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An Efficient Method for Computing Green's Functions for a Layered 

Half-Space with Sources and Receivers at Close Depths (Part 2) 

by Yoshiaki Hisada 

Abstract In this study, we improve Hisada's  (1994) method to efficiently compute 

Green ' s  functions for viscoelastic layered half-spaces with sources and receivers 

located at equal or nearly equal depths. Compared with Hisada (1994), we can sig- 

nificantly reduce the range of  wavenumber  integration especially for the case that 

sources and receivers are close to the free surface or to boundaries of  the source 

layer. This can be done by deriving analytical asymptotic solutions for both the direct 

wave and the reflected/transmitted waves from the boundaries, which are neglected 

in Hisada (1994). We demonstrate the validity and efficiency o f  our new method for 

several cases. The FORTRAN codes for this method for both point and dipole sources 

are open to academic use through anonymous FTP. 

Introduction 

As described in Hisada (1994), it is difficult to compute 

Green's functions for layered half-spaces with sources and 

receivers at nearly equidistant depths, because their inte- 

grands oscillate with slowly decreasing and increasing am- 

plitudes for displacements and stresses, respectively. To 

remedy this problem, Apsel and Luco (1983) proposed an 

asymptotic technique, in which we subtract asymptotic so- 

lutions from the integrands and integrate them analytically, 

and numerically integrate the remaining integrands. These 

procedures can be summarized in the following equation: 

G = {(V - (/)b~ + (H - ffl)bz}dkS + A(," + AtTI, 

(1) 

where G is a displacement or stress Green's function, bj is a 

Bessel function, S is a sinusoidal function, k is the horizontal 

wavenumber, and V and H are displacement-stress vectors 

for P-SV and SH waves, respectively. V is the solution as- 

ymptotic to V as k goes to infinity, AV is the analytical in- 

tegration corresponding to V. /4 and A/4 are those for SH 

waves [see equations (20) and (21) in Hisada (1994) for 

details]. 
It is clear that the more accurate asymptotic solutions 

are, the shorter the range of integration is. However, more 

accurate solutions are also more complicated mathemati- 

cally. Apsel and Luco (1983) used the static solutions of a 

homogeneous half-space as asymptotic solutions for layered 

half-spaces. Herrmann and Wang (1985) and Herrmann 

(1993) computed numerically asymptotic solutions using 
Haskell's propagator matrix. On the other hand, Zeng and 

Anderson (1995) recently used the analytic solutions of the 

direct waves from sources as asymptotic solutions. Hisada 

(1994) derived generalized forms for the direct waves and 

showed that the technique was very efficient even for the 

case that sources and/or receivers are located in layers dif- 

ferent from the source layer. However, Hisada (1994) found 

that the convergences of the asymptotic solutions are rather 

slow, when sources and/or receivers are very close to layer 

boundaries, because the reflected waves from the boundaries 

are not included in the solutions [see case 3 in the Results 

section of Hisada (1994)]. Recently, Zeng (1995) indepen- 

dently improved Hisada's method by deriving a numerical 

generalized asymptotic solution including the reflected 

waves. 

In this study, we derive the analytic asymptotic solu- 

tions of the direct, reflected, and transmitted waves from 

layer boundaries and show the procedure for computing 

Green's functions due to point and dipole sources. The FOR- 

TRAN codes of this method are open to the public. Finally, 

we demonstrate the validity and efficiency of our new 

method for a number of cases by comparing our results with 

Hisada (1994). 

We will refer to Hisada (1994) as H94 hereafter, be- 
cause this article uses many equations from Hisada (1994). 

An Asymptotic Method to Compute Green 's  

Function of  Layered Half-Space 

Green's Functions Due to Point Sources 

As discussed in H94, we adopt the generalized R/T (re- 

flection and transmission) coefficient method of Luco and 
Apsel (1983) rather than Kennett (1974) and Kennett and 

Kerry (1979). It should be noted that we improved Luco and 
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Apsel (1983) in H94 by completely eliminating the expo- 

nential terms that grow in amplitude with wavenumbers and/ 

or frequencies and that hinder analytical evaluation of as- 

ymptotic solutions. 

As shown in Figure 1, we employ the same layered half- 

space model and notations as those of H94. Point sources, 

with vector components (Qx,0,0), (0,Qy,0), and (O,O,Qz) in 

the Cartesian coordinate system, are located at (0,0,h) in the 

Sth layer. To express source conditions, we divide the Sth 

layer into the upper (S-)  and lower layer (S +) at the source 

depth h. A receiver is located at (r,O,z) or (x,y,z) in the cy- 

lindrical or Cartesian coordinate system, respectively, in the 

jth layer. We assume that the receivers are located in the Sth 

layer or its adjacent layers, j = S - 1, S- ,  S ÷, or S + 1, 

because our purpose is to derive the asymptotic solutions for 

the case in which the source depths are close to those of 

receivers. 

Static and dynamic Green's functions due to point 

sources are summarized in equations (11) and (12) in H94, 

and their displacement-stress vectors are given in Appendix 

A of H94. 

0 X 
. . . . . . . . . . .  . ~  . ,~  . . . . . . . . . . .  .j . . . . . . . . . . . . . . .  (0) . . . . . . . .  r- 
! ! i i i : : ~ ! ! ~ ~ ~ [ 0  i ! i i i i i i ! ! i ! ! ! l s t l a y e r !  

. . . . . . .  ,0)zsssss  
, - -  (2 2nd layer: 

V~::iSource P o i n t 2 ( 0 , 0 , h ) ~ : : : ?  !!g2j~'~ 

~i:ii:{]{:::~t{!;0yT:{i:7~ ~.'.'.:::::~ ~S+ layer~i:::::!:7;:~;~ 

Qz 

,U/,jm layer/ 
. . . . . . .  / , ,  

Receiver Pomt I (r,0,z)=(x,y,z) 

Figure 1. The multi-layered half-space model 
considered in this study. Point sources are located at 
(0,0,h) in the Sth layer, with the vector components 
(Q~,0,0), (0,Qy,0) and (O,O,Qz) in the Cartesian coor- 
dinate system. The receiver is located at (r,O,z) in the 
jth layer, with the displacement components (U, Uo, 
Uz) in the cylindrical coordinate system. 

