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A measure of shape compactness is a numerical quantity representing the degree to
which a shape is compact. Ways to provide an accurate measure have been given great
attention due to its application in a broad range of GIS problems, such as detecting clus-
tering patterns from remote-sensing images, understanding urban sprawl, and redrawing
electoral districts to avoid gerrymandering. In this article, we propose an effective and
efficient approach to computing shape compactness based on the moment of inertia
(MI), a well-known concept in physics. The mathematical framework and the computer
implementation for both raster and vector models are discussed in detail. In addition to
computing compactness for a single shape, we propose a computational method that is
capable of calculating the variations in compactness as a shape grows or shrinks, which
is a typical application found in regionalization problems. We conducted a number of
experiments that demonstrate the superiority of the MI over the popular isoperimetric
quotient approach in terms of (1) computational efficiency; (2) tolerance of positional
uncertainty and irregular boundaries; (3) ability to handle shapes with holes and mul-
tiple parts; and (4) applicability and efficacy in districting/zonation/regionalization
problems.

Keywords: moment of inertia; compactness; shape analysis; regionalization;
districting; shape index; automated zoning procedure; pattern recognition; geographic
Information Science; vector data modelling; raster data modelling

1. Introduction

The compactness measure of a shape, also known as its shape index, is a numerical quan-

tity representing the degree to which a shape is compact (Gillman 2002). Here, shape

refers to geometric objects that have a two-dimensional extent, such as objects used to

describe a park or a parcel of land, as opposed to one-dimensional features such as net-

work links or three-dimensional features such as a globe. Compactness is acknowledged

as one of the most intriguing and important properties of a shape (Angel et al. 2010) and

is widely used as a descriptor in a variety of domain tasks. For instance, compactness is

a critical factor in defining and analyzing homogeneous habitat regions in ecology (Eason

1992). Within computer vision, there have been many applications of shape compactness

for object matching and pattern recognition (Edwards et al. 2003). In content-based image
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2 W. Li et al.

retrieval, this factor is used to identify shape signatures for non-rigid shape search and

retrieval in large databases (Ovsjanikov et al. 2009). In psychological studies, compact-

ness has been introduced to quantify perceptual stability and to understand the causes of

perceived shape aesthetics (Friedenberg 2012).

In GIScience, the quantification and computation of shape compactness has been a

long-standing and fundamental research question for a number of reasons. First, a com-

pact region has appealing properties because compactness implies maximum accessibility

to all parts of the shape, and a compact shape is likely to be homogeneous, therefore

sharing common attributes and properties (Tobler 1970). Second, identification of shape

has a great impact on the search for, and extraction of, spatial patterns, which is essen-

tial to analyzing and understanding geographical phenomena, as well as predicting future

patterns (Wentz 1997). Third, the geographical world is populated with spatial objects

described through areal representations, making compactness an important part of under-

standing these objects. Therefore, shape comparison has been given great attention due to

its application in a broad range of geographical problems (MacEachren 1985). For exam-

ple, there has been a long history of using compactness within political geography to assess

the constitutionality of political districts based on their shape (Gibbs 1961, Rinder et al.

1988, Fryer and Holden 2007). In urban morphology studies, Christaller (1968) deduced

the emergence of compact hexagonal arrangements of towns in his ‘central place the-

ory’ (CPT). More recently, compactness has become a well-established principle used to

guide city planning, evaluate urban settings, and study urban sprawl (Chandra et al. 2009).

In addition, compactness is a well-known index to describe the hydrological properties of

drainage basins (Bardossy and Schmidt 2002).

The geospatial applications mentioned above concern the role of compactness as a

shape index to measure a single shape. In practice though, there are also a significant

number of applications requiring the computation of compactness for two or more adja-

cent shapes that are grouped together. This type of application, called regionalization,

often involves large spatial datasets, such as census data, and requires the aggregation of

a large number of shapes into a smaller number of larger regions. Using compactness as a

measure in regionalization was discussed as early as the 1960s; Weaver and Hess (1963)

emphasized the importance of generating compact regions in designing political districts.

Kaiser (1966) and Young (1988) discussed the use of moment of inertia conceptually in

measuring the compactness of electoral districts and concluded that moment of inertia is

not only good at measuring compactness, but also provides a measure of size. In 1977,

Openshaw discussed the importance of achieving a degree of compactness in solving the

Modifiable Areal Unit Problem (MAUP) (Openshaw 1977, 1978). In 1995, Openshaw and

Raw discussed Automatic Zoning Procedure (AZP) for census redesign, which became the

basis for the design of the 2001 UK census geography (Martin et al. 2001). In this pro-

cedure, compactness was considered to be an important requirement to meet. Since then,

many compactness measures have been proposed by the geography community (Horn et al.

1993), such as those based upon isoperimetric quotients, reference shape comparison, and

moment of inertia. There are also a number of indirect compactness measurements, such

as methods based on the distance to a reference point (Haunert and Wolf 2010), ratio of

the actual area of a region to its minimum external peripheral area (Datta et al. 2012), and

those reviewed by Duque et al. (2007).

To evaluate the efficiency and effectiveness of compactness measures, we propose the

following criteria: (1) robust, (2) computationally efficient, and (3) additive. Robust here

meaning the algorithm should be able to measure the compactness of any shape. As any

D
o
w

n
lo

ad
ed

 b
y
 [

A
ri

zo
n
a 

S
ta

te
 U

n
iv

er
si

ty
] 

at
 1

3
:5

8
 2

3
 J

an
u
ar

y
 2

0
1
3
 



International Journal of Geographical Information Science 3

digitization process produces some degrees of uncertainty (Goodchild 1996), a robust mea-

sure should also be relatively insensitive to such uncertainty. Moreover, a robust measure

should be stable for a given fixed shape regardless of changes in size and spatial resolution.

