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.

AN EFFICIENT METHOD FOR BAND STRUCTURE
CALCULATIONS IN 3D PHOTONIC CRYSTALS

DAVID C. DOBSON, JAYADEEP GOPALAKRISHNAN, AND JOSEPH E. PASCIAK

Abstract. A method for computing band structures for three-dimensional photonic
crystals is described. The method combines a mixed finite element discretization on a
uniform grid with a fast Fourier transform preconditioner and a preconditioned sub-
space iteration algorithm. Numerical examples illustrating the behavior of the method
are presented.

1. Introduction

Photonic crystals are structures constructed of dielectric materials arranged in a pe-
riodic array. In this paper we consider structures which are periodic along each of the
three orthogonal coordinate axes in space. Such structures have been found to exhibit in-
teresting spectral properties with respect to classical electromagnetic wave propagation,
including the appearance of band gaps. Three-dimensional photonic band gap structures
have many possible applications in lasers, microwaves, optical communications, etc. See
[4, 14] for more information on photonic crystals and their applications.

Since fabrication of these structures is currently quite challenging, computation has
become the primary tool for investigating the spectra of photonic crystals. In this paper
we propose a new computational method based on a mixed finite element discretization
of Maxwell’s equations, combined with a fast Fourier transform (FFT) preconditioner
and a preconditioned subspace iteration algorithm for finding eigenvalues. Finite ele-
ment methods have already been introduced for 2D photonic crystals [1, 8]. The 2D
case is much simpler than the 3D case since the underlying problem is scalar, and a
classical finite element discretization can be used. For simplicity we consider here only
the simple cubic (sc) lattice geometry. Except for the FFT preconditioner, the same
basic techniques extend to other typical lattice geometries.

Several other techniques have been developed for band structure calculations in general
3D photonic crystals (see for example the survey [4] and the references therein; see also
[20]). The most popular methods are based on truncated plane wave decompositions
of the electromagnetic field [12, 25]. These approaches are very natural and can offer
fast convergence in situations where the spatial variation of the medium is smooth. In
photonic crystals however, it is much more common that the underlying medium is
discontinuous. In this case Gibbs-type phenomena may lead to slow convergence of the
truncated field [25]. In this paper we develop a method which is naturally suited to
handle discontinuous media, using finite element approximations which conform to the
material interfaces and do not suffer from Gibbs phenomena.

In the next section, we formulate the underlying eigenvalue problem in mixed form
over appropriate function spaces. In section 3, we then develop a discretization scheme

This research was supported by NSF grant number DMS-9626567, AFOSR grant number F49620-
98-1-0005 and Alfred P. Sloan Research Fellowship.
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for the mixed problem using Nedelec edge elements specially modified to give stable
approximations. In section 4, we construct a fast Fourier transform preconditioner to be
used in an iterative eigenvalue approximation algorithm described in section 5. Finally
in section 6, the results of several numerical experiments are described.

2. Problem formulation

We consider classical electromagnetic wave propagation governed by Maxwell’s equa-
tions

∇× E − iωµH = 0, (1)

∇× H + iωεE = 0, (2)

where the magnetic permeability µ is assumed constant, and the dielectric coefficient ε
is real, bounded and uniformly bounded away from zero. The above equations hold on
all of IR3. Setting γ = (µε)−1, it follows from (1,2) that

∇× γ∇× H = ω2H, on IR3, (3)

∇ · H = 0, on IR3. (4)

The medium is assumed to have unit periodicity on a cubic lattice. Thus denoting
Z = {0,±1,±2, . . .}, and defining the lattice Λ = Z3, we have

ε(x + n) = ε(x), for all x ∈ IR3, and for all n ∈ Λ.

