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ABSTRACT An efficient method is presented for calculation 
of RMS von Mises stresses from stress component transfer 

functions and the Fourier representation of random input 

forces. An efficient implementation of the method calculates 

the RMS stresses direcfty from the linear stress and displace- 
ment modes. The key relation presented is one suggested in 

past literature, but does not appear to have been previously 
exploited in #is manner. 

. 

NOMENCLATURE 

f$t) input force time history in direction i a t  location j 
3 frequency-domain representation of f ( r )  

h( r )  impulse response function matrix 

p ( t )  von M i s e s  stress time history 
D j (  o) frequency dependence in s t ress  transfer functions 

H transfer function matrix 

N, number of frequency points 

N, 
PSD power spectral density 

RMS root mean square  

S, 
s, input force autospectral density 

~ ( 1 )  

9% 
Y . 

( 7f matrixtranspose 

( ) time average 

E[ ] expected value operator 

[;' Hermitian (complex conjugate transpose) 

1. INTRODUCTION 

The primary purpose of finite element s t ress  analysis is to 
estimate the reliability of engineering designs, In structural 
applications, the von Mises stress due  to a given load is often 
used as the metric for evaluating design margins. For deter- 
ministic loads, both static and  dynamic, the calculation of von 
Mises stress is stm-ghtfotward [l]. For random load environ- 
ments typically defined in terms of power spectral densities, 
the linear theory normally applied to compute RMS accelera- 
tion, displacement, o r  stress tensor responses cannot be 
applied directly to calculate the RMS von Mises stress, a 
nonlinear function of the  linear stress components. Although, 

number of input force locations 

input force cross spectral density matrix 

stress vector (6 x 1) 

displacement eigenvector for mode i a t  d.0.f. (I 

stress vector for mode i , evaluated a t  node b 

complex conjugate 

what is ultimately sought is not the frequency distribution or  
time history of the von Mises stress but it's RMS value, the 
probability distribution of von M i s e s  stress is not Gaussian, 
nor is it centered about zero as are the stress components. 
Therefore, the form of the von M i s  probability distribution 
must be determined and the parameters of that distribution 
must be found. Due to space constraints, determination of the 
von Mises probability distribution will be the  subject of a later 

paper. 

The most direct method of calculating von Mises stress from 
frequency data requires computation of a long time series of 
linear stress components. The stress invariants can be 

computed a t  each  time s tep  and  an RMS value determined 
through time integration. This process is of order N i l o g N ,  

for each  output location. This expensive computational proce- 
dure makes broad surveying for von Mises stress impractical. 
Computationally simpler methods, such  as Miles' relation [2], 
involve significant approximations that can  be nonconserva- 
tive [3]. 

A new, computationally efficient process for computing the 
RMS values of von M i s s ,  stress is introduced. The new 
method enables the analyst to perform surveys of von Mises 
stress routinely, allowing a thorough investigation into the reli- 
ability of a n  engineering design. This method accounts for the 
full frequency response of the structure. 

2. THE PROBLEM 

In a typical random vibration test, a structure is attached to a 
single input load source, such as a shaker table, and 
subjected to a vibratory load characterized by a specified 
power spectral density (PSD) of the input acceleration. To 
illustrate the problem, a finite element model of an  aluminum 
cylinder, subjected to transverse random vibration at  the 
base,  w a s  created using shell elements. Figs. 1 and 2 show 
the  cylinder model and  the input acceleration PSD applied at  
the base, respectively. Current standard procedure is to 

Figure I :  cylinder FEM. 
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number of rows of f  as N,, the impulse response function 
h, is a 6 x N ,  matrix. 
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Figure 2: Input transverse PSD at cylinder base. 

assume single-DOF response of the structure, choosing a 
single mode (typically the one with highest modal effective 
mass [4] within the bandwidth of the input) to compute an 
"equivalent static g-field" using Miles' relation. Response 
contributions from other structural modes are ignored. To the 
extent that singleDOF behavior is not realized, this method is 
inaccurate for ascertaining the global random stress 
response. A method is proposed here that accurately 
captures the RMS von Mises stress from all excited modes 
throughout the structure, and for all frequencies of interest. 

3. STRUCTURE AND INPUTS 

Consider a structure, S, for which a complete linear dynamics 
analysis has been performed. Input to the linear system are 
histories of an extended force vector 

T 

f = {ff(t)> f ; ( r ) ,  f:(r), &r>, & r X  f;(r), ..-I I (1) 

where the subscripts denote coordinate direction, the super- 
scripts denote location, and ( )T denotes the matrix 
transpose. The complete dynamic analysis asserted above 
includes generation of deterministic transfer functions 
mapping the imposed forces to stresses at the locations of 
interest. 