Asymptotic Solutions of the Displacement-Stress 

Vectors 

SH Waves. We derive asymptotic solutions for the dis- 

placement-stress vectors including the reflected/transmitted 

waves from layer boundaries. We derive those of SH waves 

first in detail, because they have much simpler forms. From 

equations (A1), (A7), (A13), and (A14) in Appendix A of 

H94, the displacement-stress vectors of SH waves will be 

the following forms: 

(.uz; z) fcu,,,:,k 
- -  

LE~, E~2J [Qq(h)J 

(q = x ory),  (2) 

where 

= [4, ,  < ,;,<1, E~I EJz2J 

AS(z) = e x p { - k ( z  - /(i-i))}, 

and A{(z) = e x p { - k ( z  ~) - z)}. (3) 

C§q and C~ are the down- and upgoing coefficients of the 

jth layer, the subscript q represents a direction of the point 

source, # is the rigidity of the jth layer, and z u- ~) is the depth 

of the boundary between the j - lth and jth layers (see Fig. 

1). We used the static solutions in the above equations, be- 

cause dynamic solutions converge to static ones with in- 

creasing wavenumber (see, e.g., Luco and Apsel, 1983). 

As shown in Appendix A of H94, the down/upgoing 

coefficients are determined from the boundary and source 

conditions using the generalized R/T coefficients. There are 

three cases for formulating asymptotic solutions. 

Case 1 (z~S-1)<h<__z (s~, andS # 1 n o r N +  1) 

This case is same as case 1 of Appendix A in H94. 

Figure 2 shows all the down/upgoing coefficients existing in 

the S - 1, S-,  S +, and S + 1 layers. We can assume in- 

coming waves from the S - 1 and S + 1 layers quickly 

converge to zero with increasing wavenumber, because we 

do not have any growing exponential terms in our formu- 

lation: 

CSq 1 and CS~ ' ~ 0. (4) 

Substituting equation (4) in equation (A16) of H94, we can 

derive the asymptotic solutions of the down/upgoing coef- 

ficients in the S - 1, S-,  S +, and S + 1 layers: 

CSuq - 1  = R (S-  ')CSq 1 "~ T(u s -  l)CSq ---) T~-1)CSq, 

CSq = T(aS-1)CSql + R(uS-1)CSuq --~ R(S-1)CSuq- ' 
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C~'Sq + = R~s~CSq + T~S~CS +1 __.)R(~C s+ 
u ~uq d dq 

,~ s÷l rs~cs2, (5) C~q 1 = T(s~cs+a aq + R ,  CSq 

where T(, s -  1) etc. are the  modified R/T coefficients. Their 

asymptotic forms are analytically obtained by substituting 

equation (3) into equation (A18) of H94: 

[ T~"~ R~ 1 1 [ 2,W its+a_ itq 
~,~ ~j ~it~+1 + it~ _~+, _ it0 2it ~+' J 

[exp{ - k(z  ~ - z u -  ~) } 
x 

I 0 

0 ] 
exp{ - k(z  u+ 1) _ zU))} • 

(6) 

On the other hand, by comparing equation (5) with 

equations (A19) and (A20) of H94, we obtain 

T(u S-1) -.-} T(uS- 1) l~(uS- 1) ~ R~  -~), 

#~s~ ._> R~S~, and ~,~s~ ~ T~S~. (7) 

This shows that the generalized R/T coefficients (~s-1)  etc.)  

converge to the corresponding modified coefficients. 

Substituting equations from (3) to (7) into equations 

(A26) and (A27) of H94, we obtain the asymptotic solutions 

of  the down/upgoing coefficients of  the S - 1, S- ,  S ÷, and 

S + 1 layers: 

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i ' i i i i i i i i i i i i i  

Figure 2. The asymptotic down/upgoing coeffi- 
cients in the S - 1, S-, S +, and S + 1 layers for case 
l : Z ( S - ' < h < = Z ( s ~ , S #  1, andS # N + 1. 

CaSq- ~ Q.____z_q [1 - R (s~ e x p { - 2 k ( z  (s~ - h)}], 
4nit s 

C~q --~ Qq [1 + R (s-l) exp{ - 2 k ( h  - z(S-~))}], 
4zqz s 

CSq ~ Qq R ~s-l) e x p { - k ( h  - z(S-l))}, 
4zcit s 

Qq R ~s~ exp{ - k(z  ~s~ - h)  }, 
CS+ ---> -4n i t  ~ 

Q____z_q T(S- ~ exp { - k(h - z ~s- 1~) }, CuSq 1 ~ 4xit s 

CSql---~ Q-----z-qT~s~exp{-k(z (s~ - h)}, (q = x o r y ) ,  (8) 
4xit s 

where 

R (s-l) jus _ # s - i  Its+l _ its 
- R ( S )  - 

i t s  + i t s - l '  its+l + its' 

_ 2it s T(S~ - 2P s 

T~S- 1) its + i t s -  1' its+, + its" (9) 

In the derivation of equation (8), we took only the first-order 

terms in k and neglected higher orders except exp{ - 2k(z (s) 
- h)} in CSq and e x p { - 2 k ( h  - ztS-~))} in CSq, which 

represent the reflected waves from the (S) and (S - 1) 

boundaries, respectively. 

Finally, we obtain the asymptotic solutions of the dis- 

placement-stress vectors by substituting equations (3), (4), 

and (8) into equation (2): 

HSq'(Z)} ~yISq'(Z) 1 f y-IS{' l e_k(h_z), 

H~?l(z)j ~ [/~Sql(Z)j -- [k/~_ , j  

for the S - 1 layer (z (s-2~ <= z < z {s-~)) 

[,,s:(z)l f, Sq(z)l f ;ql e z, 
H~q-(Z)J ~ lHSq (z)J ~ [kHSqJ 

+ [kH~,S-'J e_k(h+z_2gs-,) ) + ~ ..lq ~. a-t(2z")-h-z) 
t k n ~ J  ~ 

for the S-  layer (z (s- 1) <__ z <= h). 

~HS~(z) l  f f f ISq(z)l  { IZlSq- } e  k(z h) 

[HSq (Z)J ~ --kHSqj [HS+(z)j ~s+ 

+ [;--4q--'~J/~t/~ e-eh+z-~S ' -" )  + 
LkHS~J 
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for the S + layer (h < z =< z(S~). 

[ nlsql(z)~ ~/~s~ l(z)~ ~/~lSq 1 ] e_k(z_h) 

H~q + '(Z)J --'-) tg~q + l(z)J -= t k n ~  + 'J  
(10) 

for the S + 1 layer (z (s) < z < z(S+')), where 

- Qq - Qq 
HSq=ar~Its ,  n~q=~-~g 

~lSql = T(S-1)/-~Sq, /~q-I = /~s - , /~Sq  1, 

/ ,lSq-l, = 1,of.. 