We define the periodic domain Ω = IR3/Λ and the first Brillouin zone K = [−π, π]3.
We are interested in finding Bloch eigenfunctions [22], that is, functions H satisfying

(3,4) for a particular frequency ω, and such that H(x) = eiα·xHα(x), where Hα is periodic
in x, and α ∈ K. For each α ∈ K, it then follows from (3,4) that

∇α × γ∇α × Hα = ω2Hα, in Ω, (5)

∇α · Hα = 0, in Ω, (6)

where ∇α = (∇ + iα). We will henceforth consider only the transformed system (5,6)
and so to simplify notation we drop the subscript α when referring to Hα.

We get a weak formulation of (5,6) by introducing the spaces

V ≡ H(curl) = {F ∈ L2(Ω)3 : F periodic and ∇× F ∈ (L2(Ω))3},
V 0,α = {F ∈ V : ∇α · F = 0 in Ω}.

In the above definitions, the differentiation is defined in the distributional sense. For
F, G ∈ V , we introduce the hermitian forms

a(F, G) =
∫

Ω
γ(∇α × F ) · (∇α × G) dx, (7)

c(F, G) =
∫

Ω
F · G dx. (8)

The weak formulation of (5,6) is then to find ω ∈ IR and H ∈ V 0,α satisfying

a(H, F ) = ω2c(H, F ) for all F ∈ V 0,α. (9)

The form a(·, ·) is positive semidefinite on V × V and is positive definite on V 0,α × V 0,α

for α &= (0, 0, 0). Of course, c(·, ·) is positive definite on V × V .
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We will consider (9) in mixed form. Let W ≡ H1 = {g ∈ L2(Ω) : g periodic and ∇g ∈
(L2(Ω))3} and for ρ ∈ H1 and F ∈ V , define

b(ρ, F ) =
∫

Ω
∇αρ · F dx.

The mixed form of (9) is then: find ω ∈ IR and (H, ρ) ∈ V × W such that

a(H, F ) + b(ρ, F ) = ω2c(H, F ), for all F ∈ V, (10)

b(g, H) = 0, for all g ∈ W. (11)

The stability of the mixed reformulation depends two conditions [7]. The first is
the so-called Ladyzhenskaya-Babuška-Brezzi (LBB) condition [16, 2, 6], i.e., there is a
constant C such that

‖w‖W ≤ C sup
X∈V
X #=0

|b(w, X)|
‖X‖V

, (12)

for all w ∈ W . The norms above are the natural norms in V and W . The second
condition is that a(·, ·) is coercive on V 0,α, i.e., there is a constant c0 such that

c0‖U‖2
V ≤ a(U, U) for all U ∈ V 0,α. (13)

The above conditions imply the equivalence of (10,11) with (9). In the case of α =
(0, 0, 0), the above conditions hold provided that one restricts the spaces V and W to
functions which are orthogonal to constants. For all other α in K, the above conditions
hold with the original spaces [9].

3. Discretization

We will develop the approximation to (9) by the mixed approach. Stable and con-
vergent approximations to the static problem follow provided that one uses subspaces
of Vh ⊂ V and Wh ⊂ W satisfying discrete versions of the conditions (12) and (13).
To guarantee convergence for the eigenvalue problem, additional conditions need to be
verified [3]. For α = (0, 0, 0), the Nedelec approximation spaces were used for similar
problems [18, 19]. To get a stable pair for α &= (0, 0, 0), we use α-modified spaces.
The convergence and stability properties of the α-modified spaces are given in [9]. The
additional conditions which guarantee convergence for the eigenvalue problem are also
verified there.

We first consider the space Vh defined using lowest order Nedelec elements on cubes
[18, 19]. We start by partitioning the domain Ω into N×N×N smaller cubes (Ω = ∪jΩj),
each of side length h = 1/N . The space Vh is defined by

Vh = {F ∈ H(curl) : F |Ωj ∈ Q0,1,1 × Q1,0,1 × Q1,1,0}.
Here Q0,1,1 is the space of functions which are linear in the directions y and z and
constant in the x direction. The spaces Q1,0,1 and Q1,1,0 are defined analogously. The
condition that F be in H(curl) imposes continuity of the tangential components on
the faces between cubes and also between faces of cubes which are translations by any
index in Λ. The tangential component along the edges of the mesh of functions in Vh

are constant. In fact, any function in Vh is uniquely determined by the values of its
tangential components on the edges. One has a nodal basis {ψj} where ψj has a unit
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component tangential to the j’th edge with a vanishing tangential component along all
other edges. The support of ψj is contained in the cubes which contain the j’th edge.
We consider here the lowest order method for simplicity. All of the techniques extend
to higher order spaces in an obvious way.