In addition to robustness, computational efficiency is an important factor when problem

sizes are very large. A good algorithm for computing compactness should be computa-

tionally efficient to the extent that it is not a bottleneck in GIS processing. In addition,

for some practical applications such as a regionalization problem, one may need to mea-

sure the changing compactness of a region as it is combined with other areas on the fly,

instead of recomputing compactness from scratch at each iteration. In fact, an algorithm

should be able to obtain a compactness value when merging two or more regions using

a simple summation approach; in other words, the algorithm should be ‘additive’, which

is the third criterion. A compactness measurement approach that is additive and easy to

compute will reduce computational complexity and improve the computational efficiency

and effectiveness when used in real-world applications.

In this article, we propose a new and efficient way to compute compactness based on

the concept of the moment of inertia (MI), a well-known quantity in physics. Although

earlier research has considered the use of MI (Kaiser 1966, Massam and Goodchild

1971, Zhang et al. 2006), considerable barriers existed in its widespread adoption. First,

there was no clear, definable way in which it could be applied. Second, few tests have

demonstrated its superiority. We therefore attempt to address both of these barriers.

Section 2 reviews the existing methods for computing compactness and their pros and

cons. Section 3 discusses in detail the mathematical equations of our proposed trapezium-

based method for computing moment of inertia for both vector and raster data. Section 4

provides details of how this approach can be implemented. Section 5 compares statistically

the performance of our proposed method against the commonly used Iso-Perimetric

Quotient (IPQ) measure. Section 6 introduces a large practical application of this method

in generating a set of 100 compact zones spanning Southern California that are used as

the basic spatial units for a large scale economic simulation model. Section 7 concludes

the work and proposes directions for future research.

2. Literature review

There is a long history of interest in the science community in developing an effective

compactness measure; in 1822, Ritter proposed to measure a shape’s compactness using

a simple ratio of the perimeter (P) to the area (A) of the shape (Frolov 1975). Since

then, a variety of compactness measures have been proposed (Miller 1953; Richardson

1961, Cole 1964, Massam and Goodchild 1971, Frolov 1975, Osserman 1978, Kim and

Anderson 1984, Bribiesca 1997, Bachi 1999, Bottema 2000, Wentz 2000, Zhao and Stough

2005, Santiago and Bribiesca 2009). These measures can be grouped into four categories:

area–perimeter measurement, reference shape, geometric pixel properties, and dispersion

of elements of area.

The method (P/A) proposed by Ritter can be categorized as an area–perimeter

approach. Although straightforward, Ritter’s simplistic ratio suffers from the fact that the

measure varies when shape size changes. To account for this limitation, the measure can

be made dimensionless by dividing the shape’s area by the square of its perimeter. Among

many alternative names and precise mathematical forms that have been given to this class

of metrics, including the circularity ratio 4A/P2 by Miller (1953) and the compactness

ratio 2
√

πA/P by Richardson (1961), the IPQ (Osserman 1978) has become one of the

most widely accepted compactness measures of this class. It is defined as:
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4 W. Li et al.

CIPQ =
4πA

P2
(1)

where the perimeter P is squared to remove the scaling effect, A is the area of the shape,

and CIPQ is the compactness value. By adding π in the numerator of Miller’s circularity

ratio, CIPQ’s range is changed to (0, 1] (instead of 0 to 1/π in Miller’s measure). A shape

with a high value of CIPQ is considered to be more compact than a shape with a lower CIPQ.

A circle is the most compact shape, and by definition above, it will have a compactness

value of 1. This measure is also the square of Richardson’s compactness ratio. Although

the IPQ approach is not very stable for irregular contours (Santiago and Bribiesca 2009), it

is applicable in computing the compactness index for both vector and raster data, it is easy

to compute, and it is not sensitive to size changes (keeping shape constant). Therefore, it

remains the most popular shape index to date (Santiago and Bribiesca 2009).

Another approach to the measurement of compactness uses reference shapes. For

instance, Cole (1964) proposed a compactness measure to compare the area of a shape,

A, with the area of the smallest circle that circumscribes the shape, Asc. This is an alter-

native form of Gibbs’s (1961) compactness measure 4A/L2, where L is the longest line

between two points on a shape’s perimeter. Kim and Anderson (1984) later termed this the

digital compactness measure (DCM). DCM is defined as:

CDCM =
A

Asc

(2)

Like the IPQ, its maximum value, 1, will occur when the shape is a circle. The major

drawbacks of this method are that it cannot be applied to shapes with holes, it is not additive

and scale-invariant. A second approach that falls in this category was proposed by Bottema

(2000). It works by overlaying the shape S with a circle C of the same area and computing

the overlap. Suppose the area of S is A, and the area of C is A0, then Bottema’s compactness

measure can be expressed as:

CBottema = 1 −
|A ∩ A0|

A0

(3)

Another alternative index falling in this category is the elongation index (Wentz 2000),

which is a type of overlap index (Zhao and Stough 2005) that sets a condition of equal-

area matching. It is calculated from the ratio of maximum overlap of the intersection to the

union of the object with a circle of equal area. Mathematically,

El =
|A ∩ A0|
|A ∪ A0|

(4)

A and A0 hold the same meanings as in Equation (3). The overlap could also be determined

by coinciding the centroids of the shape and the reference shape (Zhao and Stough 2005).

