2.20 GHz,

1GB of RAM, and prepared with Windows 7 Ultimate

platform. Further, All algorithms in our experiments were

compared with the proposed algorithms according to their

implementation in the JMetal framework [80] based on the

parameters found in the published papers.

B. SENSITIVITY ANALYSIS

One of the most important factors that affect the performance

of the meta-heuristic algorithms is the parameter values

selected for each algorithm. For extracting the best parame-

ters for the proposed versions, the set of GLT test problems is

used to test the performance of the algorithms with different

parameters values—the results are given in Table 2, from

which it can be noted that the values 0 and 40 for both LC

and UC, respectively, of the proposed algorithm: M-MMPA

are better than all the other values. Table 3 contains the

results for the parameters of M-MMPA-NMM—from which

it can be noted that when the number of randomly selected

solutions, NSS, and the number of iterations MIter used at

the start of the optimization process to construct a front using

NMM are 50 and 30 respectively, the performance of the

algorithm is better. For the parameters of M-MMPA-GM,

Table 4 shows the results obtained by different values for

both NSS and the repetition times Nt on each solution. The

results introduced in this table show the performance of the

algorithm is convergent with the different values of those

parameters with the exception of X = 100 and Nt = 1.

Concerning the other algorithms, the values suggested in the
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FIGURE 1. Illustration example of multi-modal multi-objective optimization problem.

TABLE 1. Description of test functions.

TABLE 2. IGD values obtained by the M-MMPA using different LC, and UC values from F1 to F6 (GLT).

original papers have been used in our comparison except for

the population size and the number of evaluations that are

respectively set to 100 and 50000 for all algorithms to ensure

a fair comparison. The final parameter values used in our

comparison are introduced in Table 5. Note that, the maxi-

mum number of evaluations used for the two versions inte-

grated by GM or NMM involves the number of evaluations

used by those two strategies.

C. PERFORMANCE METRICS

The performance of each algorithm is evaluated based on two

metrics: the inverted generational distance (IGD) is used to

evaluate the convergence, and the generalized spread metric

(GSM) is used to verify the coverage.

Inverted generational distance (IGD) metric: this met-

ric [81] evaluates the convergence of the results by calculating

the distance between the obtained Pareto front solutions and
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TABLE 3. IGD values obtained by the M-MMPA-NMM using different NSS, and MIter values from F1 to F6 (GLT).

TABLE 4. IGD values obtained by the M-MMPA-GM using different NSS, and Nt values from F1 to F6 (GLT).

the true Pareto solutions, and is formulated as follows:

IGD =

∑N
i=1 di

N
(24)

di =

√

∑k

j=1
(f xi,j − f truej )2 (25)

where N is the number of non-dominated solutions obtained.

di is the smallest Euclidean distance between the ith solu-

tions and the true Pareto optimal solutions. k specifies the

number of objectives in the test function. f xi,j is the jth the

objective function of the ith The Pareto solution obtained by

algorithm x. f truej is the nearest Pareto solution in the true

Pareto front from f xi,j. When IGD is equal to 0, all the obtained

non-dominated solutions are in the true Pareto front.

Generalized spread metric (GSM): The coverage of the

obtained Pareto optimal solutions is measured and qualified

via this metric [39] as:

GSM =

∑k
j=1 d

ex
j +

∑N
p=2

∣

∣

∣
dp − ¯̄d

∣

∣

∣

∑k
j=1 d

ex
j + (k − 1) ¯̄d

(26)

where dexj is the Euclidian distance between the true Pareto

front and the obtained Pareto front, dp is the Euclidian
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TABLE 5. Parameter setting for the algorithms.

distance between two consecutive points of the obtained

non-dominated solutions, and d̄ is the average of dp.

In both metrics, the lower value is the best.

V. EXPERIMENTAL STUDIES

Statistical results play a significant role in evaluating the

quality of the algorithms. As a result, we present the best,

worst, average (Avg), standard deviation (Std), and rank (R)

values as statistical measures to compare the results obtained

by each algorithm. Additionally, scatterplots and boxplots

have been used to illustrate comparative performances. In the

following sections, the performance of the algorithms on

GLT, CEC 2009, and CEC 2020 are discussed separately:

1) Experiment 1: Comparison and discussion for GLT.