The appropriate approximation space Wh is the set of functions which are continuous
and piecewise trilinear with respect to the same mesh as used in defining Vh. The spaces
which result when one orthogonalizes against constants satisfy the discrete versions of
(12) and (13) for α = (0, 0, 0). The usual nodal basis for Wh shall be denoted {φj}.

Let us consider α &= (0, 0, 0). We need to develop spaces V α
h and W α

h which satisfy
the condition

‖w‖W ≤ C sup
X∈V α

h
X #=0

|b(w, X)|
‖X‖V

= C sup
X∈V α

h
X #=0

|c(X,∇αw)|
‖X‖V

, (14)

for all w ∈ W α
h with constant C independent of w and h. The analogous condition is

proved in the case of α = (0, 0, 0) by using the fact that for any w ∈ Wh, ∇w ∈ Vh.
Thus, we construct spaces (V α

h , W α
h ) which satisfy ∇αw ∈ V α

h for all w ∈ W α
h . Although

this may seem to be a difficult problem at first, it can be handled by observing that
the operator ∇α arose in our equations (5,6) from the introduction of a phase factor.
This motivates the introduction of a phase factor into the definition of the mixed finite
element approximation spaces. Specifically, we define

V α
h = span

j
{e−iα·(x−xj)ψj},

W α
h = span

j
{e−iα·(x−yj)φj}.

(15)

Here xj is the center of the j’th edge and yj is the node corresponding to the nodal
function φj. In the above definition, x is taken to vary smoothly over the support of the
basis functions for degrees of freedom on the periodic boundary. It is easy to check that
the above pair of spaces satisfy ∇αw ∈ V α

h for all w ∈ W α
h . The identities

∇α × (e−iα·(x−xj)ψj) = e−iα·(x−xj)(∇× ψj)

and

∇α(e−iα·(x−yj)φj) = e−iα·(x−yj)∇φj

simplify the computation of the element matrices which arise in the implementation.
These spaces are no longer spaces of piecewise polynomial functions.

The approximation and stability properties for these spaces are proved in [9]. It is
shown there that (14) holds and that there is a constant c0 independent of h satisfying

c0‖U‖2
V ≤ a(U, U) for all U ∈ V 0,α

h . (16)

Here V 0,α
h = {F ∈ V α

h : b(g, F ) = 0 for all g ∈ W α
h }.

The approximation to problem (10,11) is then: find ω ∈ IR and (Hh, ρh) ∈ V α
h × W α

h

such that

a(Hh, F ) + b(ρh, F ) = ω2c(Hh, F ), for all F ∈ V α
h , (17)

b(g, Hh) = 0, for all g ∈ W α
h . (18)
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The above problem is equivalent to: find Hh ∈ V 0,α
h satisfying

a(Hh, F ) = ω2c(Hh, F ) for all F ∈ V 0,α
h . (19)

4. Preconditioner

Preconditioned iteration techniques for eigenvalue problems are well studied for pos-
itive definite hermitian operators [5, 10, 15]. Thus, it is most natural to develop an
iterative scheme for (19). The difficulty, though, is that one does not have a computable
basis for V 0,α

h . In this section, we develop a preconditioner for the problem (19) that
does not require an explicit basis for V 0,α

h .
Given a functional G on V 0,α

h , a preconditioner involves finding the solution Dh ∈ V 0,α
h

of the problem

a0(Dh, F ) = G(F ), for all F ∈ V 0,α
h . (20)

Here a0(·, ·) is another positive definite Hermitian form on V 0,α
h ×V 0,α

h that is spectrally
equivalent to a(·, ·).