Both the Bottema measure and the elongation index are capable of measuring compactness

of a shape with holes; however, like the DCM method, they are sensitive to size changes in

computation. Moreover, the circle can be overlaid on the shape in many different positions,

so a search must be invoked to determine the position of maximum overlap, making this

type of method less competitive from a computational perspective.
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Other shape-reference approaches include the comparison of the area or diameter of the

maximum inscribed circle to that of the minimum circumscribed circle. The approaches in

this category have common drawbacks. First, the parameter is difficult to measure; for

example, for Bottema’s approach, there must be a procedure to compute the intersection

of two areas. Second, the compactness of a shape is not computable from its parts; when

this measure is used in a regionalization process, the compactness of a given region must

be recalculated every time it grows or shrinks. These drawbacks make the shape reference

approach less appealing in practical applications.

The third category is designed to work on raster datasets. A representative method

of this class of methods is called the normalized discrete compactness (NDC) measure,

suggested by Bribiesca (1997). The idea is to count the number of cell sides (LD) shared

between pixels that represent a shape S, and then calculate the measure CNDC. This is

given as:

CNDC =
LD − LDmin

LDmax
− LDmin

(5)

where LDmin
and LDmax

are the lower and upper limits of the number of cell sides that can be

shared with the same number of pixels within S. Defining p as the number of edges on the

border and n as the total number of pixels in S, LD, LDmin
, and LDmax

can be obtained from

Equations (6)–(8):

LD =
4n − p

2
(6)

LDmin
= n − 1 (7)

LDmax
= 2(n −

√
n) (8)

The NDC approach has the advantage of being scale invariant, and can be applied when

computing the compactness of shapes with holes.

The last category of measures is based on analyzing the dispersion of elements/

components in a shape. This approach involves the calculation of the second moment of

an area about a point, also known as the moment of inertia (MI). According to Massam

and Goodchild (1971), each shape can be considered as composed of infinitesimally small

units of area da, and the MI of a shape is defined as the second moment of an area about a

point s on the shape as follows:

Is =
�

z2da (9)

where z is the distance from da to s. Similarly, the MI about its centroid can be defined as:

Ig =
�

z2
gda (10)

where zg is the distance from da to the centroid of a shape. ‘The moment about a point s′’

means the moment about an axis perpendicular to the shape through the point s; we use

the former phrase throughout the article for simplicity. The ‘centroid’ in GIS has come

to mean any point representative of a shape, but it is used here in its strict mathematical
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6 W. Li et al.

sense as the balance point and the point about which the MI is minimum for any shape.

The shape index base upon MI, CMI, is calculated as the ratio of the MI of a circle of the

same area about its center, to the MI of the shape about its centroid. The value range of

CMI is (0,1]; larger values means more compact shape. A circle receives the maximal value

of 1. Mathematically, it can be expressed as:

CMI =
A2

2π Ig

(11)

where A is the area of a shape. Bachi (1999) reviewed this measure and some equivalent

measures. This measure is readily additive, since the index for an aggregate of shapes

is easily computed from the relevant properties of each component shape, as we will

show below. The measure is also insensitive to shape size and rough boundaries. This

approach is also appealing due to its ability in distinguishing between the shape of the

region being measured and the shape of a specific distribution of sub-regions within the

region. Therefore, it has extensive applicability in a regionalization problem.

In Massam and Goodchild’s (1971) implementation, the primitive elements used to

represent the shape, da, were triangles. However, there is no simple, obvious, and robust

way to divide a polygon into triangles uniquely. To our best knowledge, there are no specific

discussions in the literature on how to compute the MI of a shape efficiently. To overcome

this limitation, in Section 3 we propose a trapezium-based approach which provides an

efficient and unique alternative to measuring MI-based compactness. We also discuss how

to handle shapes with multiple parts and shapes with holes, as well as how this approach

can be further simplified when applied to a raster.

3. Methods for computing the centroid and moment of inertia

3.1. Moment of inertia of a single shape

To compute the compactness CMI of a shape we must first compute the coordinates (xi
g, yi

g)

of the centroid g:

xi
g =

�
ai

xdai

ai

, yi
g =

�
ai

ydai

ai

(12)

where x and y are the coordinates of dai and ai is the area’s measure. To compute these

properties, we represent the area as a polygon and partition the polygon into primi-

tive elements using trapezia. Figure 1 shows a polygon defined as a clockwise sequence

of n vertices
(

x1, y1

)

,
(

x2, y2

)

, . . . ,
(

xn, yn

)

, and define
(

xn+1, yn+1

)

=
(

x1, y1

)

. For any

adjacent pair of vertices, drop perpendiculars to the x-axis. Taking the segment with

endpoints
(

xi, yi

)

and
(

xi+1, yi+1

)

as an example, when dropping perpendiculars to the

x-axis, a trapezium is formed with two vertical sides, one horizontal side, and one diago-

nal side. The calculation of moment of inertia of the trapezium Ti formed from segment

with endpoints (xi, yi) and
(

xi+1, yi+1

)

, about its centroid, can be reduced to calculating

the composition of the moments for the triangle piece (T) and the rectangle piece (R)

about their respective centroids, and then combining them appropriately. For the triangle

piece,

ai_T = (xi+1 − xi)(yi+1 − yi)/2 (13)
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y

Seg
ment

Se
gm

en
t

(xi, yi)
T

R

Ti = T + R

(xi + 1, yi + 1)

(xi + 1, yi + 1)

(xi, yi)

Figure 1. A polygon with points defined clockwise, showing the trapezia generated from two of its
segments.

xi
g_T = (xi + 2xi+1) /3 (14)

yi
g_T = (2yi + yi+1)/3 (15)

Ii_T = ai_T

[

(xi+1 − xi)
2 + (yi+1 − yi)

2
]

/18 (16)

For the rectangle piece,

ai_R = (xi+1 − xi)yi (17)

xi
g_R

= (xi + xi+1)/2 (18)

yi
g_R

= yi/2 (19)

Ii_R = ai_R

[

(xi+1 − xi)
2 + y2

i

]

/12 (20)

where ai denotes area, (xi
g, yi

g) is the centroid, and Ii denotes the MI of each piece. Note that

for any piece falling below or completely outside of the polygon, the values for ai_T and

ai_R will be negative. For example, when computing the area of the rectangle piece of the

trapezium associated with the segment on the lower right portion of the polygon, xi exceeds

the value of xi+1, the difference xi+1 − xi will be negative, and thus the area calculated in

Equation (17) will be negative in value.