2) Experiment 2: Comparison and discussion for

CEC 2009.

3) Experiment 3: Comparison and discussion for

CEC 2020.

A. EXPERIMENT 1: COMPARISON AND

DISCUSSION FOR GLT

Table 6 shows the statistical results obtained by each algo-

rithm on GLT problems for the IGD metric. It should be

noted that M-MMPA-GM, M-MMPA, and M-MMPA-NMM

have exceptional results for F1, F3, and F4 test functions.

Concerning F2, F5, and F6 test functions, as shown in Table 6,

M-MMPA-GM outperforms all algorithms for all the statisti-

cal measures (best, worst, avg, std) except for F5, in which

the proposed algorithms were outperformed by NSGA-III.

The statistical results indicate the promising performances

of the proposed algorithms in solving GLT problems—in

particular, M-MMPA-GM outperforms all other algorithms

in all GLT test functions except F5. This superiority stems

from the ability of the Gaussian-based mutation strategy in

achieving high convergence towards the true Pareto optimal

front.

The average of IGD values obtained by all the compared

algorithms within 20 independent runs is shown in Fig. 2,
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TABLE 6. IGD values of the objective space obtained by the proposed algorithms from F1 to F6 (GLT).

FIGURE 2. The average of IGD values on GLT problems (F1-F6).

from which it can be inferred that M-MMPA-GM performs

the best with a value of 0.00088, while NSGA-III is worst

with a value of 0.01378, with the worst performance on GLT

problems.

Table 7 shows that the proposed algorithms achieve bet-

ter coverage in all test functions, with the best cover-

age achieved by M-MMPA-GM. The average GSM values

obtained on GLT problems within 20 independent runs are

shown in Fig. 3, from which M-MMPA-GM can be seen to

be the best with a value of 0.2768 and NSGA-III is the worst

with a value of 0.9750.

Fig. 4a and 4b show a comprehensive overview of the

Pareto optimal front obtained by each algorithm on GLT

test functions. Fig. 4a and 4b show the obtained Pareto

front results of the proposed algorithms and the other algo-

rithms in which M-MMPA-GM can be seen to achieve better

convergence and coverage than the other algorithms. In addi-

tion, the solutions obtained by M-MMPA-GM are distributed

extensively on the whole Pareto front.

B. EXERIEMNT 2: COMPARISON AND DISCUSSION

FOR CEC 2009

Table 8 demonstrates the statistical results obtained by

each algorithm on CEC 2009 problems for the IGD met-

ric, in which M-MMPA-GM achieves exceptional results

for F7, F8, and F13 test functions. With respect to the

other test functions, as shown in Table 8, M-MMPA-GM

outperforms all algorithms for F9, F10, F11, and F12 test

functions with converged results with some other algo-

rithms, and M-MMPA-NMM is best for F14, and F16, while

GDE3 achieves the best value for F15. The statistical results
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TABLE 7. GSM values obtained by the proposed algorithms from F1 to F6 (GLT).

FIGURE 3. The average of GSM values on GLT problems (F1-F6).

indicate promising performances of the proposed algorithms

in solving CEC 2009 problems, especially M-MMPA-GM

which achieves dramatic results on several test functions—

again, those dramatic results are achieved as a result of using

the Gaussian-based mutation strategy to achieve better con-

vergence towards the true Pareto optimal front.

The average of IGD values obtained by all algorithms

within 20 independent runs is shown in Fig. 5 from which it

can be concluded that M-MMPA-GM is the best with a value

of 0.01232, while SMPSO is worst with a value of 0.04387.

From Table 9 it can be seen that M-MMPA-GM achieves

better coverage in 4 out of 10 test functions, whileMMPA and

M-MMPA-NMM also achieve better coverage 4 out of 10 test

functions, and CGD in F15 and F16. The average of GSM

obtained by the algorithms on GLT problems within 20 inde-

pendent runs is shown in Fig. 6 which shows that M-MMPA-

NMM is the best with a value of 0.59218 and NSGA-III is

worst with a value of 0.80728.

Fig. 7a and 7b show a comprehensive overview of the

Pareto optimal front obtained by each algorithm on CEC

2009 test functions. The figures show that the proposed algo-

rithms achieve better convergence and coverage towards the

true Pareto optimal, especially M-MMPA-GM that produces

a more extensive Pareto front although there is a gap in the

front for some functions.