The way that we avoid a computational basis for V 0,α
h is to develop the preconditioner

in mixed form. We start by defining a0(·, ·) on V × V by (7) with γ set to be the
constant γ0 which equals the maximum of the original (spatially dependent) γ. Given a
functional G on V 0,α

h , let G̃ be any extension to V α
h . The preconditioner involves solving

the problem: Find (Dh, ηh) ∈ V α
h × W α

h such that

a0(Dh, F ) + b(ηh, F ) = G̃(F ), for all F ∈ V α
h ,

b(g, Dh) = 0, for all g ∈ W α
h .

(21)

It is easy to show that Dh is independent of the choice of extension G̃. The second
equation implies that Dh is in V 0,α

h . Moreover, taking F ∈ V 0,α
h in the first equation

shows that Dh defined by (21) satisfies (20). Note that the solution of (21) can be
computed without the use of a computational basis for V 0,α

h .
The use of a constant coefficient in the definition of a0(·, ·) enables the efficient solution

of (21). It follows from this and the definition of the bases for V α
h and W α

h that the
matrices which appear in the implementation,

A0
j,k = a0(e

−iα·(x−xj)ψj , e
−iα·(x−xk)ψk),

Bj,k = b(e−iα·(x−yj)φj, e
−iα·(x−xk)ψk)

are periodically translationally invariant. Basis functions are connected (have a nonzero
entry) only if the corresponding edges (or nodes) are on the boundary of some cube. The
entries only depend on the geometric relation between the degrees of freedom. Clearly,
there are 3N3 edge degrees of freedom for V α

h and N3 vertex degrees of freedom for W α
h .

The periodically translationally invariant property means that the matrix problem
corresponding to (21),

(
A0 B∗

B 0

) (
X
Y

)

=

(
g̃
0

)

(22)

can be efficiently solved by application of the fast Fourier transform (FFT) (here g̃k =
G̃(e−iα·(x−xk)ψk)). To see this, we group together the x-edge degrees of freedom (DOF),
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the y-edge DOF, the z-edge DOF and the vertex DOF into separate vectors. We inde-
pendently apply the FFT to these four vectors and combine the results into a vector
grouping together the four entries correspoding to a given Fourier component. Applying
this procedure to the unknown (X, Y ) and the right hand side (g̃, 0) gives a vector Ẑ
(still unknown) and a transformed right hand side Ĝ. The resulting matrix problem is

M̂Ẑ = Ĝ

where M̂ is a block 4×4 diagonal matrix. To see this, one groups the original degrees of
freedom into blocks of four where each block is associated with a mesh cube and consists
of the three edge DOF corresponding to the smallest x, y, z values and the corresponding
vertex degree of freedom. Thus, each block has a degree of freedom for an edge parallel
to the x-axis, y-axis and z-axis and a vertex degree of freedom. Under this reordering,
the matrix (

A0 B∗

B 0

)

results in a matrix M which has a structure consisting of block 4×4 matrices. Moreover,
because of periodic translational invariance, it is completely determined by the N3 blocks
(e.g., {M1,l

j,k : l = 1, . . . , N3, j, k = 1, 2, 3, 4}) associated with any one of the cubes. Here
the upper indices give the block location while the lower identify the entry within the
block. The components in the diagonal blocks of M̂ are the three dimensional FFT’s of
the respective components in the block 4× 4 matrices, i.e., M̂ l,l

j,k = FFT (M1,∗
j,k )(l) where

the FFT is with respect to the ∗ index. In the implementation, one preprocesses the
inverses of the diagonal blocks of M̂ . Subsequently, the computation of Dh satisfying
(21) involves 3 FFT’s applied to the right hand side data g̃ followed by multiplication
of the inverse of the diagonal blocks followed by 3 inverse FFT’s. The total work is
O(N3ln(N)).

5. Subspace preconditioning algorithm

The subspace preconditioning algorithm is intended to find a given number, say s, of
the smallest eigenvalues of a large-dimensional hermitian positive definite operator. An
analysis of this method and references to other similar methods can be found in [5, 15].