The calculation of MI for the whole polygonal area requires combining all triangle and

rectangle pieces. The total polygon area, A, can be obtained by adding the areas of triangle

and rectangle pieces with respect to sign. Equation (21) presents the mathematical equa-

tion. The centroid of the polygon is obtained by averaging the coordinates of all vertices,

as Equation (22) shows.

A =
n

∑

i=1

(ai_T + ai_R) (21)
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8 W. Li et al.

xg =
n

∑

i=1

(xi
g_R

ai_R + xi
g_T

ai_T )

A
, yg =

n
∑

i=1

(yi
g_R

ai_R + yi
g_T

ai_T )

A
(22)

For computing the entire Ig of A, according to the parallel axis theorem (Landau and

Lifschitz 1984), the MI about any point s is related to the MI about the centroid g by:

Is = Ig + d2da (23)

where d is the distance from the centroid to s. Adjusting the moments of inertia of all pieces

to the polygon centroid yields Ig, illustrated in Equation (23):

Ig =
n

∑

i=1

(Ii_T + d2
i_T , gAi_T + Ii_R + d2

i_R, gAi_R) (24)

where di_T , g and di_R, g are the distances between the centroids of the triangle and rectangle

pieces of trapezium i and the centroid of the polygon, respectively. Note that as the pieces

falling below or completely outside of the polygon have a computed negative area, their

moments are automatically subtracted from the total. Substituting Ig in Equation (11), the

shape index (normalized MI) can be easily obtained. In summary, Equations (13)–(16)

compute the area, centroid, and MI of the triangle piece of trapezium Ti formed from

segment (xi, yi) to
(

xi+1, yi+1

)

. Equations (17)–(20) compute the area, centroid, and MI of

the rectangle piece of the trapezium Ti. Equations (21)–(24) compute the area, centroid,

and MI of the whole polygon by grouping all the triangle and rectangle pieces of the n

trapezia formed by the n segments of the polygon.

3.2. Moment of inertia of a region

Section 3.1 introduced the computation of MI of a single shape. In the context of a region-

alization problem, we also require the on-the-fly computation of MI as a region grows or

shrinks based upon the addition or subtraction of polygonal spatial units. For instance,

given a partial region P aggregated from a set of atomic units u1, u2, . . . ,um and supposing

that the area of P at current state j is Ap (j), its MI is Ip (j) and the centroid is (x p (j)
g , y p (j)

g ).

When a region P grows, this must involve the addition of another atomic unit uk , which

has the properties of area Auk
, centroid (xg_uk

, yg_uk
), and MI Iuk

. The compactness of P at

new state j + 1 can be easily obtained by combining the properties of P in state j and that

of the atomic unit as follows:

Ip (j+1) = Ip (j) + Iuk
+ Ap (j)d

2
p (j+1),p (j) + Auk

d2
p (j+1),uk

(25)

Ap (j+1) = Ap (j) + Auk
(26)

xp (j+1)
g = (Ap (j)x

p (j)
g + Auk

xg_uk
)/Ap (j+1) (27)

yp (j+1)
g = (Ap (j)y

p (j)
g + Auk

yg_uk
)/Ap (j+1) (28)
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where dp ( j+1), p(j) refers to the distance between the centroid of region P at state j and the

new centroid after attaching atomic unit uk . We can also call the new centroid the centroid

of P at state j + 1, and obtain it from Equations (27) and Equations (28). Equation (25) is

the calculation of the moment of inertia for P at state j + 1. We can tell from this equation

that the moment of inertia of a new region when combining two sub-regions equals the

sum of the MI of both sub-regions and the increase caused by the merging. This calcula-

tion avoids the recomputation of compactness for all constitutional units, and therefore, is

computationally efficient and additive. Equation (25) can also be used as the theoretical

foundation for calculating the compactness of a shape with multiple parts (connected or

otherwise).

Similarly, when a basic unit uk is switched out of or removed from region P at state j,

the properties of P at state j + 1 can be obtained from:

Ip (j+1) = Ip (j) − Iuk
− Ap (j+1)d

2
p (j+1),p (j) − Auk

d2
uk ,p (j) (29)

Ap (j+1) = Ap (j) − Auk
(30)

xp (j+1)
g = (Ap (j)x

p (j)
g − Auk

xg_uk
)/Ap (j+1) (31)

yp (j+1)
g = (Ap (j)y

p (j)
g − Auk

yg_uk
)/Ap (j+1) (32)

Equation (29) shows that when removing a sub-region, the MI not only decreases by

that of the sub-region, but also by the loss in splitting, reflected in the centroid changes.

This equation can also be used to calculate the compactness of a shape with holes.

Whenever the shape of a region is changed, the MI is recalculated. Then by substituting

this value in Equation (11), the shape index (normalized MI) can be obtained.

In summary, Equations (25)–(28) compute the new MI, area, and centroid of a region

after merging an atomic unit. Equations (29)–(32) compute the new MI, area, and centroid

of a region after removing an atomic unit from it. The attributes (MI, area, and centroid) of

an atomic unit used in Equations (25)–(32) are obtained from Equations (12)–(20). Rather

than recomputing the MI of a region every time it changes, these equations provide a means

of additively computing the MI and the shape index. This constitutes the building block for

an efficient algorithm to be integrated into a compactness-driven regionalization problem.

