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Abstract: In recent years, the underwater wireless sensor network (UWSN) has received a significant
interest among research communities for several applications, such as disaster management, water
quality prediction, environmental observance, underwater navigation, etc. The UWSN comprises a
massive number of sensors placed in rivers and oceans for observing the underwater environment.
However, the underwater sensors are restricted to energy and it is tedious to recharge/replace batter-
ies, resulting in energy efficiency being a major challenge. Clustering and multi-hop routing protocols
are considered energy-efficient solutions for UWSN. However, the cluster-based routing protocols for
traditional wireless networks could not be feasible for UWSN owing to the underwater current, low
bandwidth, high water pressure, propagation delay, and error probability. To resolve these issues
and achieve energy efficiency in UWSN, this study focuses on designing the metaheuristics-based
clustering with a routing protocol for UWSN, named MCR-UWSN. The goal of the MCR-UWSN
technique is to elect an efficient set of cluster heads (CHs) and route to destination. The MCR-UWSN
technique involves the designing of cultural emperor penguin optimizer-based clustering (CEPOC)
techniques to construct clusters. Besides, the multi-hop routing technique, alongside the grasshopper
optimization (MHR-GOA) technique, is derived using multiple input parameters. The performance of
the MCR-UWSN technique was validated, and the results are inspected in terms of different measures.
The experimental results highlighted an enhanced performance of the MCR-UWSN technique over
the recent state-of-art techniques.

Keywords: clustering; routing; energy efficiency; underwater wireless sensor network; metaheuris-
tics; fitness function

1. Introduction

Water covers the Earth in different ways, in the form of oceans, rivers, and lakes. It is
important for humans and other animals to have water in their lives and for other animals
to have water as well. Advances in technology have made it possible to place sensor nodes
in lakes, river environments, and natural forests so that they can be used to study them.
It is possible for these sensor nodes to communicate with each other because they have
smart computing and smart sensors built in. Networks called underwater wireless sensor
networks (UWSNs) are made up of a lot of autonomous sensors that are limited in energy
and homogeneous nodes [1]. These underwater sensors were used to look for things such
as pressure, temperature, water quality, and current flow in the water. They were placed
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in seas and rivers. Based on the types of applications, the data processing station gathers
these kinds of data. A summary of how it works can be found below.

Infrastructure for underwater sensors is made up of different types of devices: an
acoustic modem, a memory, and a sensor. They also have an on-board controller, a power
supply, and a sensor interface circuitry. It is possible to use the underwater sensors to
measure the density and temperature under the water, among other things. They could
also be used to measure acidity, pH, conductivity, turbidity, hydrogen, and dissolved
methane gas. [2] Figure 1 shows the network models used by UWSN. Onshore base station,
underwater sensors, and sink node are all part of the UWSN (SN). The nodes were close to
the SN and sent information to the sink, while another node made the clusters. Underwater
sensors send information to the SN at the surface [3]. The data are then sent to a nearby base
station (BS) [4]. One of the two types of transceivers that the SN nodes have is an acoustic
transceiver that can communicate with the sensors. The other type is a radio transceiver
that can communicate with the BSS using radio frequency. To send messages to other nodes,
underwater nodes have an acoustic transceiver that is built into them. Communication in
underwater environments is different from in terrestrial wireless sensor networks (TWSN)
in terms of topology, channel modelling, and path loss. The UWSN is moved by current at
a speed of about 1–3 m/s. There are different models for the acoustic and radio channels.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 16 
 

 

were placed in seas and rivers. Based on the types of applications, the data processing 
station gathers these kinds of data. A summary of how it works can be found below. 

Infrastructure for underwater sensors is made up of different types of devices: an 
acoustic modem, a memory, and a sensor. They also have an on-board controller, a power 
supply, and a sensor interface circuitry. It is possible to use the underwater sensors to 
measure the density and temperature under the water, among other things. They could 
also be used to measure acidity, pH, conductivity, turbidity, hydrogen, and dissolved me-
thane gas. [2] Figure 1 shows the network models used by UWSN. Onshore base station, 
underwater sensors, and sink node are all part of the UWSN (SN). The nodes were close 
to the SN and sent information to the sink, while another node made the clusters. Under-
water sensors send information to the SN at the surface [3]. The data are then sent to a 
nearby base station (BS) [4]. One of the two types of transceivers that the SN nodes have 
is an acoustic transceiver that can communicate with the sensors. The other type is a radio 
transceiver that can communicate with the BSS using radio frequency. To send messages 
to other nodes, underwater nodes have an acoustic transceiver that is built into them. 
Communication in underwater environments is different from in terrestrial wireless sen-
sor networks (TWSN) in terms of topology, channel modelling, and path loss. The UWSN 
is moved by current at a speed of about 1–3 m/s. There are different models for the acoustic 
and radio channels. 