~l!lS)q = -- g(s)~-ISq, ~-I(2S)q = -- e(s)ffI~q, 

/~IS+I = T(S)~lSq, /~q+, _ S+l-S+l  q : ~ /-/~q , 

(q = x ory) .  (11) 

In equation (10), the first terms for the S-  and S + layers 

represent the direct waves from the source, and the second 

and third terms are the reflected waves from the (S - 1) and 

(S) boundaries, respectively. On the other hand, the asymp- 

totic solutions for the S - 1 and S + 1 layers consist of  the 

transmitted waves through the (S - 1) and (S) boundaries, 

respectively. Comparing equation (10) with equations (13) 

and (14) in H94, we confirm that those in H94 have a gen- 

eralized form of the direct and transmitted waves, but not 

the reflected waves. It is also clear from equation (10) that 

the asymptotic solutions of  H94 are also valid for h = z (s ~) 

when we neglect the reflected wave from the z (s~ boundary. 

The same is true for h = z ~s~. 

C a s e 2 ( 0 < h < z ( % S  = 1) 

This case includes case 2 of  Appendix A in H94. Figure 

2 illustrates all the down/upgoing coefficients in the first and 

second layers. The difference between this case and case 1 

is the reflected coefficient from the upper boundary: the free 

surface. The asymptotic solution for the reflected coefficient 

is given from equation (A18) of  H94 using equation (3): 

R(. °) = -(E2~,) 1E2~2A~(0 ) ---) e x p ( - k h ) .  (12 )  

Using the same procedure as equations (4) to (11), we 

obtain asymptotic solutions similar to equation (10). The 

only difference is the coefficients corresponding to the re- 

flected wave from the free surface in equation (11): 

kI] °) = Qq /1<2°q ) = -Q--~q (q = x o r y ) .  (13) 
4~r/z ' '  4~' 

C a s e 3 ( z  ( m < h ; S  = N +  1) 

This case is same as case 3 of  Appendix A in H94. 

Figure 4 illustrates all the down/upgoing coefficients in the 

N and N + 1 layers. The only difference between this case 

and case 1 is that there are no reflected waves from the lower 

boundary. Therefore, we obtain the asymptotic solutions for 

the two layers by substituting 

~u+,> = f~m+,) = 0, (q = x o r y )  (14) q "~2,/ 

in equation (10). 

(0) boundary  (free surface) 

Figure 3. The asymptotic dowrdupgoing coeffi- 
cients in the 1-, 1 +, and 2nd layers for case 2: Z (°~ __ 
h < Z(') and S = 1. 

Figure 4. The asymptotic down/upgoing coeffi- 
cients in the N, N + 1-, and N + 1 + layers for case 
3 : Z ( m < h a n d S  = N +  1. 
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It should be mentioned here that, in the case of the ho- 
mogeneous half-space, we can easily derive the displace- 
ment-stress vectors by combining cases 2 and 3; we just 
substitute equations (13) and (14) in equation (10). 

P - S V  Waves. We can derive asymptotic solutions of the 
displacement-stress vectors for P - S V  waves using the same 
procedures as those for SH waves, although they are much 
more complicated. From equations (A1), (A2), (A3), (A11), 
and (A12) in H94, the static displacement-stress vectors for 
P - S V  waves are expressed as 

Lk/z~E{~ klz~]~{2J [C~q(h)J 

(q = x, y, or z), (15) 

where 

0 
[R~p[T~) RU~qT~)j -->/R~ [-~ R~'] [Ab(0z'~0a'~'/ AL+'(z<i0] ' (20) 

where the components of I"~/) etc. are given in Appendix B. 
Using the same procedures as the S H  case, we obtain 

the asymptotic solutions of the displacement-stress vectors 
in the S - 1, S-, S +, and S + 1 layers: 

DS-'(z;h)} ~s-~(z ;h)}  [ ESf_~ ] 
S~-'(z; h) ~ [S~-'(z; h) - Lk/~-,E~;,J CSq" 

for the S - 1 layer (z <s-~> <= z <= z ¢s- ~) 

SqS-(z; h)J ~ [SqS-(z; h) = [k/tSl~ s, k/~SESEJ C s- 

I)Jq(Z'~ h) = ~V{q(Z'~ h)~,] S~(Z; h) = [V~q(Z; h)~.,'l (16) 
[V{q(Z; h)J IVy ( z ;  h)J 

C~q(h) = [ Cjaaq(h)], CJq(h)= f C J u a q ( h ) l  (17) 
[c~aaq(h) J [C{aq(h)J' 

E{~ = x~ 1 ' = L x J -  1 2 '  

I(.J ---- 1 + ~/~tJ) z ( 1 8 )  

1 - q ~ / 6 0  ~' 

for the S- layer (z (s- ~) < z < h) 

[SS+(z; h)J ~ [SSq+(Z; h) = [k/tSES~ k/zSl~S2J 

[C(S- 1) 1 

+ t  l + 

for the S + layer (h __< z _-< z <s~) 

SqS+l(z; h) ~ [SqS+l(z; h) L~S+q~sF,j ,~q , (21) 

for the S + 1 layer (z (s) <= z <- z (s+ ~)), where 

CSql = { CSS~i ~ - k ( h  - z,,~(s-l)~/~S-l),~uaq2 1 

-s-1 z)C,,q2] e-k~h- ~ CSflql - -  k(h _ ~.~'(s-1),~-.uflq2~S-1 _ k ( z ( S - l )  _ z ) ~ S ~ q l  + kZ(h _ z ( S - l ) ) ( z ( S - 1 )  _ - s - i  , 

A~z) = - k ( z  - z ~-'))  exp ( -k (z  - z(J-~))}, 

z, :]exp,,,zO  z,, ,19  

and the complex P and S velocities (aJ and t 0  are given in 
equation (A6) of H94. 

Case 1 (z~S-1)=<h)z <a, andS # 1 n o r N +  1) 

Equations (4) to (7) for S H  waves are also true for this 
case. In order to obtain the modified R/T coefficients for 
P - S V  waves, which are defined in equation (A18) of H94, 
we need to invert 4 by 4 matrices. Using the analytical in- 
verse of a 4 by 4 matrix given in Appendix A, we obtain the 
asymptotic solutions of the modified R/T coefficients: 

C S q = [ - s -  _ ~S£q - s - t  e-~h-z), 
c~q k(h - Z)Cu% 

CS+ = {CS~ q ~s~q -,s+ } e-k'z-h', 
-s+ _ k(z - h)CSaq 

c,s,, CS:l- 
dq [ k(h -- (s-l) -'s- _ _ <s- l) -'s- , - z ) c ~ 2  k(z z ) c ~ ,  

+ k 2 (h - z<S-')(z - z~S-')CSyq2} e 
k(z + h-- 2z($- l)) 

- 'S+ _ (S) _ - S +  cL~, k( z h ) C~q2 
- -  z )  CSuaql 

+ k 2 (z(~ - h)(z(S~ - z)CS,q2 J 
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_ w . ( s )  _ _ ql h)CS~q2 k(z ~, ~,(S)~S + 1 ] ~daql 