Consider the problem (19). We will give the algorithm entirely in terms of its matrix
implementation. Even though the solution involves functions in V 0,α

h , it is implemented
in the basis for V α

h . Let m = 3N3 be the dimension of V α
h . Denote by A : Cm → Cm the

finite element matrix associated with the hermitian form a(·, ·) and by C : Cm → Cm the
matrix associated with c(·, ·). The matrix analogue of the preconditioner is the matrix
S defined by Sg̃ = X where X is the solution of (22). The subspace iteration algorithm
is given as follows:

Choose an initial set of random vectors {g̃i ∈ Cm : i = 1, . . . , s} and define Rα
0 =

span{Sg̃1, . . . Sg̃s}. Note that the vectors in Rα
0 represent (are the coefficient vectors

for) functions in V 0,α
h .

For n = 0, 1, 2, . . . . , perform the iteration:
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1. Compute Ritz eigenvectors {vn
j }s

j=1 ⊂ Rα
n, and their corresponding eigenvalues

λn
1 ≤ λn

2 ≤ · · · ≤ λn
s satisfying the generalized eigenvalue problem

(Avn
j ,φ) = λn

j (Cvn
j ,φ), for all φ ∈ Rα

n .

Here we use (·, ·) to denote the hermitian inner product on Cm.
2. Compute for j = 1, . . . , s,

v̂n+1
j = vn

j − S(Avn
j − λn

j Cvn
j ).

3. Define Rα
n+1 = span{v̂n+1

1 , . . . , v̂n+1
s }.

The iteration (1)–(3) is terminated when maxj{|λn
j − λn+1

j |} is smaller than some pre-
scribed tolerance. The resulting λ’s coincide with ω2 in (19) up to the prescribed toler-
ance. Notice that the matrix-vector products Avn

j , Cvn
j are O(N3) operations. With s

fixed, one complete iteration of this algorithm is O(N3ln(N)). It follows from [5] that
the iteration converges at a rate which is independent of N .

For a full band structure calculation one generally solves a sequence of problems
corresponding to a sample of points {αm} ⊂ K. The eigenvalues and eigenvectors depend
continuously on α. Consequently the eigenvectors for αm provide a good approximation
to those for αm+1 provided that |αm − αm+1| is small. However, the approximation
subspaces depend on α and and the eigenvalue iteration algorithm for requires that the
initial subspace correspond to functions in V 0,α

h so the subspace corresponding to αm

cannot be directly used as an initial subspace for αm+1. Instead, we define an initial
subspace for αm+1 as follows. Let {vαm

1 , . . . , vαm
s } be the eigenvectors for αm. We define

{vαm+1
1 , . . . , vαm+1

s } by vαm+1
i = X where X is the solution of (22) with g̃ = A0vαm

i .
Here the matrices A0 and B (appearing in (22) are defined in terms of αm+1. It is
easy to show that the vectors {vαm+1

1 , . . . , vαm+1
s } correspond to functions in V 0,αm+1

h and
provide no worse approximation to the eigenvectors corresponding to αm+1 than that
given by {vαm

1 , . . . , vαm
s }. Thus, we use span{vαm+1

1 , . . . , vαm+1
s } as an initial subspace

for the αm+1 computation. This gives good starting subspaces provided that we choose a
sequence of α’s such that the differences |αm −αm+1| are small. Proceeding in this way,
one typically requires only a small number of subspace iterations for each subsequent
problem after the first.

6. Numerical experiments

We performed several experiments to check the method. First in the case of a homoge-
neous medium, we checked eigenvalues produced by the method against exact solutions.
Convergence was observed as the discretization level N was increased, with no spurious
modes. With N = 32, the maximum error in the first 50 eigenvalues was approximately
0.6%. Next we checked the method against results in the literature obtained with the
plane wave expansion method. These are illustrated in the two examples below.