 
Figure 1. Overview of cluster based UWSN. 

The minimum clash probability routing underwater wireless sensor networks (MCR-
UWSN) is made up of many underwater acoustic sensors that are placed in underwater 
monitoring areas to carry out surveillance, navigation, intrusion detection, data collection, 
and resource exploration [4,5]. Another problem with the Ant Colony Optimization Clash 
probability Routing (ACOCR) UWSN is that it has a huge error rate, propagation delay, 
and a low bandwidth. It is very important for UWSN to come up with an energy-efficient 
way to send data in complicated underwater environments [6]. There are a lot of tradi-
tional ways to route in TWSN. However, in UWSN, they are almost always impossible. 

Multi-hop data transmissions for UWSN in long-distance transmissions are much 
more efficient than single-hop data transmissions [7]. Furthermore, to help with traffic 
load balance and data collision, it is important to have a consistent network topology [8]. 
In a lot of studies, it has been shown that cluster routing algorithms are good at avoiding 
collisions. They balance traffic loads, and they use multi-hop mechanisms to send data 
between clusters [8]. There are many groups of nodes in a cluster routing algorithm, and 
each group has a head node (CHN) and a lot of nodes called “cluster member nodes”. As 
soon as clusters were made, the CHN allocates channels to send data through. The CMN 

Figure 1. Overview of cluster based UWSN.

The minimum clash probability routing underwater wireless sensor networks (MCR-
UWSN) is made up of many underwater acoustic sensors that are placed in underwater
monitoring areas to carry out surveillance, navigation, intrusion detection, data collection,
and resource exploration [4,5]. Another problem with the Ant Colony Optimization Clash
probability Routing (ACOCR) UWSN is that it has a huge error rate, propagation delay,
and a low bandwidth. It is very important for UWSN to come up with an energy-efficient
way to send data in complicated underwater environments [6]. There are a lot of traditional
ways to route in TWSN. However, in UWSN, they are almost always impossible.

Multi-hop data transmissions for UWSN in long-distance transmissions are much
more efficient than single-hop data transmissions [7]. Furthermore, to help with traffic load
balance and data collision, it is important to have a consistent network topology [8]. In a lot
of studies, it has been shown that cluster routing algorithms are good at avoiding collisions.
They balance traffic loads, and they use multi-hop mechanisms to send data between
clusters [8]. There are many groups of nodes in a cluster routing algorithm, and each group
has a head node (CHN) and a lot of nodes called “cluster member nodes”. As soon as
clusters were made, the CHN allocates channels to send data through. The CMN sends
data based on the distribution that might avoid collisions [9]. CHNs are then responsible
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for aggregation, which might reduce data redundancy and cut down on the number of
data packets that need to be sent to the SN, which saves energy [10]. Clustering routing
algorithms are better at cutting down on data transmission and managing traffic, according
to a lot of research. They can also cut down on the number of packets lost, save energy,
and keep the network running for a long time. The underwater sensors are restricted
to energy and it is tedious to replace or recharge batteries, resulting in energy efficiency
being a major challenge. Clustering and multi-hop routing protocols are considered energy-
efficient solutions for UWSN. However, the cluster-based protocols for traditional wireless
networks could not be feasible for UWSN owing to the underwater current, high water
pressure, low bandwidth, propagation delay, and error rate. To resolve these issues and
achieve energy efficiency in UWSN, this study focuses on designing the metaheuristics-
based clustering with a routing protocol for UWSN, named MCR-UWSN. The goal of
the MCR-UWSN technique is to select an optimal set of cluster heads (CHs) and route
to destination.

The main contributions and novelty of this research are as follows.
(i) To solve the issue of clustering, multi-hop routing protocols are considered energy-

efficient solutions for UWSN. However, the cluster-based routing protocols for traditional
wireless networks could not be feasible for UWSN owing to the underwater current, low
bandwidth, high water pressure, propagation delay, and error probability.

(ii) To resolve these issues and achieve energy efficiency in UWSN, this study focuses
on designing metaheuristics-based clustering with a routing protocol for UWSN, named
MCR-UWSN.

(iii) The MCR-UWSN method picks the best CHs and the shortest routes to the
BS. MCR-UWSN is a technique that uses the cultural emperor penguin optimizer-based
clustering (CEPOC) method to choose the best CHs and build groups.