-AS)~tr~S+ 11 e-k(z-h)' 
+ k2(z (s) - h)(z - ~ ,~d~q2J 

(22) 

and 

-S-- 1 -S-- -S-- 1 fC_uoq, l = r~<S-l)[C_uSaql fC_Seq21 : T<S-1)f ? 1 
S-- 1 ~u  / t ' S  - / '  S-  1 [ Cuaql j k~"uflq j [CS~q2J u i CS_ l , 

_ -,_ , , fo  1 ~l" eSaq l l  ]~(S-l)[C_uS°ql [ edSex/2l --(S-- 
= -L.C_ , [/~'dSffq l J  --u LCSb,qj, t ~TS~qxJ = a , ,  LCSq J 

-~s+ _ -S+ -S+ fC_Suaql} = l~(~)fCSaqql ICSaq2l = ~i(S) f 0 l 
[CSnqlj -'d /rs+/' s+ ~/&s+/ '  S+ I."dflqJ [CS#qzJ L~doqJ 

I qSaqql } W(53[ C_ dSo4tl ft~S+l] 
= / ' : _ ~  = 'i'$s~ 

l~"'dflq ljlt''S+II --d [csDj, tCSL, j (23) 

s +  [ ] C ~  =fCSoql  = aq 1 1 

~c~, Lc~DJ 4r~Jt s x s + 1 x s - 1 '  

f o r q  = x o r y ,  

" {1t 
fC_S l fCSzl_ Q~ 1 1 
[ CSuazj = - -s+ - -  ' -  [csAj 4zr/z s ~c s + 1 

for q = z. (24) 

In equation (21), the first terms in ( ) for the S-  and S + 

layers represent the direct waves from the source, and the 

second and third terms are the reflected waves from the (S 

- 1) and (S) boundaries, respectively. On the other hand, 

the asymptotic solutions for the S - 1 and S + 1 layers 

consist of the transmitted waves through the (S - 1) and 

(S) layers, respectively. As in the S H  case, we find from 

equation (21) that equations (13) and (14) of H94 have gen- 

eralized forms of the direct and transmitted waves, but not 

of  the reflected waves. 

Case 2 (0 < h __< Z(1); S = 1) 

As in the S H  case, the only difference between this case 

and case 1 is the reflected coefficients from the free surface. 

Their asymptotic solutions are given by substituting equa- 

tions (16) to (19) into equation (A18) of H94: 

RL °) = R,~) AI(O),  ( 2 5 )  

where 

~(uo) = [ - - ( K l  - -  2 )  2] 
- 0 . 5 ( x  ~ - 1)(x I -  3) x '  - 2 "  (26) 

Replacing 1~-1) in equation (23) by equation (26), we 

obtained an equation similar to equation (21) for this case. 

C a s e 3 ( z  m) <_ h: S = N +  1) 

And again, as with the S H  case, the difference between 

this case and case 1 is that there are no reflected waves from 

the lower boundary. Therefore, we can use equation (21) by 

substituting 

c ~  = c ( N + ,  = {o} .  --uq (27) 

Analytical Integrations for Asymptotic Solutions 

S H  Waves .  We derive the analytical wavenumber integra- 

tions of the asymptotic solutions obtained above, by substi- 

tuting them into equations (11) and (12) in H94. We need 

the following integrations for S H  waves: 

fAllH~lSql} f= f/.~s-1 (Z)I J i (kr )  flYtS~11111 
~JO //'t~q-- 1 dk= [Ai-lHSqlj ~o I 2q (z)J - - ~  tH%-~-'IlJ°' 

for the S - 1 layer (z  (s-2) <= z < z ~s-1)) 

Am 1H~q- J [flSq(z)J L H~j ° J 

ffl~s-,/C l(S-, l f/)(l~q/i -l(s) } 
+ / gT/(s-1)#o(s-l) / + 

c ..2q "1 , l H ~  I°<~ J' 

for the S-  layer (z ¢s- l) <= z <- h) 

{ A~-IH~7I f[-IS~(Z)I Jl(kr) I I2ISlq1~11 
Ai-lH~q+J --- fo: d k  = t-01~-(z)j - - U -  t - H U ° J  

flTt!s-1)l-'fs-l)]lq "1 f/-~Ii-l<s) 1 
,. zq ~ 1 J ~- 2q 1 J 

for the S + layer (h =< z < z ~s~) 

-1 ~S+1 IA1 H'lq } ~_~ 
1 A -  1/-/s+ 1/ 
L~I  LX2q J 

fo o fq::,(z)l l [HS~.(z) J --~--  dk = ~ us+ l .  ~, l **2q *t J 

(28) 

for the S + 1 layer (z (s) =< z < z¢s+l)), 

where 11 1, IF 1¢s- 1) etc. are given in Appendix C. Coefficients 

/4gq are given in equation (11) for case 1, plus equations (13) 
and (14) for cases 2 and 3, respectively. 

We also need 

AO H~q j ~ a~, I H~(z)J 

( j  = S - 1, S - , S + , S  + 1). (29) 
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The analytical solutions of  the above integrations are ob- 

tained by replacing I~ 1, I? l(S-~) etc. in equation (28) as fol- 

lows: 

I~ ~ I { l(s- 1) 
111 ---> I o - - - ,  I { ~ ( s - ,  -.> I~o s - ,  - - ,  

r r 

I? l(s) i o 
I? ~(s) _9 io(s> , I ° - 4  I~ - - - ,  

r r 

I~S-1) I~ s) 
lO(S-~) __>/l(S-1) _ _  _ _ ,  I °~s) --4 Io ~(s) , (30)  

r r 

where I ° etc. are also given in Appendix C. 

P-SV Waves. F r o m  e q u a t i o n s  ( 1 1 )  and  ( 1 2 )  o f  H 9 4 ,  w e  

need the fol lowing integrations: 

{ A 1  lI~q-- 1~ ~ _~D~q--I(Z' J l ( ~ ) d k  

---- tg s-~(z; 

I E~I A~ CL -1 
= Lu,-, £~1 A C,-1~, 

~2~uq  J 

for  the  S - 1 l a y e r  (z  <s-~) = < Z = < Z ( S - l ) )  

~ Jl(kr) 
Ai -~ l~q- ~ Dq s -  (z; h) - - ~  dk = [ESl ES:] 

-- - 0 

fo ~ J~(kr) A f '  ~s -  ____ SS-(z; h) ~ dk 

({0} {,q,} { 0 }) 

for the S -  layer (z (s- " < z <- h) 

+ 

A[-1 ~s+  ~ ~qS+ (z; h)  dk 

{ o)) 
+ A1 C ' 

{o )) 
+ A ~ C ~  ' 

and  

for the S + layer (h =< z =< z ~s)) 