C. EXPERIMENT 3: COMPARISON AND DISCUSSION

FOR CEC 2020

Table 10 elaborates the statistical results obtained by each

algorithm on CEC 2020 problems for the IGD metric,

in which M-MMPA-GM has better results for F20 and

MMPA has better results for F17, F19, F21, F22, F23, F24,

and F28. M-MMPA outperforms all algorithms in F18 and

F26 and M-MMPA-NMM outperforms all the other algo-

rithms in F25 and F27. Unfortunately, our proposed algo-

rithms does not outperform the CGD algorithm for functions
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FIGURE 4. Pareto optimal front obtained by all algorithms.
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FIGURE 4. (Continued.) Pareto optimal front obtained by all algorithms.

FIGURE 5. The average of the IGD values on CEC 2009 problems (F7-F16).

from F29 to F32. Generally, MMPA performs best for CEC

2020 for 7 out of 16 test functions. The statistical results indi-

cate the promising performances of the proposed algorithms

in solving CEC 2020 problems since the proposed versions

could outperform all other algorithms in 12 out of 16 test

functions.
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TABLE 8. IGD values obtained on problems from F7 to F16.

The average of IGD values obtained by all the compared

algorithmswithin 20 independent runs is shown in Fig. 8 from

which it can be concluded that for CEC2020 M-MMPA-

NMM is the best with a value of 0.00377, while SMPSO is

worst with a value of 0.00547.

Table 11 shows that MMPA achieves better cover-

age in 6 out of 16 test functions, while M-MMPA and

M-MMPA-GM outperform all others in 3 out of 16 test

functions. Unfortunately, SMPSO achieves better coverage

in 3 test functions, and CGD in F29, F30, F31and F32.

The average of GSM obtained by the algorithms on CEC

2020 problems within 20 independent runs is shown in Fig. 9.

As seen in Fig. 9, MMPA is best with a value of 0.34048, and

NSGA-III is worst with a value of 0.80894.

Fig. 10a and 10b show the true Pareto front and the

obtained Pareto optimal front obtained by each algorithm

on CEC 2020 test functions. Fig. 10 shows the obtained

fronts using CGD are generally less distributed and have less

convergence than the other algorithms. Meanwhile, NSGA-II

can be seen to achieve better coverage but not extensively on

the whole front of the test functions while M-MMPA-GM,

M-MMPA,MMPA, and SMPSO cover the whole Pareto front

extensively.

D. COMPUTATIONAL COST AND OTHER COMPARISONS

In this section, the proposed algorithms will be exten-

sively compared with three additional algorithms: modi-

fied Indicator based Evolutionary Algorithm (MIBEA) [82],

SMSEMOA: Multiobjective selection based on dominated

hypervolume [83], and multiobjective PSO with decom-

position (DMOPSO) [84], in term of IGD metric on

GLT test problems to show clearly the effectiveness of
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TABLE 9. GSM values obtained by the proposed algorithms from F7 to F16.

FIGURE 6. The average of the GSM values on CEC 2009 problems (F7-F16).

our proposed algorithm. Those three algorithms are com-

pared with the proposed according to their implemen-

tation in JMetal frameworks under the cited parameters

values. Broadly speaking, those three algorithms are executed

20 independent trials and the average IGD on each GLT test

function is calculated and presented in Table 12, which elab-

orates the superiority of M-MMPA-GM for all test problems

but F5, which could be solved better using DMOPSO.

The average of IGD values obtained by all the compared

algorithms within 20 independent runs on GLT test problems
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FIGURE 7. Pareto optimal front obtained by all the algorithms.
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FIGURE 7. (Continued.) Pareto optimal front obtained by all the algorithms.

FIGURE 8. The average of the IGD values on CEC 2020 problems (F17-F32).

is shown in Fig. 11 from which it is obvious that

M-MMPA-GM is the best with a value of 0.00088, while

MIBEA is worst with a value of 0.0124.