(iv) The goal of the MCR-UWSN technique is to elect an efficient set of cluster heads
(CHs) and route to destination. In addition, a multi-hop routing method that uses grasshop-
per optimization (MHR-GOA) is proposed in this paper.

(v) In order to show how the MCR-UWSN technique improves performance, a series
of simulations are run and the results are looked at in different ways.

The rest of the paper is arranged in the following way. Section 2 explores the literature.
Section 3 provides a model of the proposed system. This is how we came up with the
CEPOC technique and the MHR-GOA technique. Section 4 details the experiments and
shows the results. The given framework is shown to work well in this section. Section 5
finally concludes the paper.

2. Literature Review

This section provides a brief overview of UWSN’s existing cluster-based routing
techniques. Nguyen et al. [11] developed a low-energy adaptive clustering hierarchy
(LEACH) approach for balancing this node’s power utilization and enhancing the network’s
lifespan. In regards to depth levels, the network regions are divided into layers. The data
collected by the nodes are routed via multi-hop routing paths to an SN. The CHs are
selected based on the node’s depth. The CH collects the information packets of each cluster
member and then forwards them to the SN’s upper layer in order to send information from
the nodes to the SN.

Khan et al. [12] presented a novel system for UWSN based on cooperative energy
harvesting. The system employs the AF technique at the relay node to convey data and the
FCR method at the end node to choose accurate signals. The presented technique chooses
relay nodes from among its neighbor nodes based on the amount of energy gathered.
Almost all of UWSN routing techniques based on cooperation do not include energy
harvesting mechanisms at the relay nodes. EH-ARCUN incorporates piezoelectric energy
harvesting at the relay node to increase the work capacity of sensor nodes in the UWSN
with an energy-based cluster optimization algorithm.
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Bhattacharjya et al. [13] design an energy-efficient UWSN capable of reducing energy
costs and increasing efficiency in underwater settings. A UWSN framework is built in the
provided cluster-based underwater wireless sensor network (CUWSNs), which takes use
of the benefits of CH and multi-hop transmissions. The described CUWSN enhances a
network lifespan by multi-hop broadcasts.

Zhu and Wei [14] offer the EERBLC method, a localization-free routing mechanism.
EERBLC protocols are divided into three stages: cluster update and maintenance, transmis-
sion routing, and layer and uneven cluster construction. Initially, the monitoring regions
under the sea were divided into levels, and nodes in comparable layers were grouped.
A novel un-equal clustering strategy based on layer for UWSN is described in order to
balance energy across whole networks and prevent “hotspot” concerns.

Sahana and Singh [15] provided a method for fuzzy-based CH selection that increases
network longevity. Then, they created a fuzzy-based routing technique that significantly
increases the packet transmission rate. In comparison to the current routing protocol, they
have adequate power consumption and, hence, prolong the overall performance of the
network for overcoming the problems underwater.

To protect against internal attacks, Fang et al. [16] describe an LTMS technique based
on binomial distribution. Simultaneously, energy, distance, environment, and security
domains are considered and presented to propose an MSCR system through dynamic
dimension weight in hierarchical WSN.

Gomathi et al. [17] present a unique routing strategy known as the EE-MDCHSRP
technique, which is suggested to the UWSN for successful dynamic CH choices. The
dynamic CH node is defined by taking into consideration the residual energy factor, the
least mobility factor, and the node density.

Sher et al. [18] describe three energy-efficient routing strategies for monitoring the field
with circular and square geometries for underwater WSNs; they are sparsity-aware energy-
efficient clustering based on circular depth, sparsity-aware energy-effective clustering
routing protocol, and circular sparsity-aware energy-efficient clustering. Each protocol is
designed to reduce the power needs of sparse areas, while density search techniques are
used to locate dense regions and sparsity search algorithms are presented to find sparse
network fields.

Karim et al. [19] suggested two network frameworks with numerous sinks: the VH-
ANCRP technique for addressing local maximum nodes and the ANCRP approach for
obtaining consistent data transmission metrics. To form clusters, the network areas are
divided into smaller cubes. As a CH, all cubes are assigned using anchor nodes [20]. When
a source node is freely allocated, each CH is considered to be anchored at the centroid of a
cube through strings. In ANCRP, the source node is in charge of relaying sensed data to
their chosen CHs.