3.3. Computation of shape index on raster data models

The proposed method has the advantage of being easily calculated from boundary coor-

dinates. There is, however, a further simplification that can be made when using raster

datasets. For a geo-referenced raster dataset, instead of using the coordinates of vertices

to depict a shape (red region in Figure 2), the geographic extent (the top, bottom, left and

right coordinates of a rectangle covering all of the raster dataset’s data) and the cell size (r)

are employed. Each pixel can be identified by its row and column indices (s,t) in a rectan-

gular matrix (M). In order to integrate the MI measure of a raster dataset into our current

methodological framework, the following steps are taken:

First, the building blocks of a raster dataset – the pixels – are of equal size. In the

example of Figure 2, each pixel is r × r in size. Therefore, the initial MI for each pixel in

a raster dataset is the same and could be obtained by adapting Equation (20):
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Column t = 3

(xg (s,t), yg (s,t))

Row s = 4

x

(x0, y0)

y

O

r

Figure 2. Raster data represented in a projected coordinate reference system (CRS).

da = r2 (33)

Ida = r2da/6 = r4/6 (34)

Second, the MI of a shape can be obtained by replacing the integral in Equation (9)

with the sum over the pixels that constitute the shape, shown in Equation (34),

Ig =
∑

s,t where M(s,t) �=null

z2
gr2 (35)

To obtain zg, the centroid of each pixel and the centroid of the entire shape need to

be computed. Take the shape (shaded in red) in Figure 2, for example, where the centroid

coordinates (x s,t
g , y s,t

g ) at row s and column t are a function of cell size r, its indices s and t,

and the actual coordinates (x0, y0) in the upper left corner:

x s,t
g = x0 + c/2 + c(t − 1) (36)

y s,t
g = y0 − c/2 − c(s − 1) (37)

The centroid for the entire shape can be calculated by averaging the x and y coordinates

of all the pixels composing the shape (where M(s,t) �=null):
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xg =

∑

∀s, t where M (s,t)�=null

x s,t
g

∑

∀s, t where M (s,t)�=null

1
(38)

yg =

∑

∀s, t where M(s,t)�=null

y s,t
g

∑

∀s, t where M(s,t)�=null

1
(39)

Given the centroid coordinates of each pixel from Equations (36) and Equations (37),

and the centroid coordinates of the entire shape from Equations (38) and Equations (39),

zg, which denotes the Euclidean distance between any pixel centroid and the centroid of the

shape, can be easily calculated. Consequently, the MI of the entire shape can be computed

from Equation (35). Similarly, when a raster representation is used in a regionalization

process, Equations (25)–(28) can be adopted to compute the updated MI when combining

two contiguous regions together and Equations (29)–(32) can be adopted for MI compu-

tation when a sub-region is removed from a region. Then by applying Equation (11), the

compactness index of a changing shape involving a raster representation can be generated.

4. Computer implementation

The proposed method was implemented using the open-source cross-platform pro-

gramming language Python with the support of Esri’s ArcPy package (Esri 2012).

Figure 3 shows the object-oriented design of the program, in which five classes (DataSet,

MultiPartPolygon, Polygon, LineSegment, and Point) and their associations are defined.

When reading shapes from a dataset, each shape record is cached as an instance of

MultiPartPolygon class. A MultiPartPolygon record may be a single-part polygon, a multi-

part polygon, or a polygon with holes. Therefore, the list ‘parts’ is defined. It contains the

variable ‘flag’ indicating the type of a shape (0 represents the main or a single-part poly-

gon, 1 for the remaining parts in a multi-part polygon, and 2 for a hole) and a variable

of the type Polygon, which records the actual geographic data that represent each part of

a shape. In a Polygon class, each polygon (must be single-part) can be represented by a

list of its vertices. Each vertex has type Point, defined by its x and y coordinates in the

CRS (Coordinate Reference System) and documented in the metadata of the dataset. The

class LineSegment is used when computing the MI of each trapezium formed by the line

segments of a polygon.

Figure 4 shows the workflow for computing the MI of shapes with a vector represen-

tation. The applications of the above five classes are highlighted at their first occurrences

within the whole procedure. The components on the left side are for pre-processing, in

which all shapes are read and organized in the data structure defined in Figure 3. The com-

ponents on the right side of the figure deal with the MI computation for each multi-part

polygon in the dataset. The function combine() implements Equation (24), when the MIs

of all trapezia are adjusted to the polygon’s centroid to obtain the MI of the entire poly-

gon about its centroid. A rule needs to be instituted for determining which trapezia fall

inside the polygon area and which fall outside. For vertices that are ordered clockwise

around a polygon, such as the one shown in Figure 1, the trapezium should be added when

xi+1 ≥ xi and should be subtracted when xi+1 < xi. For ‘counterclockwise’ ordering of ver-

tices along the boundary of a polygon, the opposite applies. The isClockwise() operation in
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12 W. Li et al.

Figure 3. UML design of classes and associations in computer implementation.

the Polygon class is used to accomplish this task. In this way, the MI of any regular polygon

can be computed.

When it comes to computing the MI of a polygon with more than one part, the split()

and merge() processes are adopted. If the part is a hole, the split() function is called

to remove the MI of the hole from the shape and the MI introduced by the splitting

(Equations (29)–(32)); otherwise, the merge() function, which implements Equations (25)–

(28), will be called. These two functions could be easily adapted to handle the case of

computing the MI of a growing or shrinking region in a regionalization problem.

In handling a raster dataset, a similar procedure can be adopted. In this case, a pixel

corresponds to a Polygon class, each individual shape corresponds to a MultiPartPolygon,

and the raster dataset corresponds to the class of Dataset. The difference is that only the

workflow on the right-hand side of Figure 4 is executed since the MI for each pixel can be

easily calculated from Equation (35).