At a location x , the stress, o(r), is expressed as a convolu- 
tion of the imposed force history with the stress impulse 
response function [5], 

o = h,*f 

Computationally, and for the sake of convenience in nomen- 
clature, o is taken to be an algebraic vector of length 
six, [o- oy,, ozz, oqd ox., oyz] consisting of the non-redun- 
dant components of the stress tensor. Representing the 

The common use of digitized data and the Fast Fourier 
Transform (FFT) suggest a restatement of the above equa- 
tions in terms of Fourier series. Further, the linear analysis is 
conveniently, and conventionally expressed in terms of 
transfer functions in the frequency domain. 

Let the force vector be expressed as, 

Na 

f ( t )  = c Re{],e'"'}, (3) 
n =  1 

where < = 2 x t / T ,  T is a period on the order of the time of 
the experiment, and j n  is the d' frequency component of f .  

Here it is assumed that the time-averaged value of the 
imposed force is zero. 

The frequency domain representation off is given by, 

T 

dr 
2 -2xint/T 

3, = TJf(t)e 

0 

(4) 

In general, f is known only in a statistical sense, and its trans- 
form 7 is known to the same extent. 

When Eq. (3) is substituted into Eq. (Z) ,  we find, 

where 

and 

(7) 

The input is often specified in terms of a cross spectral 
density matrix given by 

(8) 
T T A T  

SF(n)  = ,E[f,f,l 

where E [  ] i$the expected value obtained by ensemble 
averaging [6] and (-) is the complex conjugate operator. 

For a single force input, this is the autospectral density, 

T 2  
s F ( n )  = z E [ l f n l  1. (9) 

4. RMS VON MlSES STRESS IN FREQUENCY DOMAIN 

It is of interest to calculate the mean value of the square of 
the von Mises stress over a given time period. (In fact, the 
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method presented here can be used to examine any other 
quadratic functions of the linear output variables.) The 
quadratic functions of the output variables, such as squared 
von Mises stress, must be mapped from the imposed force. 

Consider quadratic functions of stress, written in the following 
form, 

(1 0) 
2 

p ( t )  = O ~ A O  

where A is a symmetric, constant, positive semi-definite 
matrix. In the case of von Mises stress, 

2 2 2 2  
p ( t )  = 0,,+(3,~+0,-(0 (3 +(3rr(3zzf(3 YY (3 zz ) +  = YY 

and, 

A =  

Equation (10) expanded in Fourier terms is 

m = l  n = l  

and some trigonometric manipulations show the time-aver- 
aged value of the square of von Mises stress to be 

(13) 
n = l  

where ( )' denotes the Hermitian operator (complex conju- 
gate transpose). 

Equation (13) is a form of Parseval's theorem m. The root- 
mean-square value, pRMs,  of p is given by 

PRMs = JG5 ' , (14) 

To be useful, the above expansions must be expressed in 
terms of the input forces 

NlQ 

(15) 
1 

( p 2 )  = 5 c 
n = l  

With ensemble averaging, Eq. (15) can be expressed in 
terms of the input cross spectral density matrix of Eq. (8). 

Nm NF 

1 
(~3 = T (HL,, ,AHu,.)i j  SF(nIi, i. (16) 

The one-dimensional version of Eq. (16) has been used 
previously in stress analysis [3,8], but the equations 
presented here appear to be the first that accommodate the 
full stress tensor. 

n = l  i j = 1  

5. RMS STRESS USING MODAL SUPERPOSITION 

Modal superposition provides a convenient framework for 
computation of RMS stress invariants. The linear components 
of the stress (not principal stresses) can be superposed since 
they are derivatives of linear functions. Let .",,i represent 
the stress components (1 to 6) for mode i , evaluated at node 
b . The =stress modes" are standard output from most FEA 
modal anatysis codes (such as the grid point stresses in 
MSCNASTRAN [9]). 

The transfer function for a stress at location b due to an input 
force at degree of freedom a ,  can be written as [lo] 

(17) 

Here, cp is the displacement eigenvector, and D contains all 
frequency dependence. For a single axis shaker, Eqs. (16) 
and (1 7) can be combined to give 

n i,; 

Grouping terms and simplifying, 

#modes 

( P 3  = 
i i  

where 

b b  
Tij = Ya,iAYa, ,. and 

Here, Q, depends only on the shaker input location, Tij 

depends only on the node location for stress output, and Rij 

contains all the frequency dependence of the problem. 