Figure 2 shows a simple “scaffold” structure, similar to that analyzed by Sözüer and
Haus [24]. All calculations were performed on a 16 × 16 × 16 finite element grid. Fig-
ure 2(c) illustrates the band structure as α varies along lines connecting points of high
symmetry in K (shown in Figure 1). This calculation found ten eigenvalues at each of
90 values of α and required approximately one hour on a single processor SGI Origin
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R

Z

MX

T

!

Figure 1. Brillouin zone K, showing symmetry points used for band
structure plots in Figures 2(c) and 3(c).

2000. The density of states in Figure 2(d) was calculated using ten eigenvalues at 4096
uniformly spaced points in the reduced Brillouin zone.

Figure 3 shows a layered silicon structure. This structure was analyzed by Ho et al
[13] and later fabricated in silicon at infrared lengthscales and analyzed by Lin et al
[17]. Similar structures were analyzed by Sözüer and Dowling [23], and the idea for
this type of layered structure has been attributed to unpublished work of Pendry and
MacKinnon. We note that the lattice can be considered as a face-centered-cubic (fcc)
primitive unit cell with a basis of two rods, however for computational simplicity we
took the fundamental cell to be the 1 × 1 ×

√
2 rectangular solid shown in figure 3(b).

The density of states figure 3(d) was calculated by computing sixteen eigenvalues at
each of 4096 uniformly spaced points in the reduced Brillouin zone. The results agree
well with [17], although there is a small discrepancy in the location of the gap. This can
be attributed to a slight difference in bar width, which we chose at w = 0.25 to align
with our computational grid, whereas [17] used w = 0.28.

Finally, we present the results of comparisons of our method against two plane wave
methods, a Galerkin and a collocation formulation. We shall not give details of these
methods here although the difference in the two methods is their treatment of γ ap-
pearing in the form a(·, ·). These plane wave methods fall into the general framework of
spectral methods and some details of their implementation can be found in, for example,
[11, 21]. Tables 1 and 2 give the first two eigenvalues as a function of the mesh size and
method for the scaffold structure of Figure 2 for α = (π, 0, 0). Here A denotes the mixed
method described in this paper, B denotes the Galerkin plane wave approach and C
denotes the collocation plane wave approach. It can be shown that eigenvalue approx-
imation from Method B converge monitonically from above to the desired eigenvalue
as N increases. This is illustrated by the tabulated results. Method A also appears to
converge in the same way. Surprisingly though, Method C appears to converge mon-
totonically from below. Method B seems to be converging slower that the other two
methods. In contrast, Method C appears to be converging fastest (although very little
has been proved about the method).
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(a) Basic structure, showing 2×2×2 array
of cells. Refractive index is 3.6 in solid
regions, 1 outside.

(b) Computational cell
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(d) Density of states.

Figure 2. Scaffold structure.

7. Conclusion

We have presented a new method for computing band structures in general three-
dimensional photonic crystals. The method combines a mixed finite element discretiza-
tion, a fast Fourier transform preconditioner, and a subspace iteration algorithm to find
approximate eigenvalues. The finite element discretization of the field is naturally suited
to handle discontinuous media, and the subspace iteration algorithm is very efficient for
computing continuously varying families of eigenvalues. Improvements in the method
may be possible by investigating other eigenvalue iteration schemes or by extending the
discretization scheme to allow unstructured grids.
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(a) Basic structure, showing one
layer. Refractive index is 3.6 in
bars, 1 outside.

(b) Computational cell.

! X M R T Z ! M
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

"
 / 

2 
#

(c) Band structure. Dashed lines indicate
gap edges.
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Figure 3. Layered bar structure.

N A B C
8 2.98 3.94 2.84
16 2.95 3.39 2.90
32 2.94 3.15 2.92
64 2.93 3.04 2.92

Table 1. First eigenvalue.

N A B C
8 7.70 8.29 7.17
16 7.30 7.74 7.14
32 7.19 7.45 7.14
64 7.16 7.30 7.14

Table 2. Second eigenvalue.
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