5. Comparing the moment of inertia shape index with the isoperimetric quotient

5.1. Testing the robustness of MI and IPQ shape indices for vector data under

positioning uncertainty

Our first test involves calculating the robustness of the proposed MI compactness measure

and the popular IPQ approach in handling data with uncertainties. As we know, there will

always be some amount of positional error in geospatial data, because exact measurement

of location is impossible. Consider a hypothetical study area given in Figure 5a repre-

sented by a polygon. We randomly repositioned its vertices to introduce small positioning
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Figure 4. Workflow for computing the MI of shapes.

errors. Table 1 shows the parameters of the experimental settings. For each generated poly-

gon instance, we calculated the MI shape index and the IPQ shape index. This process was

repeated n times, and the mean and standard deviation of the MI and IPQ indices were com-

pared. Figure 5a shows the original test shape and all its vertices, and Figure 5b shows the

shape before and after distortion. From a visual perspective, we can observe from Figure 5b

that this repositioning had little impact on the overall compactness of the shape or area.

Table 2 presents the statistical results associated with 3000 randomly determined

instances for each level of positional error buffer size. For each level, the table lists the

minimal, maximal, mean, and standard deviation of shape indices for both MI and IPQ.

The mean shape indices calculated from the MI approach are almost invariant over the

entire range of error buffer sizes. In contrast, the IPQ values vary considerably over the

range of levels of error buffer values, from a high of 0.8464 to a low of 0.3474. Given

that the shape remains relatively the same over the range of values, the compactness index

should have remained relatively constant as well. In this case, the IPQ appears to be too

sensitive to issues of positional error, whereas the MI inspired compactness index tolerates

positioning errors much better for a digitalized object.
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14 W. Li et al.

Legend

a b

Vertices

Test polygon

Legend

Vertices

Test polygon 0 2.5 5 10

Polygon with random positioning errors

0 2.5 5 10

miles miles

Figure 5. (a) Test polygon and (b) the 10 realizations of polygons with positioning errors (d = 1) out
of 3000 samples.

Table 1. Parameter settings.

Parameter Value

Number of vertices of the test polygon 70
Perimeter 58
Area 228
Runs of randomized repositioning n 3000
Error buffer d [2, 1, 3/4, 1/2, 1/4, 3/16, 1/8, 1/16]

Table 2. Statistical results of shape indices computed from MI and IPQ.

MI-moment of inertia IPQ-isoperimetric quotient

Error buffer, d Min Max Mean Std dev. (%) Min Max Mean Std dev. (%)

1/16 0.8754 0.8776 0.8764 0.03 0.8408 0.8506 0.8464 0.14
1/8 0.8739 0.8792 0.8764 0.06 0.8319 0.8531 0.843 0.28
1/4 0.8701 0.8821 0.8761 0.19 0.7809 0.8436 0.8133 0.92
3/8 0.8676 0.8859 0.8759 0.26 0.7452 0.8339 0.7901 1.29
1/2 0.8666 0.8849 0.8759 0.26 0.7355 0.8297 0.79 1.30
3/4 0.8608 0.8879 0.8753 0.40 0.661 0.7833 0.7268 2.02
1 0.8571 0.8915 0.8743 0.54 0.5545 0.734 0.6472 2.64
2 0.8288 0.9018 0.8679 1.12 0.2655 0.4512 0.3474 2.94

5.2. Robustness test of the MI and IPQ shape indices for vector data under shape

generalization

Our next experiment involved testing the effects of cartographic generalization on the per-

formance of the MI and IPQ shape indices. Figure 6 shows an initial boundary of Maine
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Figure 6. Overlay of original and generalized boundaries of State of Maine.

(excluding islands) and its comparison with a generalized boundary. These shapes have the

same general outline, but the outline of the generalized shape is smoother than the original

one. The Douglas–Peucker algorithm (Douglas and Peucker 1973) was used to simplify

the shape boundary, within tolerance windows from 500 m to 4 km, by 500 m increments.

As the tolerance distance increases, the boundary is represented by fewer points, and there-

fore fewer cartographic details are retained, and the perimeter decreases in length as well.

Figure 7 shows the variation in both the MI and IPQ shape indices when the perimeter

of Maine is smoothed through line generalization. The perimeter values given along the

x-axis were normalized using the initial perimeter length (1979 km). Points closer to the

origin represent generalized shapes with larger tolerance distances. We can observe from

the figure that IPQ drops monotonically as the perimeter of the Maine boundary increases

(as the impact of line generalization decreases), even though the resulting shape remains

nearly the same. In contrast, the MI index remains relatively the same across all levels of

generalization. We conclude here that the MI index is insensitive to boundary roughness

and thus is more robust, in general, for shapes with rugged boundaries.

5.3. Computational efficiency in generating MI index for vector and raster data

In this next experiment, we compared the computational efficiency of a vector computa-

tion of MI using integrals and a raster representation using summation for a test area of

biological habitat. The tests were conducted on a workstation with Intel Core(TM) i5 2

3.2GHz CPU and 8GB of RAM. Figure 8a shows the hypothetical habitat patch extracted

from the habitat of the endangered San Joaquin Kit Fox (SJKF). The habitat area in the
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Figure 7. Variation of shape indices from IPQ and MI for generalized boundaries.

Figure 8. Hypothetical habitat patch (a) and its raster representation with spatial resolution at
1800 m (b).

figure represents areas that lie in three counties (Kings County, Tulare County, and Kern

County) of Southern California (CalEPA 2002). The two holes within the patch are agri-

cultural and residential areas considered outside of desired habitat. Figure 8a presents a

vector representation of the habitat. In order for making a comparative study, the data in the

vector representation were resampled at 10, 30, 90, 180, 270, 360, and 450 m, respectively.