Besides, all algorithms used in our experiments are com-

pared in Fig.12 in term of computational cost to show the

speedup of the different algorithms. In general, all algorithms
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TABLE 10. IGD values obtained by the proposed algorithm from F17 to F32.

were executed 20 independent runs on each problem of the

GLT problems and the CPU time for those runs are computed

and the average of this CPU time on all problems is presented

in Fig.12. Inspecting this figure shows that M-MMPA-GM

could occupy the fifth rank after DMOPSO, SMPSO, CGD,

and GDE3, but this deterioration in time could be neglected
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TABLE 11. GSM values obtained by algorithms on the test functions from F17 to F32.

with the superiority of M-MMPA-GM in terms of IGD and

GSM, which makes it a strong alternative for tackling the

multiobjective optimization problems

Finally, the T-test as a statistical significance [85] is used

to show the difference between the IGD obtained by the

best five compared algorithms in our comparison with the
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FIGURE 9. The average of GSM values on CEC 2020 problems (F17-F32).

TABLE 12. IGD values of the objective space obtained for GLT test problems.

TABLE 13. T-test results on GLT.

proposed algorithm: M-MMPA-GM. This test is used to see

the superiority of the proposed algorithm for GLT benchmark

problems and the outcomes of this test is shown in Table 12,

that show the acceptance of alternative hypothesis for F2, F3,

F4, and F5 and this show the superiority of the proposed,

while accepting the Null hypothesis for F1 and F6 with CGD

and DMOPSO outcomes

Since CEC 2020 is multi-modal multi-objective, and the

MMPA could achieve good solutions on this benchmark com-

pared with the other algorithms, MMPA is considered the
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FIGURE 10. Pareto optimal front obtained by all the algorithms on CEC 2020.
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FIGURE 10. (Continued.) Pareto optimal front obtained by all the algorithms on CEC 2020.

FIGURE 11. The average of IGD values on GLT problems (F1-F6).

FIGURE 12. Computational cost consumed by each algorithm on GLT problems.

best approach for solving this type of problem. Meanwhile,

M-MMPA-GM is the best for overcoming multi-objective

problems. As a help to the DMs when solving the MMPA,

it is preferred to use M-MMPA-GM when solving the multi-

objective problem, while using MMPA when solving the

multi-model, multi-objective problem.

VI. CONCLUSION AND FUTURE WORK

This paper proposes four novel versions of MPA to solve

multi-objective (and multi-modal) optimization problems.

The first is a multi-objective version of the standard

MPA. The second is based on modifying the stan-

dard MPA using a novel dominance strategy based on
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exploration-exploitation (DSEE) which counts the number

of dominated solutions for each solution, and the solu-

tions with the high dominance would have an exploitation

phase, and the others with small dominance would have

an exploration phase. The third version integrates MPA

with a novel Gaussian-based strategy to explore more solu-

tions around the best-so-far non-dominated solutions. The

Gaussian-based strategy uses the methodology of exploration

and exploitation—within a percentage predefined by the user,

the small sigma value of Gaussian distribution can be used to

exploit better solutions with a small distance of the current

solution, and the remaining percentage of the sigma value

is quite large to explore more solutions with large distances

from the current solutions. The last version uses the Nelder-

Mead simplex at the start of the optimization process to

build up a front that will help MPA find better solutions

within the optimization process. The performances of the

four proposed versions are evaluated on CEC 2009, CEC

2020, and GLT problems and compared with CDG, SMPSO,

NSGA-II, NSGA-III, and GDE3. The results show the superi-

ority of the four proposed versions comparedwith the existing

algorithms. Among the proposed algorithms, M-MMPA-GM

could be superior for most test functions, where it could fulfill

average IGD values of 0.00088, 0.01232, and 0.00456 for

GLT, CEC 2009, and CEC 2020, respectively. It is worth

mentioning that the proposed algorithms could be slightly

competitive for CEC2020. For GSM metric, M-MMPA-GM

could come true with average values of 0.60276, 0.36343, and

0.2768 for those three benchmarks mentioned above, respec-

tively. Future work includes applying MPA for solving multi-

dimensional knapsack problems, DNA fragment assembly

problems, and shop scheduling problems. Moreover, also

as our future work, we will apply those variants for tack-

ling some of the real-world problems such as multiobjective

DNA fragment assembly problems to minimize the number

of contigs and maximize the overlap score, real-time task

scheduling in multiprocessor systems, and task scheduling

problem in Fog computing.
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