{ A  11 _~.D~q + I~ ~ _~D~q + l(z;  h)  
A I I ~ q S + I J  :~ fO ~ h ) } J l ( ~  ) d k  L~S+1(z; 

f I~S+ 1A I~S+ 1 I 

/ ~ S +  I l l S +  1 A  ~f~S+ 11' 
Id ~ ~22 ~2~dq J 

f or  the  S + 1 l a y e r  (z  <') =< z =< z ~'÷1)) w h e r e  

I A  1 l'~r.~q(Z; h)~[, 
Ai -1 I)~q(Z; h) - -  [ A i _ I Q j q ( Z ;  h)J 

[AII~TJ3q(Z" ~ h)~,  

A i - '  ~q(Z; h )  - -  tAi_q?~q(Z;  h ) J  

( 3 1 )  

( 3 2 )  

{ C ~  ~ s -  1 t -  l _ (h - ~ s -  1)~ 7's- 1to 
A 1 C ~ q  I = ~ , ~ ,  -~ , .  , ~ : - ~  -~--1 Z) -S--1 0 [ 1 I i  -~ - { (h  _ z(S- l ) )  ~ s - i  . ¢~(s-1) - C,,~ql}I1 + (h  - z(S- l ) ) (z  (S-1) - z)  ~uoq2alJ~~s-1/1 

~--uflq2 - v,, 

A ~ C ~ -  C~.,l~ 
- ,s-  - (h  - z ) ~ s - l o  • C ~  Ii- 1 ~ - l J  

A l e S +  = ~daq-I _ + , 
i -1 - (Z - h)C~d~q 

{01~ ,~- ~ s - ,  
7 ' s - 1 - 1 ( s - 1 )  _ (h - z ~ s - ' )  ,~d.q2-~ 

_ "-'aaql*l f ~ s -  / l ( S -  1)~ AIC~S-D = ~I~ 1~s-1~ - {(h  - z ( s - ' )  CS£2 + (z  - z(S-')~,~lf's- Jll°~s-'-i + (h  - z ( S - ' ) ( z  - z ~ s - ' )  ~d~q2.1 j ,  

t /~S+ I-I(S)  _ [7(S) - -  /,,~ 7-'s+ 10(S) 1 ~uaql.1 k.~ it) ~,..- uaq2.1 
A1C(uq ~ = /'~s+ /--I(S) __ {(Z~S~ - -  h)  C.~q2-S+ .~- (Z (S) - -  Z)t~S+~uaql/'ll]O(S) -[- "~(~(S) _ h ) ( z (~  - -  Z) i 's+ o(s~ , 

l ~ uflql *l ~uaq2 * l J 

A1CSq i ~daql Xl k~, , . /  ~daq2 x 1 
= -~+ '  - - c s ~ 1 1 1 1  + (z' - h)(z z ~) CS~q:Ii CSflq2 -]- (Z Z ( ) -•+1 o s) - s+1 1 , c ~ ,  t~ -1 { (z  ̀ ~ h)  -~+ '  - ~ 

( 3 3 )  
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where coefficients C{~ql etc. are given in equations (23) to 
(26). 

We obtain A~C~q for Ai-t~q in equation (31) by perform- 
ing the following replacements in equation (33): 

I f t  ---) I °, I°l ~ ll ,  II ~ I~, 

I i- l(S-1) __..> Io1(s-1), IO(S-1) __) I f ( s - D ,  I f (S - l )  ___) 112(s-1), 

I~ -*(s~ ---) I °(s), I °(s~ --+ II (s~, I1 (s) ---) 112 (s), (34) 

where I ° etc. are given in Appendix C. 
We also need to perform the following integrations: 

~ _= h) dJl(kr) , ,  
~A°,D~q 1 (~ [fIJq(Z;h)]___~_r atC' 
LA°,S{J Jo tg~(z; 

(35) 

{AOI)   h) 1 
AOSJqj fo ~ J,(kr)dk, -- [g~(z; h)l  

(36) 

{ A ~ }  =- fo= [D-Jq(z; h) l  h)J  (37) 

We obtain the analytical integrations of A°~I){ in equa- 
tion (35) using equation (30) plus the following replace- 
ments in equation (33): 

II --> I~ - 111, I] (s-l) --) I~ (s-° Ill (s-u, 

r r 

I ~(s) 

II (s) --> I~ (s) - - -  (38) 
r 

Similarly, those for A]I~a in equation (35) are obtained 
by the following replacements in equation (33): 

I i  I --"-7 1 1  - -  JOl, t ° ---) I~ -- /ti, i i  ~ I~ I~ 
r r r 

I? I(s- I) --) Po(s-1) _ _ _  

lO(S- 1) 

r 

l ~(S- I) /~l(S-l) 
/~,~-, -+ lob(S-,) _ - - ,  /I(~-I> -+ ~(~-,) 

r r 

li-1(s~ _~ Po(s~ _ __,  
r 

II< s) ~(~ 
~s~ __)/gs) , ~(~ -) Po (~ - - -  (39) 

r r 

Also, we obtain the analytical integrations of A°l~q in equa- 
tion (36) using equation (34). The rest of integrations in 
equations (36) and (37) are similarly obtained by the follow- 
ing replacements in equation (33): 

I ~  ---~ II, IO.-~ I~, 11--)13, 

ii-1(~-, ___) If(S-l), IO(S - ,  ~ I~(S-', I f (S- ,  ~ I~(S-', 

I~-l(s) ---) If(S), IO(~ ~ 12(~, 

for A°SJq in equation (36), 

I ? 1 - - > I  o, IO---~ I~, 

I7 l(s- 1) ~ io(s- 1), 

I f  l(S) ~ io(s), IO(S~ ~ i~(s~, 

for A~I~){ in equation (37), and 

Ii -1-+I~, I ° ~ I o  z, 

i[(s) __> it3(s), (40) 

II ~ I~, 

l~S-O -+ Iol(S-1), l~(S-1) --) l~(S-1), 

II (s) --) I 2(s), (41) 

If1(s-l) ~ I~(S-1), IO(S-l) ___) I~(S-l), 

I7 l(S) __._) l l(S),  io(s) .._> l~(S), 

I~ -.-) I g, 

If(S-l) ---> I 3(S-1), 

~(s~ ~ io3(s), (42) 

O~ = -Aof% 

- /sin 0~, 
--- ( ; )  0, 

_ _. (co, o) 
U{(y) = - A°VJ@) \sin ' 

(43) 

for Ao°SJq in equation (37). 