The primary issues of this research are as follows. Recently, energy efficiency has
emerged as a critical concern in wireless sensor networks. Sensor networks are powered by
batteries and, as a result, die after a specific amount of time [21]. As a result, optimizing
data dissipation in an energy-efficient manner becomes a more difficult task in order to
increase the lifespan of sensor devices. Clustering and tree-based data aggregation for
sensor networks can improve wireless sensor network lifespan. Clustering and multi-hop
routing protocols are considered energy-efficient solutions for UWSN. However, the cluster-
based routing protocols for traditional wireless networks could not be feasible for UWSN
owing to the underwater current, low bandwidth, high water pressure, propagation delay,
and error probability [22]. An energy-efficient clustering and tree-based routing protocol
based on hybrid Ant colony optimization (ACO) and particle swarm optimization (PSO) is
suggested (Supreet Kaur et al., 2018). To resolve these issues and achieve energy efficiency
in UWSN, this study focuses on designing the metaheuristics-based clustering with a
routing protocol for UWSN, named MCR-UWSN. The goal of the MCR-UWSN technique
is to elect an efficient set of cluster heads (CHs) and route to destination. The MCR-UWSN
technique involves the designing of cultural emperor penguin optimizer-based clustering
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(CEPOC) techniques to construct clusters. Besides, a multi-hop routing technique using
grasshopper optimization (MHR-GOA) is derived with multiple input parameters [23].

3. The Proposed Model

This paper proposes a novel MCR-UWSN approach for UWSN energy efficiency.
MCR-UWSN uses a two-stage process: CEPOC cluster creation and MHR-GOA routing.
These procedures are described in depth in the following sections.

3.1. System Model

The network scenarios include N dynamic nodes that are sparsely and randomly
distributed throughout a L × L × L. The data sources are the water medium’s sensed data.
The data are collected using underwater sensors. Pressure, temperature, and current flow
are all detected parameters. Underwater sensors are equipped with acoustic modems that
allow them to communicate with another node submerged in the water [24]. The SN is
located on the surface landmass and is equipped with RF and acoustic modems; the SN
acoustic modem collects data from underwater sensors, while the RF modems transfer
data to the BS. They assumed this network scenario was connected to the network. Due
to the fact that the underwater sensors are movable due to the water current’s velocity of
around 1–3 m/s, the topology changes rapidly [25]. The network’s assumption might be
characterized as follows:

1. The nodes know its position and the position of SN on initial placement;
2. Nodes might become the CH, and clusters member/relay;
3. The CH is rotated among the sensors for conserving energy.

Due to the fact that the properties of acoustic waves in an underwater broadcast
medium differ from those of radio waves, the power consumption of WSN cannot be
utilized for UWSN. They apply the underwater acoustic channel’s power consumption
strategy for the present investigation [26]. The energy used while transferring k bits of data
across a distance d at a data rate R is calculated as follows.

ETx(k, d) = k× Eelec +
k
R

Ptx (1)

where Eelec represents the power consumptions to route one bit of data and PTx means the
transferred power [27].

For receiving k bit of data, the receiver radio’s power consumptions are given below

ERx(k) = kPr (2)

Let Pr denote a constant based on the device. For fusing k bit of data, the power
consumptions are determined by

EDA(k) = k× EDA0 (3)

In which EDA0 indicates the energy expended by fusing 1 bit of data, i.e., taken as
five nJ/bit. As nodes are mobile because of the water currents, they place arbitrary motion
for nodes during operational time. The present velocities are 1–3 m/s.

3.2. Design of CEPOC Technique

The CEPO’s central notion is to derive information about issue resolution from EPO’s
budding behavior and to use that knowledge to guide EPO’s evolution concurrently.
Assume CEPO is designed to solve situations with minimum optimization:

min f (xi) (4)

where xi = (xi1, xi2, . . . , xiD) represents the location of ith EPO in the D-dimension search
region; xmin

j < xij < x max
j , (j = 1, 2, . . . , D). f ( ) denotes the objective function; and f (xi)
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signifies the objective value of the location xi. xmin
j and xmax

j represent the lower bound and
upper bound of the location of emperor penguin in the jth dimensions, respectively [28].

The belief space of EPO population in the tth generation is determined as st & Nt
j, in

which st implies situational knowledge components. Nt
j denotes normative knowledge that

represents the value space data for all parameters in the jth dimensions and tth generations.
Nt

j represents I, L, U. It
j = [lt

j , ut
j], whereas It

j denotes the interval of normative knowledge
in jth parameter. The lower bound lt

j and upper bound ut
j are initiated based on the value

range of parameters provided by the problems [29]. Lt
j characterizes the objective value of

lower bound l j
j of the jth dimension and Ut

j represent the objective value of upper bound
ut

j of the jth dimension. The acceptance functions are employed for selecting the EPO
could directly impact the present belief space. In CEPO, the acceptance functions select the
individual in proportion to 20% from the present population space for updating the belief
space. Figure 2 illustrates the work flow of algorithm [30].
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Situational knowledge st could be upgraded with upgrade functions:

st+1 =

{
xt+1

best if f
(

xt+1
best

)
< f

(
st)

st, else,
(5)

where xt+1
best represents the optimum location of EPO population space in the (t + 1)th

generation [31].
Consider that the qth cultural individual, an arbitrary parameter θq in the interval of

zero and one, is generated. The qth cultural individual affect the lower bound of normative
knowledge in the jth parameter if θq < 0.5 is fulfilled. Normative knowledge Nt

j could be
upgraded with upgrade functions:

lt+1
j =

xt+1
qj , i f xt+1

qj ≤ lt
j or f

(
xt+1

q

)
< Lt

j

lt
j , else,

(6)

Lt+1
j =

 f
(

xt+1
q

)
, i f xt+1

qj ≤ lt
j or f

(
xt+1

q

)
< Lt

j

Lt
j, else.

The qth cultural individual affect the upper bound of normative knowledge in jth
parameter if θq ≥ 0.5 is fulfilled:

ut+1
j =

xt+1
qj , i f xt+1

qj ≤ ut
j or f

(
xt+1

q

)
< Ut

j

ut
j, else,

(7)
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Ut+1
j =

 f
(

xt+1
q

)
, i f xt+1

qj ≤ ut
j or f

(
xt+1

q

)
< Ut

j

Ut
j , else.

Normative and situational knowledges could be employed for guiding EPO popu-
lation development with the impact functions [32]. In CEPO, an election operator β is
generated to affect the evolutional EPO population:

β =
Maxiteration − t

Maxiteration
(8)

where Maxiteration represents the maximal numbers of iteration. Consider that ith EPO, an
arbitrary parameter λi in the interval of zero and one is generated [33]. The initial manner
is to upgrade the location of EPO by altering the search size and direction of the variations
using belief space that can be executed while fulfilled λi ≤ β. The location of EPO in the
jth parameter will be upgraded as follows

xt+1
ij =


xt

ij +
∣∣∣size

(
It
j

)
· N(0, 1)

∣∣∣, i f xt
ij < st

j,

xt
ij −

∣∣∣size
(

It
j

)
· N(0, 1)

∣∣∣, i f xt
ij > st

j,

xt
ij + η·size

(
It
j

)
· N(0, 1), else,

(9)

where N(0, 1) represents an arbitrary value subject to the standard distribution [34]. The
size

(
It
j

)
means the length of adaptable range of jth dimension in belief space in tth

generation. η is fixed between the interval [0.01, 0.6].
Another approach is using a sequence of phases in EPO, i.e., the temperature profile

around the huddle computing, the huddle boundary generation, the position update
of emperor penguins, and the distance calculation between emperor penguins, which
would be brought while fulfilled λi > β. The certain phases could be denoted in the
following equation:

T′ = T − t−Maxiteration

Maxiteration
(10)

T =

{
0, if R ≥ 0.5
1, if R < 0.5

where T′ denotes the temperature profile around the huddle, T indicates the time to find an
optimum solution, and R signifies an arbitrary parameter in the interval of zero and one.

Dt
ep = Sep

(
At) · xt

best − Bt · xt
i (11)

where Dt
ep indicates the distance between the EPO and optimum solutions, xt

best denotes
the present optimum solution attain in EPO population space in the tth generation, Sep
represent the social force of the EPO which is accountable for convergence towards the
best solution, At & Bt are employed for avoiding the collisions between adjacent EPO,
and Bt denotes an arbitrary parameter in the interval of zero and one [35]. At could be
calculated by:

At =
(

M×
(

T′ + Pt
grid(Accuracy)

)
× rand ()

)
− T′

Pt
grid(Accuracy) =

∣∣xt
best − xt

i

∣∣ (12)

where M denotes the motion variable that holds a gap among EPOs for avoiding collisions
and Pt

grid (Accuracy) determines the accurate variance by relating the differences between
the EPOs. Sep

(
At) in Equation (11) is calculated by:

Sep
(

At) = √ε·e−t/ρ − e−t (13)
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where e is the base of natural logarithm. ε & ρ represent the 2 control variables for improved
exploitation and exploration within the interval of [1.5, 2] and [2, 3], respectively. Finally,
the location of EPO is upgraded by:

xt+1
i = xt

best − At ·Dt
ep. (14)