Figure 8b shows a raster representation of the same area with a cell size of 1800 m.
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Figure 9. (a) Time efficiency comparison of MI computation for raster and vector data. (b)
Regression analysis between comptation time and cell sizes.

Figure 9 shows the completion times for the calculation of the MI shape index for

the habitat patch depicted in Figure 8 for seven different raster resolutions as well as in

vector format. The time required to calculate the MI shape values for raster data can be

divided into the time needed to read in the data and the time needed for computing the

MI index by merging the MI value of each pixel within the entire shape. Because the

MI of each pixel in a raster dataset is the same, there is no need to repeatedly compute

it as the pixels are read and processed. Figure 9a shows (1) the time used by each task

for computing the MI index from a raster dataset at different cell sizes, (2) the time used

for computing the MI of the same shape from the vector dataset, and (3) the number of
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pixels involved for each cell size value. From this analysis, one can see that for completing

this task, the fastest time for computing the MI compactness index is when using a vector

representation. The time needed to read in the dataset dominates the total processing time

for both raster and vector models. The actual time used for computing the MI index, for

raster data through summation and for vector data through the integral process, after the

data are read only takes 5% of the total processing time, suggesting that the proposed

method is very computationally efficient. When the raster model is used, the computation

time increases dramatically as spatial resolution increases (cell size decreases). This is due

to the fact that as the cell size decreases, the total number of pixels used for representing

the shape increases by x times (where x equals the square of the ratio between old and new

cell sizes). As each pixel acts as a building block for computing the entire MI of a shape,

the time consumed will be linearly correlated to the total number of pixels. Therefore,

when the size of a cell decreases, the computation time increases significantly. Figure 9b

presents a regression analysis between the relationships of total computational time, total

number of pixels, total read time, and MI computation time versus the pixel size. The

y-axis (representing time) is displayed on a logarithmic scale (using base 10). In each case,

R2 value equaled 0.99. On an average, it takes 1/10,000 of a second to incorporate a single

pixel into the MI computation for a raster-based approach. For the vector data model, the

time complexity is O(n), where n denotes the number of vertices of a shape.

Therefore, in terms of time efficiency, computing an MI compactness index using

a vector model will outperform a raster model. Although the computation of a raster-

based MI approach takes much longer than using vector data, it is still decently effi-

cient. For instance, for a shape with 1 million pixels, the total processing time is less

than 3 minutes in the current testing environment. Through our experiments, we vali-

dated the computational efficiency of the proposed method, due to its quality of being

additive.

5.4. Robustness of MI, IPQ, and NDC in handling shapes with holes

In addition to the experiments detailed in Section 5.3, the three popular methods MI (capa-

ble of handing both raster and vector data), IPQ (capable of handling vector data), and

NDC (capable of handling raster data only) were compared in terms of their performances

in measuring the compactness of shapes with holes. The shape in Figure 8 was also used

in this experiment. A cursory examination of Figure 8 reveals that the areas of the holes

appear to be small enough that the effect they have on shape whether included or not should

be quite small. The IPQ compactness index for the region with the two holes is 26% smaller

than the IPQ index for the region without holes. This is due to the fact that the IPQ index

is based upon both perimeter and area, so the perimeter increases and area decreases when

holes are introduced. In comparison, the compactness index drops only 0.3% when the

NDC approach is applied to the patch with the two holes as compared to the patch with

no holes. This happens because for a large area represented by small cells as shown in

Figure 8b, the perimeter is much smaller than the number of cells used to represent the

same area. Therefore, the variation in perimeter is insignificant when computing the NDC

index. When using the proposed MI approach, the compactness index drops 2% when the

two holes are taken into account, suggesting a relatively small but detectable change in the

compactness of the general region. This result agrees with our observations. It is important

to note that when holes of a shape are considered in computing the compactness index,

different shapes may result in identical values. Altogether, one can conclude that the MI
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shape index outperforms the IPQ method and is equal to or better that the NDC method in

reflecting the actual compactness of shapes with holes.

In summary, our tests have shown that the MI shape index (1) efficiently handles both

vector and raster data; (2) is insensitive to positioning errors; (3) tends to be consistent

across data represented at varying resolutions; (4) easily handles shapes with holes; and

(5) is robust in handling irregular boundaries. Our tests of the conventionally accepted

standard, IPQ, demonstrated weaknesses among virtually all of our tests (roughness, posi-

tioning uncertainty, holes, and resolution). Adopting an MI shape measure as a standard of

shape measurement has been hampered by the lack of an efficient, computationally simple

method of computing the moment of inertia. The methods (both the vector and raster) pre-

sented in Sections 3 and 4 have eliminated this major hurdle. Consequently, the MI shape

approach should be adopted in practice.

6. Case study: a regionalization problem

In this section, we apply the MI approach to a compactness-driven, multi-constraint region-

alization problem that requires the generation of a set of compact regions that form the

basic spatial units of a microeconomic model. Our goal was to aggregate the 4109 trans-

portation analysis zones (TAZs) in six counties of Southern California (Los Angeles,

Riverside, San Bernardino, Orange, Imperial, and Ventura, as shown in Figure 10) into

approximately 100 regions, the maximum number considered computationally feasible for

subsequent work in the microeconomic simulation of the study area. Our objective is to

maximize the overall compactness of the generated regions while at the same time sat-

isfying the following constraints: (1) each region must be spatially contiguous, (2) the

boundaries of regions must not cross major physiographic features and county boundaries,

Figure 10. TAZ boundaries in the study area.
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and (3) the intra-zonal traffic within a generated region must be smaller than a certain per-

centage of all traffic generated by that region. Although we do not give a mathematical

formulation here, this problem can be defined as a nonlinear integer-programming prob-

lem. It is considered to be of a size and model type that is difficult to solve optimally for

even very small problems. Because our problem involved over 4000 ‘atomic’ units, we

were forced to consider a heuristic approach.