Procedure for Green's Function Due to Point Sources 
Using the Asymptotic Technique 

The procedure for computing Green's functions due to 
point sources can be summarized in equations (20) and (21) 
of H94. In this study, the asymptotic solutions of the dis- 
placement-stress vectors are given in equations (10) to (14) 
for H~q and from equations (21) to (27) for ~'~. The analytical 
integrations of those asymptotic solutions, which correspond 
to equations (15) and (16) in H94, are expressed as follows: 

{ }(-0 0) U{(~) A °, V~(y) + 1 Ai-' H~(~) sin 
r 

- j COS 
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for displacement, and 

{ } ( c o s : /  
a~(~) = A °, V~(y) + lr A/-'/4{(y) \sin ' 

6~=(y) : ( 7 ) { ~  A/-' f'~(y) + A°I H~(;)} \cos(Sin 0), 

- (cos 0/ 
~) = - A  ° V~(y)\sin O] 

6 s  = - , to  ~ :  (44) 

for stress, where the upper and lower values within the pa- 
rentheses are allotted to the solutions due to Qx and Qy, re- 
spectively. A°J-)~q and Ai-~/]gq are given in equations (28), 
(29), and (30), respectively, and Ai-117~, etc. are obtained 
from equations (31) to (42). 

It is easy to confirm that the static Green's function for 
the homogeneous full-space is equal to the direct wave part 
in equations (43) and (44). 

Green's Function Due to Dipole Sources Using the 
Asymptotic Technique 

We obtain Green's functions due to dipole sources using 
the same procedure as equations (22) to (34) in H94. The 
only difference is the use of our new asymptotic solutions. 
We can derive the equations corresponding to (32) in H94 
by differentiating equation (43) with respect to j ( = x or y) 
and using equation (28) of H94, as follows: 

f 
~ 1 ~ 1 ~. U{(;),, = r j  A°l ~ (y),,_ 77 A/- 1H{ (~) 

1 - /coso , 
+ r A/-1/)~(y)'" ~sin O] + uS'(~)\sin 0], s 

G ,  = - rj A10 G , .  

1 ~ ~ } 
"4- -- A1-1 V31 (;),r "~- Ad0l HJl (;),r 

r 

,cos - (sin 0~ ( s i n O ) ( 7 ) U S o ( y ) \ c o s O j f  

_ _ (=:) ,.~(~).,: r ,  ao ~(;),, : , .  

- (cos co),; 
- A ~4 (;) ~ sin 

UJzzd = - -  r,j  AO 0 V]2z, r, 

where ~{q and ff~q are defined in equation (43), and 

A1-1 ~lJlq,r = A~I I ' t-~. ,  

~ 1 Ad0l /.~{q "4- 1 ~. ~ A°l H{q'r = - -7  7 A/-' H~q - A I H{q, 

for SH waves, and 

(45) 

A/-' V~q,r o ~j - .  = A a l V l q  , 

-. __lAolf,% + 1 - _ .. 
A°lVJiq'r : r 7 A I ' V { q  A i V { "  

A°G.. = ~ G  - ! aoG. 

(46) 

A°G.. -- Ao%q - ! AoG. 
r 

A°vL,  = - A I Q ~  (47) 

for P-SV waves. In equation ( 4 6 ) ,  a new analytical integra- 
tion A]/t~q is obtained by replacing I/- 1 etc. in equation (28) 

as follows: 

I ;  1 ~ II, 11 l<s-') ~ II <s-', I ;  1+ ~ 11% (48) 

Similarly, new analytical integrations in equation (47) are 
obtained from equations (31) and (32) by performing the 
following replacements in equation (33): 

I/-' ----> I~, I ° ~ 12 o, II ~ I~, 

I?US-~) - +  I01(s-1), IOnS - 1) __.> I~S-~), If(S-l) -+ 13(s-l), 

IF '(s) --~ Io us~, Ip s) -+ l~ (s>, II <s> -+ Io 3<s), (49) 

for ~ f ~ ,  and A ~ q  and 

I/-' ~ I1, 17--+121, I l ~ I~, 

I? l<s - ,  ---+ II(S-l), IO~S-1) __.+ Ii<S-,,  I f (S- ,  --+ It(S-l), 

i?1<~ ___> 1]% Ii°<~ ---> Ii2<s), If<S> -+ I~<~ (50) 

for AlQ4q and AIQ{z 
On the other hand, we can derive the equations corre- 

sponding to equation (34) in H94 by differentiating equation 
(43) with respect to z and using equations (30) and (31) of 
H94, as follows: 
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r \s in  ' 

= - A O  . . . .  

U{(y).Z = _ o  V~(y).~ \s in ' 

O{=z = - A° V~z,z, (51) 

Where 

1 
A1 l ~l J q, z = -~j A1-1 H J2q, 

1 
A01 ~lJlq, z = ~jj AO1 /~q (52) 

for SH waves, and 

1 
A I '  V{q,z = ~jA{1gJ3q -b A°~'~q, 

l~01 ~¢Z~q, z /,/1 AO 1 gJ3q + A1 gJ2q rl AO VJ2q , 

1 
A ° V ~ z  = ~ A °  vgz + A1V~z, 

1 
1~°1 ~/rJ2q'z - Z -~- 2/~lJ {m°VJ4q - Z A] ~rjq}, 

1 

for P-SV waves. 

Dissemination of  the FORTRAN Codes  

The FORTRAN codes described above are available to 

academic users using the anonymous FTP. The address is 

"coda.usc.edu" or "128.125.23.15," and the user name is 

"anonymous." The source codes for point and dislocation 

sources with examples of  data are located in the directory 

"pub/hisada/green." Users can see manuals in the directory 

for the details. 

Resul ts  

We test our new method using the three-layer model 

shown in Figure 5, which is the same as the test model used 

in H94. We compare results obtained by our new method 

with those of  H94. We only present a couple of  results for 

l ~ 2 km zl 
X, r 

:: i~" :: i i i ii[ : : : : : : : i i i i ! i i i i i i i i i i i i Rec eiverL°eat!°nsi i i i i i i i 
• -[- • Source Locations . . . . . . . . . . . . . . . . . . .  ¢~a~," 1 t~ - n a vm~ . . . . .  
i iii iiiiiiii!!iiiiiiiiiiiiiiiiT:7  o-:77::7':iiiii 

Z 

Figure 5. The layered half-space model to check 
our new method. In the following computations, we 
use a point source with Q~ = Qy = Qz = 1 for the 
case of o9 = 1. 

the following limited cases here, which are for point sources 

and circular frequency co = 1, because we reached the same 

conclusions for all the other cases we tried. 

Case 1 (a Source at the Middle of  the First Layer) 

In the first case, we fix a source and a receiver at the 

middle of  the first layer (h = z = 500 m), and take r = 

2000 m, 0 = 0, and Qx = Qy = Qz = 1. In order to construct 

asymptotic solutions of  H94, we take ~:1 = 0.05 and k = 

k2 = 0.06. 