In the CEPO algorithm, a M× N grid of sensor nodes can be generated in a geograph-
ical area [36]. Each sensor in a mesh network is assigned a unique ID, and these sensors are
referred to as penguins. On the basis of this penguin, a search space is formed. The distance
between each node is calculated and stored in a matrix using Euclidean distance [37]. The
search space is parameterized by the dimension, as well as the lower and upper limits.
Each penguin’s fitness value is determined by its location in the search space. The fitness
matrix is used to track each penguin’s fitness level. Due to the repetitive nature of this
process, the estimated fitness value is stored in a matrix on each iteration, and such matrices
supply penguins with a low fitness value. By integrating the fitness and location values
of penguins, ideal scores are produced, and the penguins’ positions are updated based
on these scores [38]. As a result, this converges to the optimum solution via the use of
reduction factors and acquires the ideal cluster required for effective communication based
on the assumed parameters [39]. Following cluster formation, the next step is CH election.
As a result, the following variables are used: grid size, node density, and node broadcast
range. These variables correspond to the weights assigned in FF. An FF is calculated for the
purpose of selecting the optimum solution from among the candidate solutions. An FF is
critical to the strategy. Selecting the optimal CH lengthens the life of clusters and may aid
network energy conservation. The following approach is used to calculate fitness values.

Fitness f unction = w1 × a1 + w2 × a2 (15)

where a1 & a2 describes the deltadi f f erence and distanceneighbor, respectively.
In Equation (15), deltadi f f erence represents the difference, and distanceneighbor denotes

the average distance of node. deltadi f f erence is employed as a condition for LB. w1 indicates
the weight assigned to deltadi f f erence and w2 means the weight assigned to distanceneighbor.
In certain cases, each cluster might contain equivalent number of nodes; however, in a
real-time situation, it is not easier because of the sensor’s location variations due to water
current and another impact deltadi f f erence is employed to measure the difference from an
ideal degree to motion of a node from its neighbor. It is computed by:

deltadi f f erence = abs
(

idealdeg − nodedeg

)
(16)

As a result of the current study’s findings that static CH election conditions increase
the likelihood that a single variable will skew the FF and cause an incorrect CH election, the
presented solution dynamically assigns weights to each parameter based on its negative
impact on the FF and situations [40]. The starting values of all parameters are normalized
between 0 and 10 in this approach, and the deviations of all parameters are calculated
as follows:

Dev(p) = [mean− parameter(p)] (17)

The overall weight should be equivalent to one. Every node’s fitness value is defined
in Equation (15), in which the values of parameters are employed and weight allocated to
all the parameters.

3.3. Design of MHR-GOA Technique

Grasshoppers are classified as pests based on the damage they inflict on vegetation
and crops. Rather than acting independently, the grasshopper organizes the world’s largest
swarms. Individuals’ influence on a wind, swarm, food supply, and gravity all have an
effect on swarm motion [41]. The GOA is a novel metaheuristic approach based on SI that
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is triggered by the greater range and abrupt movement of adult grasshoppers in a group as
shown in Algorithm 1. The metaheuristic algorithm breaks the search technique into stages
of exploitation and exploration.

Algorithm 1: Pseudo code of GOA

Initialize
Start the swarms Xi(i = 1, 2, . . . , n),

Initiate cmax, cmin and maximal amounts of iteration;
Evaluate the fitness of every search agent;
T = optimal search agent;
while (l ≤ Max amounts of iteration)

Upgrade c;
for every search agent

Regulate the distance amongst grasshopper in [1,4];
Upgrade the location of the present search agent;
Bring the present search agent back when it drives outside the boundary;

end for
Upgrade T when it has an optimal solution;
l = l + 1;

end while
return T;
End

The grasshopper’s greater range and abrupt movements indicate the exploration stage,
whereas the grasshopper’s limited movements indicate the exploitation stage. Mirjalili
et al., provides a numerical module for this behavior, which may be denoted as:

xi = Si + G + A (18)

where xi denotes the location of i grasshopper, Si indicates the social interaction in a group,
G represents the force of gravity performing on i grasshopper, and A signifies the wind
direction. By extending Si, G & A in (1), the formula is given by:

xi =
N

∑
j=1,j 6=i

s
(∣∣xj − xi

∣∣) xj − xi

dij
− gêg + uêw (19)

where s(r) = f e−r/l − e−r denotes the function which stimulates the influence of social
interaction and N represents amount of grasshopper. gêg indicates the extended G element,
while g signifies gravitational force and êg denotes unit vector directing to the center of the
earth. uêw represents the extended A element, u denotes the constant drift, and êw indicates
the unit vector directing towards the wind direction. dij is the distance between the ith &
jth grasshopper and is estimated as:

dij =
∣∣xj − xj

∣∣
Because grasshoppers swiftly locate their comfortable zone and exhibit poor con-

vergence, the effects of wind and gravity are negligible in comparison to the interaction
between grasshoppers [42]. This indicates that the numerical module must be modified
as follows:

xi = c

(
N

∑
j=1,j 6=i

c
ub− lb

2
s
(∣∣xj − xi

∣∣) xj − xi

dij

)
+ T̂d (20)

where ub & lb represents the upper and lower boundaries of the search space, respectively;
Td indicates value comparative to the target (optimal solution establish until now); and c de-
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notes the reducing coefficient which balances the process of explorations and exploitations,
that is denoted by:

c = cmax − iter
cmax − cmin

Maxiter
(21)

where cmax denotes the maximal value (equivalent to one), cmin represents the minimal
value (equivalent to 0.00001), iter indicates the present iteration, and Maxiter signifies the
maximum number of iterations. The primary objective of MHR-GOA is to find a novel
route from CHS to BS [43]. The novel paths are recognized with the help of MHR-GOA as
FF metric i.e., comprised of NDE, RE, and DTBS.

Initially, each FF defines appropriate solution to the executed problem. In routing,
each FF indicates the transmission path in the cluster head to the SN. The significance
of FF is associated with network locations of CH which are included in the SN [44]. The
supremacy of FF is related to m + 1, in which m indicates the amount of CH contained
from the system. Where Fi = (Fi,1(t), Fi,2(t) . . . Fi,m+1(t)) is the ith FF and the position
Fi,d, ∀i1 ≤ i ≤ m + 1, ∀d1 ≤ d ≤ m + 1 defines next-hop for sending data to BS. It is
possible to be extremely focused on discovering the ideal path from CH to SN. It may be
achieved with the use of FF in a variety of sub-objectives, such as NDE, RE, and Euclidean
distance, among other things [45]. In order to convey data, each subsequent hop obtains the
data and transfers it to the BS server. As a result, the highest possible RE of the following
hop is given first priority. Furthermore, for the main sub-objective of using RE, f 1 is
enhanced as follows:

f 1 =
m

∑
i=1

ECHi (22)

Euclidean distance may be defined as the distance between CH and the following hop,
as well as the distance between CH and SN. When distances are kept to a minimum, the
energy consumption rate is likewise decreased. The following purpose is to reduce the
distance between CHs and SN as measured in the following manner:

f 2 =
1

∑m
i=1 dis(CHi, NH) + dis(NH, BS)

(23)

ND denotes the list of nodes in the next hops. If hop is composed of a small number
of CH members, it consumes low energy in acquiring information from the nearby node
and survives for a long period of time. Following that, the next-hop with a restricted node
degree is notably picked. Finally, NDE is defined based on the degrees of node f 3,

f 3 =
1

Σm
i=1Ii

(24)

As demonstrated in Equation (25), the weighted sum models are then processed for
all sub-objectives and turned into a single objective model. Here α1, α2 & α3 denotes the
weight allocated to each sub objectives, where αiε(0, 1) and α1 + α2 + α3 = 1.

Fitness = α1( f 1) + α2( f 2) + α3( f 3) (25)

4. Performance Validation

This section investigates the performance of the proposed MCR-UWSN technique
with other techniques [46]. Figure 3 shows the network lifetime results of the MCR-UWSN
model, such as the number of surviving nodes (NSN).
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Figure 3 depicts that the LEACH technique has attained an ineffective performance
with the least NSN. At the same time, the LEACH-ANT technique has gained slightly
enhanced NSN over the LEACH technique. Besides, the CUWSN, EOCA, and ACOCR
techniques have resulted in a moderate performance over the other techniques. However,
the proposed MCR-UWSN technique has accomplished the superior performance with the
maximum NSN.

Table 1 and Figure 4 illustrate the network lifetime analysis of the MCR-UWSN
technique with existing techniques. From the figure, it is apparent that the MCR-UWSN
technique has offered the maximum network lifetime [47]. With respect to FND, the
MCR-UWSN technique has attained a higher FND of 852 rounds, whereas the LEACH,
LEACH-ANT, CUWSN, EOCA, and ACOCR techniques achieved a lower FND of 424,
560, 629, 689, and 805 rounds, respectively. Moreover, in terms of HND, the MCR-UWSN
approach reached a superior HND of 1121 rounds, whereas the LEACH, LEACH-ANT,
CUWSN, EOCA, and ACOCR manners had an inferior HND of 646, 813, 891, 949, and 1050
rounds, respectively. Furthermore, with respect to LND, the MCR-UWSN method has the
superior LND of 1187 rounds, whereas the LEACH, LEACH-ANT, CUWSN, EOCA, and
ACOCR methods have a minimal LND of 710, 906, 989, 1021, and 1187 rounds, respectively.