We developed a greedy-based heuristic algorithm for the zoning process. Briefly,

it includes four phases, outlined as follows. (1) Initialization: each region is originally

assigned a ‘seed’ TAZ as a starting point. (2) Dealing phase: each region is allowed to grow

initially to a viable size. Similar to dealing cards in a card game, each region is assigned

a TAZ that touches its border and helps keep it compact and maintain constraints. Dealing

is continued until all regions achieve a minimal size. (3) Randomized Greedy growth: for

each region, identify the candidate TAZ not yet assigned to any region that would improve

the objective the most (while maintaining constraints) if added to that region. Considering

all regions, identify the top three regions that will improve the most if allowed to add their

candidate TAZs. Select at random one of these three regions and add its best candidate TAZ

to that region. Repeat this step until each TAZ has been assigned to one of the 100 regions.

(4) Adaptive Search Procedure: if moving a TAZ on a region boundary to another region

will improve the objective function and not violate the constraints, then this TAZ is moved.

This process is repeated until no further improvement can be found.

To demonstrate how easily the proposed MI computation can be applied to such a

regionalization problem, two simplified scenarios are given. Figure 11 shows a partial

region P1 at state j, its three adjacent TAZs – the atomic units (A1, A2, and A3), and their

centroids (in black). To decide which TAZ to aggregate with region P1, its MI is computed

after combining the three TAZs according to Equations (25)–(28). Then by substituting

Figure 11. An example of region growth.
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Figure 12. The best zoning solution out of 333 heuristic trails, using the MI shape index as the
compactness measure.

the MI values in Equation (11), the new shape index of P1 in each case can be obtained.

Given that the improvement of compactness for P1 made by adding A1 is larger than when

adding A3 or A3, A1 will be chosen as the candidate TAZ to grow region P1 (the TAZ

that introduces the maximal compactness improvement will be chosen as the candidate to

grow a region). The second scenario takes place in the adaptive search phase. Suppose that

(1) region P1 has now included A1; (2) A2 and A3 have been assigned to other regions; and

(3) there is another region P2 which is adjacent to P1 along a common edge on A1. At this

point, the variation of overall compactness introduced by moving A1 from P1 to P2 should

be tested. This involves calculating the change of compactness for P1 due to disaggrega-

tion of A1 through the application of Equations (29)–(32), as well as that of P1 with the

aggregation of A1 through the application of Equations (25)–(28). If the sum of the vari-

ation is positive, it indicates that this move will increase the overall compactness, so A1

should be moved. Because the centroid, area, and MI of each TAZ (A1, A2, and A3) were

pre-calculated using Equations (12)–(24) and the computation of the new MI of a region

after (dis)aggregation only requires a few ‘add’ operations rather than being dependent on

the number of atomic units of a region, the time complexity is only O(1) for computing a

region’s compactness index as its shape changes. This demonstrates that the integration of

the proposed compactness measure into a regionalization problem can be very easily and

efficiently accomplished.

Figure 12 shows the best zoning plan obtained by applying the MI-based compact-

ness measure as the objective. Visually, the regions in Figure 12 are mostly round and

close to round, except for those restricted by the political and physiographical boundaries.

Statistically, of the 100 regions generated, 91% achieve compactness over 0.8, 66 of the

100 achieve compactness over 0.9, and only 9 of them have compactness below 0.8. This

demonstrates the good performance of the proposed MI approach in generating compact

zones in a regionalization problem.
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7. Discussion and conclusion

Adopting an MI index as a standard for shape measurement has been hampered by the

lack of an efficient, computationally simple method of computing the moment of iner-

tia. Previous discussions remained at the conceptual level (Kaiser 1966, Young 1988) or

focused on the implementation of only a single shape’s compactness measure (Zhang

et al. 2006). In this article, we proposed a clear mathematical definition and computer

implementation of a trapezium-based approach for computing moment of inertia and the

corresponding compactness index based upon it. This approach has the advantage of

uniquely determining the compactness value, in comparison with the triangular approach

proposed by Massam and Goodchild (1971). Through successive experiments in Section 5,

we demonstrated that measuring compactness with the proposed MI shape index has clear

advantages over the commonly used IPQ. Moreover, we not only discussed the MI compu-

tation for vector data, we also presented a specialized form in which it can be applied to a

raster data model. We successfully integrated this measure into a large and practical region-

alization problem to demonstrate its easy extendibility and integrity. This article makes a

major contribution to geographic analysis through the development of a robust, additive,

computationally efficient, and easy-to-integrate compactness measure. It also proposes that

an MI shape index should be considered as a standard method for measuring compactness.

Though the discussion in this article has been focused on measurements based on

pure geometry, the MI approach is easily extended to applications measuring compactness

weighted by the distribution of a property such as population, which is a feature that is

not supported by any of the other methods discussed. In a vector model, we could assume

that each basic spatial unit (a single shape) had a uniform density ρ, and by weighting

each element of area dA in Equation (7) by ρ, a density-weighted shape index can be

obtained. When it is desirable to investigate the property at a finer level of detail, the

shift can be made to a raster representation and the shape index can be measured by a

weighted summation of pixels for that property. This will be the direction taken in our

future research in order to extend the methodological framework. We will also promote

and broaden the application of the proposed compactness measure to enhance the ability

to precisely identify compact spatial clusters, as needed in multiple scientific fields such as

spatial epidemiology and criminology.
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