Figure 6a shows the wavenumber versus the integrand 

of  the original Uiox, the integrands applied by the asymptotic 

techniques of  H94 and this study. Similarly, Figure 6b shows 

those for a~.  As discussed in case 5 of  H94, the original 

integrands oscillate with very slowly decreasing and increas- 

ing amplitude for displacement and stress, respectively. In 

contrast, the integrands by H94 and our new method quickly 

converge to zero. Note that the integrands by the new 

method converge more quickly than those of  H94, which is 

clear for the stress shown in Figure 6b. This shows that the 

reflected waves from the free surface and the lower boundary 

still affect the asymptotic solutions even for the case in 

which a source and a receiver lie at the middle of  a layer. 

Case 2 (a Source Close to a Boundary) 

In this case, we put the source 50 m above the first 

boundary (h = 950 m) and locate the receivers at two dif- 

ferent depths (z = 960 and 1050 m). This case is the same 

as case 3 in H94. Note that the receiver at z = 1050 m is 

located in a different layer from the source layer. For the 
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~-0.15 
Q 

.0.2 

0.1 

i !oos[l l -  - - Hisada (1994) r" 

I- -~method i" ~ 
~ o - - -  I- -~method 

.0.05 

~ ~ ~ ~ | "  ' '  

.0.1 l--~g~ I 
":: I I l -  - -  Hisada (1994) I 

It I I |-0.,s~ I 
I I I I I I I I r I I I I I I I I I .0 2~ 

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 
Wavenumber (unit: l/m) Wavenumber (unit: l/m) 

0.15 

i-°-°il- ~1," / \ / \ t ~ 1 

! ,tV V \J /t 
°ot1  '1 

" 0 " 2 ~ 0 1  
Wavenumber (unit: l/m) 

Figure 6. Wavenumber versus the real parts of the 
integrand (a: upper figure) U~ and (b: lower figure) 
tr~ for case 1 (h = z = 500 m). The solid lines 
represent the original integrands without asymptotic 
techniques, and the other kinds of lines represent the 
integrands with the methods in Hisada (1994) and this 
study. 

same reason mentioned for case 3 in H94, we use the larger 

values for the asymptotic solutions of  H94: ~:t = 0.2 and 

= k'2 = 0.21. 
Figure 7a shows the wavenumber versus the integrand 

of  the original/Yrx, the integrands applied by H94 and the 

new method for z = 960 m. Figure 7b shows those for a~ .  

Similar to case 1, the original integrands oscillate with very 

slowly decreasing amplitudes. However, contrary to case 1, 

the integrands by H94 do not show quick convergence; they 

do not converge until about k = 0.03 for U~x and 0.12 for 

a G, as shown in Figures 6 and 7 of  H94 and also case 3 

shown below. This is because H94 neglects the reflected 

waves from the lower boundary. On the contrary, the inte- 

grands by our new method immediately converge to zero 

after passing the Love and Rayleigh poles. 

.0A 

- -  original [ l - - - Hisada (1994) 
t -  - this method 

0.00t 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 
Wavenumber (unit: llm) 

Figure 7. Same as Figure 6 but for (a) U~ and (b) 
tr~ for case 2 (h = 950 m and z = 960 m). Note 
that the integrands by this method immediately con- 
verge to zero after passing the poles. 

0.01 

Similarly, Figure 8 shows the integrands a ~  for z = 

1050 m. In this case, both integrands by H94 and the new 

method quickly converge to zero. This is because the as- 

ymptotic solution of  H94 also correctly expresses the trans- 

mitted waves as explained in the paragraphs below equations 

(11) and (21). 

Case 3 (Final Green's Functions) 

Finally, we compare the final values of  the Green's 

functions obtained by the original integrations, those by H94 

and by the new method. We adopt the same parameters used 

in case 2 and carry out the numerical integrations using 

Simpson's rule with increments o f  0.000001 for wavenum- 

bers between 0.000001 and 0.0006, and with increments of  

0.0001 for wavenumbers greater than 0.0006. These are 

same as those of  case 6 of  H94. 

Figures 9a and 9b show the upper limit of  the integration 
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0 .08  

0 .06  

o g 
0 .04  

~ 0.02 

~ o 

"o 

~ -o.o~ 

i - 0 . 0 4  

-0.06 

-0.06 

__-• original 
Hisada (1994) 
this method 

0.001 0 . 0 0 2  0 .003  0 . 0 0 4  0 .005  0 .006  0 .007  0 .008  0 .009  0.01 
Wavenumber (unit: 1/nl )  

Figure 8. Same as Figure 7 but for t r ~  for case 2 

(h = 950 m and z = 1050 m). The integrands by 
H94 and this method  share almost  the same trajecto- 

ries in this case. 

range (maximum wavenumber) versus the absolute values 

of  IU1 ÷ ÷ Ull, and la~  + cr~ + a l, for z = 960 

m. Both displacement and stress by our new method show 

much faster and more stable convergence with the increasing 

upper limit than those of  H94. In this case, the new method 

can reduce the integration ranges down to about one-hun- 

dredth of  those of the original integrations, and about one- 

tenth of  H94. 

Conc lus ions  

We derived the analytical asymptotic solutions of  the 

direct waves from a source and the reflected/transmitted 

waves from the layers adjacent to the source layer. This im- 

proves Hisada (1994) and more efficiently computes Green's 

functions due to point and dipole sources for viscoelastic 

layered half-spaces with near equal source and receiver 

depths. We confirmed that we can significantly reduce the 

range of wavenumber integration especially when a source 

and a receiver are close to the free surface or to the bound- 

aries adjacent to the source layer. In one case (case 3), we 

could reduce the integration range down to about one-hun- 

dredth of the original and to one-tenth of those Hisada 

(1994). We made the FORTRAN codes of this method avail- 

able to the public through the anonymous FFP. 
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Figure 9. The relations between the upper limit of  

the integration range and the absolute values o f  (a) 

displacement IUa= + UI,~ + /.P=l and (b) stress IUa~ + 

a ~  + a~ l  o f  Green 's  functions,  for case 3 (h = 950 

m and z = 960 m). 
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A p p e n d i x  A 

Analytical Solution of  a 4 >< 4 Inverse Matrix 

One of  the most CPU time consuming parts in the R/T 

coefficient method is to compute the inverse matrix of  a 4 

by 4 matrix, which is given in equation (A18) of  H94 to 

obtain the modified R/T coefficients for P - S V  waves. There- 

fore, it is convenient to give the analytical solution of  the 4 

by 4 inverse matrix. 