Table 1. Network lifetime analysis of the MCR-UWSN model with different measures.

Number of Rounds

LEACH LEACH-ANT CUWSN EOCA ACOCR MCR-UWSN

FND 424 560 629 689 805 852
HND 646 813 891 949 1050 1121
LND 710 906 989 1021 1165 1187
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Figure 5 demonstrates the total energy consumption (TEC) analysis of the MCR-
UWSN technique with existing techniques. The figure depicts that the LEACH technique
has gained an ineffective outcome with the higher TEC over the other techniques. Like-
wise, the LEACH-ANT technique has attained an improved performance, whereas the
CUWSN, EOCA, and ACOCR techniques have a moderate TEC [48]. However, the MCR-
UWSN technique has resulted in the superior performance over the other techniques with
minimal TEC.
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Table 2 and Figure 6 illustrate the network lifetime analysis of the MCR-UWSN
technique with respect to the number of rounds for energy exhausted (NREE). The figure
shows that the LEACH approach has an ineffective performance with the minimum NREE.
Simultaneously, the LEACH-ANT method has a slightly higher NREE over the LEACH
algorithm. In addition, the CUWSN, EOCA, and ACOCR methods resulted in a moderate
performance over the other methods. Eventually, the presented MCR-UWSN method has
accomplished a higher performance with the maximal NREE.
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Table 2. Result analysis of MCR-UWSN model in terms of the number of rounds for energy ex-
hausted (NREE).

Number of Rounds for Energy Exhausted (NREE)

Number of
Nodes LEACH LEACH-ANT CUWSN EOCA ACOCR MCR-UWSN

300 463 631 718 775 919 1000
325 523 691 751 859 952 1045
350 619 793 823 904 1000 1093
375 670 826 919 991 1111 1186
400 709 913 985 1027 1168 1264
425 781 946 1021 1111 1201 1288
450 826 1045 1090 1156 1252 1336
475 868 1099 1138 1225 1306 1387
500 928 1138 1231 1267 1411 1489
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Figure 7 depicts the network lifetime analysis of the MCR-UWSN approach with
respect to the number of received packets (NRP). The figure displays that the LEACH
method has achieved an ineffective performance with the minimal NRP. Likewise, the
LEACH-ANT method has reached slightly increased NRP over the LEACH method. Fol-
lowed by the CUWSN, EOCA and ACOCR methods have a moderate efficiency over the
other algorithms [49]. Finally, the projected MCR-UWSN algorithm has accomplished the
maximal performance with a higher NRP.

The major strength of the proposed systems is that the MCR-UWSN approach consists
of two stages: CEPOC-based cluster building and MHR-GOA-based routing. The CEPOC
approach has produced a fitness function with unique input parameters for CH selection
and cluster formation. It divides the sensor network into several parts, known as clusters,
and cluster heads are selected in each cluster. Then, using short-distance connections,
tree-based data aggregation takes over and collects sensory information directly from
cluster heads. The CEPOC optimization determines the shortest path between the sink and
the cluster heads. The use of compressive sensing minimizes the size of the packets that
will be broadcast in the sensor network. A weakness of the proposed system is the lack of
performance in the data aggregation process and underwater object tracking techniques.
To address these concerns in the future, hybrid protocols will be utilized to extend the
network lifespan by conserving energy more efficiently through data aggregation and
object tracking for sensor networks.
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5. Conclusions

In this study, a new MCR-UWSN technique is derived to accomplish an energy-
efficient performance in UWSN. The MCR-UWSN technique incorporates a two stage
process, namely CEPOC-based cluster construction and MHR-GOA-based routing. The
CEPOC technique has derived a fitness function involving distinct input parameters for
CH selection and cluster construction. Moreover, the MHR-GOA technique is proposed to
optimally derive the routes for multi-hop communication. The MCR-UWSN method has
the superior LND of 1187 rounds, whereas the LEACH, LEACH-ANT, CUWSN, EOCA,
and ACOCR methods have a minimal LND of 710, 906, 989, 1021, and 1187 rounds,
respectively. In order to prove an enhanced performance of the MCR-UWSN technique,
a series of simulation processes take place, and the results are examined under different
dimensions. The simulation results guaranteed an enhanced energy-efficient performance
of the MCR-UWSN technique over the existing techniques. In the future, data aggregation
and underwater object tracking techniques can be designed for UWSN.
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