To obtain results at every node, Q and R may be evaluated 
only once while T and the modal sums must be computed at 
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each node. Computation of R is of order N, . Within a modal 
sprvey, the total computation is of order $A7 where M is the 
number of modes, and N is the number of nodes in the 
survey. Even for a very large model, these computations are 
easily accomplished on a workstation. 

The same approach can be extended to problems with 
multiple input forces by adding dimensionality to Q and R . 

6. RESULTS AND VERIFICATION 

The shell elements used to model the cylinder in Fig. I 
produce no out-of-plane stresses 191. Therefore, in element 
coordinates, the three remaining nonzero stress components 
are ox, 0,. (normal stress) and r- (shear stress). In this 
context, A reduces to a 3 x 3 matrix, 

3J 

The transfer functions for the stress components were 
computed from Eq. (17) at each grid point in the model. A 
typical set of transfer functions at one of the grid points is 
illustrated in Fig. 3. The stress and displacement eigenvec- 
tors, Y and cp, required to compute the transfer functions were 
obtained using MSCNASTRAN, and 1% modal damping was 
applied. 

The mean squared von Mises stresses at each grid point 
were calculated using three methods: (a) time realization 
using Eq. (10) and an inverse FFT of Eq. (6); (b) direct 
frequency realization of Eq. (13) using Eq. (16); and (c) the 
implementation of Eq. (13) using the efficient modal superpo- 
sition procedure of Eq. (19). The mean squared von Mises 
stresses at each grid point were found to be identical using 
each of the three methods, thus verifying the procedure. 

5m . .  . . .  . . I  . . . . .  . . . . . . .  
100 .......... i ...... . ....; 3 .  ................... : .... j. j . . + . - . ; . ;  i .  ....... 

. .  . . . . . .  . . : a . .  . . . . . .  

I Figure 3: Stress component transfer functions. I 

l ime and frequency realizations of the input acceleration and 
o q u t  stresses at a typical point are shown in Figs. 4 and 5, 

respectively. Time and frequency plots for the mean squared 
and RMS von Mises stresses at the same location are 
presented in Fig. 6. The RMS von Mises stresses at all grid 
points were computed from Eqs. (14) and (19), with contours 
of this quantity plotted in Fig. 7. 

As illustrated in Fig. 5, the shear and one of the normal stress 
components dominate the stress state at this location. 0,. is 
driven by the first bending mode of the cylinder, at 724 Hz. rq 
is driven by both first and second bending modes, the second 
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Figure 6: von Mises‘ahd squared Yon 
Mises stresses at grid # 53 I 

the first two modes, drivers for cs and zq, also drive the von 
Mises stress. Von Mises stress Gequencies also occur at fi - 
fi, where i,j denote excited modes. For example, Fig. 6 shows 
von Mises content at f, - f l  = 3464 - 724 = 2740 Hz and at f3 - 
f2 = 7698 - 3464 = 4234 Hz. 

7. COMPARISON WITH MILES’ RELATION 

Evaluations of RMS von Mises stress using the new proce- 
dure and the traditional Miles’ relation were compared. A new 
input acceleration PSD was generated, as shown in Fig. 8. 
Three cases were examined in which the input PSD 
frequency range was selected to excite (a) only the first 
mode, (b) only the second mode and (c) both first and second 
modes. To excite the first mode only, the input PSD followed 
the definition of Fig. 8 up to 1000 Hz, and was set to zero 
beyond this frequency. For second mode response, the input 
PSD was set to zero below 1000 Hz and followed the Fig. 8 
definition between lo00 and 10,000 Hz. Excitation of both 

modes resulted by applying the full PSD from zero to 10,OOO 
HZ. 

occurring at 3464 Hz. The relatively low a, stress is driven by 
the first three modes, the third occurring at 7698 Hz. 