We define a 4 by 4 inverse matrix of  [E] as [A]: 

A,I A,2 A13 A,41 [E,I E12 E13 E141 -I 
A~, A= A2~ A~41 = IE~I E= E~ E~, 

I A3, A32 A33 A34 / /e3, e .  • 

A4, A42 A43 A4,J LE4, E4~ E43 E. I 

(A1) 

Using the elimination method, we obtain the elements in the 

first column of  [A] as follows: 

An = (-E22d3 + EE3d2 - E24c1)/A1, 

A21 = (E21d 3 - E23d I - E24c2)/A,, 

A31 = ( -E2td2 + E22d1 - -  E24c3)[A,, 

A41 = (E21c I -~- E22c 2 --I- E23c3)]AI, (A2) 

where 

A1 = alCl + a2c2 + a3c3 + bid1 + b2d2 + b3d3, (A3) 

al = E14E21 - -  E,1E24, a2 = E14E22 - -  E12E24, 

a3 = E14E23 - E13E24, 

b, = E,3E22 - EI2E23, b2 = EnE2z - EI3E21, 

b3 = EI2E2, - E, IE22, 

C I : E33E42 - -  E32E43 , c2 = E31E43 - -  g33E41 , 

c3 = E32E4,  - E3 ,E42 ,  

d I = E34E41 --  E31E44 , d 2 = E34E42 - E32E44 , 

d3 = E34E43 - E33E44. (A4) 

The second column of  [A] is obtained using the following 

replacements in equations (A2) to (A4): 

A ,  ---> A,2 in equation (A2) (i = 1, 2, 3, and 4), 

A, --> A 2 in equations (A2) and (A3), 

E, --> E2i, E2, ---> E3i , E3, ---) E4i, E4, ---> E,i 

in equation (A4) (i = i, 2, 3, and 4). (A5) 

Similarly, we obtain the third and fourth columns of [A] 
using the following replacements: 

A,, ---) Ai3 in equation (A2) (i = I, 2, 3, and 4), 

A, ---> A 3 in equations (A2) and (A3), 

El, ---> E3i , E2,, --) E4i, E3i --) E,, E4i --) E2i 

in equation (A4) (i = I, 2, 3, and 4). (A6) 

for the third column of [A], and 

A~I --> Ai4 in equation (A2) (i = I, 2, 3, and 4), 

AI ---> A4 in equations (A2) and (A3), 

El, ---> E4,, E2,, --> Eu, E3,--) E2i, E4i --) E3, 

in equation (A4) (i = I, 2, 3, and 4) (A7) 

for the fourth column of  [A]. 

A p p e n d i x  B 

Analytical Asymptotic Solution of  Equation (20) 

We can analytically derive the asymptotic solutions of  

the 4 by 4 R/T coefficients given in equation (20). We ex- 

press those elements as follows: 

I - n i l  312 B13 8141  

__ B24J 
B21 

LR~/) " i 'oq  1831 B~ B~ 834 " 

L B41 B42 B43 B4~ 

(m) 

Elements Bij in the above equation are given using Appendix 

A in this study and equation (A18) in H94 as follows: 
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B .  = 2 (x i  + 1)affaJ + xO/BJ 

B2~ = (tcJ + 1 )aq (x#¢  j+l - 3KJ + 2) 

- -  a J ( t f J l £  j + l  - -  3K j+l --}- 2)}/B J, 

B3~ = 2(KJ - 2)(1 - aJ)(1 + a#cJ+~)/B j, 

B41 ---~ [ a J ( K  j + l  - -  1 ) ( K J t f  j - -  31¢ j + 4) 

- (xJ - 1){4 + aJaJ(tcJ - 3)xJ+~}] /B j, 

B12 = O, 

Bzz = 2(xJ + 1 ) a f f l  + aJxJ+~)/B j, 

B32 = 4(aJ - 1)(1 + aJxJ+~)/B j, 

B42 = - B 3 .  

B13 = 2(x  j+l  - 2) (aJ  - 1)(a/ + ld)/BJ, 

823 = [ a J ( K  j - -  1 ) ( I £ J + I K j + I  - -  3K j+l -'}- 4) 

- (x j+l  - 1){4aJaJ + (xJ+'  - 3)KJ}]/BJ, 

B33 = 2(KJ +~ + 1)(1 + a#cJ+l)/B~, 

B4a = (x~ + 1){aJ(tc~x j+l  - 3K j+~ + 2) 

- -  (KJK j+l --  3K j + 2)}]BJ, 

B14 = - 4 ( a J  - 1)(aJ + xJ)/BJ, 

B24 = -B~3, 

B34 = 0, 

B44 = 20c ~+~ + 1)(aJ + xO/BJ, 

where  

aJ = / t # / z  J+L, 

BJ = 2{KJ + aJaJxJ +~ + aJ(K#cJ +~ + 1)}, 

and  xJ is g iven  in equat ion  (A11)  in H94. 

A p p e n d i x  C 

(B2)  

(B3)  

The  analyt ica l  integrat ions,  which  are used in the for-  

mula t ion  in this s tudy,  are g iven  as fo l lows:  

Xyo  Io ° ----- ~ = [exp{ - k l z  - hl}Jo(kr)]dk, 

and 

i o  ~ - m 

Iz - hi f =  
R 3 - J0 [ e x p { - k l z  - hl}kJo(kr)]dk, 

--= 1 [ 3 ( Z R 2 h ) 2  11 Io 

-- [ e x p { - k l z  - hl}kZJo(kr)]dk, 

' z - h i {  ( z - h )  2 } 
P = - 3 ~  5 R 2 3 

= [ e x p { - k l z  - hl}UJo(kr)]dk, (C1)  

where  

r f:[  
I i  -~ = - e x p { - k l z  - hi} J~ r______)) dk, 

R + Iz - hi 

r fo I° ~ R(R + Iz - hi) = [ e x p { - k l z  - hl}Jl(kr)]dk, 

rfo  I 1 ~ -  = [ e x p { - k l z  - hl}kJ~(kr)]dk, 
R 3 

I~=--3 - -  
dz  - hi 

R s 
[exp{ - klz - hi }k2J~(kr)]dk, 

r [  ( z - h ) 2  } 
I~ =-- 3 -~  5 R2 1 

= fo = [ e x p { - k l z  - hl}k3J~(kr)ldk, ( C 2 )  

R = ~/r 2 + ( z -  h) 2. (c3) 

Simi l a r l y ,  IO(S-1), io(~ etc. cor responding  to the ref lected 

waves  are ob ta ined  us ing the fo l lowing  rep lacements  in 

equat ions  (C1), (C2), and (C3): 

z -  h - - ) z  + h -  2z ( s - "  

for  1 °(s- 1) etc. and 

Z -  h - ~ 2 z  (~ - z -  h 

for  I °(s) etc. 
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