We see in Fig. 6 that the frequency content of the squared 

Miles’ method assumes single-DOF behavior of a structure. 
An addiionai constraint on the application of Miles’ relation to 
elastic structures is that the shape of the single excited mode 
must approximate the profile of the structure under a static g- 
field. For example, the first mode of a cantilever beam 

VOn Mises Stress Contains tetlllS at Nice the excited natural 
frequencies (e.g., 1448 Hz, 6928 Hz). This observation is I verse g-field. 
attributable to the fact that a squared sinusoid is another sinu- $ 
soid at twice the original frequency (plus a constant). The 

asumes the approximate shape of the beam under a trans- 

I 

linear stress components respond at the natural frequencies 
of the structure, while the squared von Mises stress responds 
at twice these frequencies. At this particular location, the 
oxoy term in the expression for von Mises stress is small and 

Figure 7: RMS von Mises stress contours 

Miles’ relation is given by, 

(24) 

where geq is the approximate RMS acceleration response, 
commonly used as an ‘equivalent static-g field”, f , is the 
single natural frequency chosen for application of Miles’ rela- 
tion, PSD(f , )  is the value of the input acceleration PSD at 
frequency f,, and Q is the quality factor, defined as 1/(25). 

10’ id to’ io‘ 

Figure 8: Input PSD for Miles’ comparison 
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For the input PSD shown in Fig. 8, gr from Eq. (24) is 10.7 g 
for the first mode at 724 Hz, and 90.8 g for the second mode 
at 3464 Hz. 

Because the von Mises stress in a static g-field scales with 
the magnitude of the field, the static response of the cantile- 
vered cylinder to a 1-g field may be used to scale the Miles’ 
approximations for each mode. The displacement and von 
Mises stress responses to a transverse 1-g field are 
presented in Figure 9. The profile of the static response is 
similar to the first mode of a cantilever beam. The maximum 
von Mises stress corresponding to the 1-g static field is 12.6 
psi, and occurs at the base top and bottom-most fibers. Thus, 
the maximum von Mises stresses corresponding to the Miles’ 
equivalents for the first and second modes are 134.4 and 
1138.3 psi, respectively. 

The true RMS von Mises stresses were computed using the 
new method presented above. The stress contours which 
result from the application of the input PSD below 1000 Hz 
are superimposed upon the deformed shape for the first 
mode in Fig. 10. The stress contours and shape profile 
closely resemble those of the static-g response. The 
maximum RMS von Mises stress for this case is 117.4 psi, 
showing the Mile’s method to be slightly conservative. 

When the second mode alone is excited by applying the input 
PSD above 1000 Hz, an entirely different result is obtained. 
The von Mises stress contours for this case are superim- 
posed upon the deformed shape for the second mode in Fig. 
11. The stress contours and shape profile do not resemble 
those of the static-g response. The maximum RMS von Mises 
stress for this case is 106.3 psi, showing the Mile’s method to 
be conservative by an order of magnitude. 

Figure 9: von Mjses stress contours and 
displacements for a transverse l-g field 

Figure 10: von Mises stress contouts for fpsd < 1000 Hz 

superimposed upon mode shape 1 

Vgure 11: von Mises stress contours for fpsd > 1000 H2 

superimposed upon mode shape 2 

Finally, the entire PSD of Fig. 8 was applied to the cylinder, 
and the resulting von Mises stress contours are superim- 
posed upon the first and second mode shapes in Figures 12 
and 13. The contours are observed to be a blend of the two 
narrow-band responses, with the maximum RMS von Mises 
stress at 158.4 psi. The first-mode Miles’ approximation is 
slightly non-conservative, whereas the second-mode approx- 
imation is much too conservative. 

8. SUMMARY AND CONCLUSIONS 

A computationally efficient method has been developed for 
calculating the RMS von Mises stress in a random vibration 
environment. The method retains the full accuracy of the FEM 
model and modal analysis. Surveys of the RMS stress for the 
entire structure can be computed efficiently. The number of 
operations per node output is of order M2, where M is the 
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Work underway will further quantdy the statistical properties 
of the von Mises stress. These properties will determine the 
probability of the von Mises stress exceeding a given value 
for infinite time and finite time force histories. 

Figure 12: van Mises stress contours for 0 < fpsd < 10 

KHz superimposed upon mode shape 1 

Figure 13: von Mises stress contours for 0 < fpsd e 1, 

KHz superimposed upon mode shape 2 

number of modes computed. Results exactly match a full time 
history development. 

Conditions under which Miles' relation produces good esti- 
mates of von Mises stress contours were examined, as well 
as conditions resulting in poor estimates. Miles' relation is 
adequate when the system response is dominated by a single 
mode, and when the excited mode shape approximates the 
response to a static g-field. Otherwise, both conservative and 
non-conservative estimates may result from the application of 
Miles' relation. 
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