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ABSTRACT With the popular application of direct part mark (DPM) technology, DPM code inspection has

been a hot issue in the machine vision. It mainly consists of two steps, namely, localization and decoding.

DPM code localization is a key and complex step in the DPM code inspection. However, the traditional

localization methods suffer from complex imaging environment, involving various imaging background,

illumination, imaging distance, and exposures. Furthermore, the target itself, i.e., the DPM code, could be

severely polluted or worn. Aiming at improving the performance and robustness of DPM code localization,

an efficient method with depthwise separable convolution is proposed in this paper. The optimized network

model has the advantages of a few parameters, high computational efficiency, high precision localization,

and good generalization ability. Meanwhile, the precision of the DPM code region is improved with the

help of multi-scale prediction. The experiments on our DPM code localization database demonstrate

the effectiveness and flexibility of the proposed method in comparison with the YOLOv3 network and

the Tiny_YOLO network. Furthermore, the proposed method can estimate the exposure level of the DPM

code region, which is benefiting to the DPM code recognition and enables the adaptive ability.

INDEX TERMS Direct part mark, data matrix, depthwise separable convolution, deep learning.

I. INTRODUCTION

With the rapid development of information technology,

the barcode technology is more and more popular. DPM

(Direct Part Mark) is a special label fabrication technology.

The label is directly made on the object surface by stippling,

etching or spraying, without any label carrier such as paper,

which is widely used in the field of industrial manufacturing.

Usually, only a small area can be used to label the DPM code.

So the DPM needs to choose a code with high coding capac-

ity. DM (Data Matrix) code is the most commonly used type

of the DPM code. Because it has the characteristics of large

coding capacity, high density and good information security.

With the same size and density, the information contained

in DOM is more than that in other two dimensional (2D)

barcodes. Since the DPM code is fabricated on the object

directly, the localization of the DPM code can be highly influ-

enced by the wear, illumination, dirty, material, code sizes,

and so on. Thus, it is difficult to localize the DPM codes,
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especially in the complex scenes as mentioned above. How-

ever, the practical application has high requirements on the

accuracy and speed of the DPM code recognition.

An optimal edge combination method [1] based on Hough

transform domain was proposed to extract the edge features

of DM codes firstly and then filter the boundary points using

the prior knowledge to localize the DM code. However, this

method is not suitable for localizing the DM code with dam-

aged edge or the multiple edge features. The multi-channel

Gabor filtering method [2] was demonstrated to be effective

for long-distance barcode localization. Whereas its precision

is declined when the code is small or the view direction

changes. Based on AdaBoost, an adaptive SpatialBoost algo-

rithm [3] was proposed to combine image texture informa-

tion and spatial information adaptively to detect 2D barcode.

Experiments on 60 test sets showed that the precision to the

2D barcode reached to 100%. However, this algorithm was

only tested in a small number of dataset collected from metal

surface. In order to resolve the problem of low resolution,

variation Bayesian framework [4] was adopted to get super

resolution barcode image. However, it is mainly suitable for
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FIGURE 1. DPM codes on various imaging background. (a) DPM codes on cell phones, (b) DPM codes on
the batteries, (c) DPM codes on the metal, (d) DPM codes on the transparent material and screen.

the barcode in the simple scene. In a word, the traditional

methods have a satisfactory barcode localization in the simple

scenes, however, their localization precision and generaliza-

tion abilities become worse under complex imaging environ-

ments. Figure 1 shows examples of complex environments,

including cell phones, batteries, metal, transparent materials

and screens. It is clear from Figure 1 that even on the surface

of the same type of objects, the localization of DPM can be

very different due to other factors, such as the illumination,

imaging distance, and exposures.

In recent years, deep learning has made breakthrough in

the computer vision. For example, convolutional neural net-

works (CNN) has been proved to be highly effective for

image classification [5]–[8], objection detection [9]–[14],

semantic segmentation [13], [14]. So far, many researches

on QR (Quick Response) code location using deep learning

have been reported. For example, a conventional and deep

rectifier neural network [15] was proposed to localize the QR

code. The method segmented the image into many blocks and

processed every block using neural network to get a proba-

bility matrix. Based on the probability matrix, the QR code

was localized. Further, this method was extended to barcode

localization [16] and got a good result. A two-step algo-

rithm [17] was proposed to localize the QR code. Firstly, the

Viola-Jones framework was used to train cascade classifiers

to output part of patterns. Then, the evaluation of consistency

between detected patterns and QR code spatial arrangement

was performed to complete the QR code localization. A con-

volutional neural network [18] was proposed to detect part

of QR code and the position was confirmed with majority

voting. Then the QR code was segmented and localized from

background based on traditional image process. However,

there is no literature about the DPM code localization using

convolutional neural network. Besides, DPM code is usually

applied in various industrial scenes. It is a great challenge

to accurately localize the DPM code in different situation

because of the complexity of industrial environments.

In this paper, we proposed an efficient method for DPM

code localization based on depth-wise separable convolu-

tions. DM codes fabricated by DPM technology on the mate-

rials of cellphone case, battery, steel, the transparent material

and LCD screen are selected as the tested objects, and to

create industrial DPM code localization dataset. To meet

the real-time requirements of industrial DPM code localiza-

tion, we propose a feature extraction network based on DSC

(depth-wise separable convolution) [19] method. Compared

with the traditional convolution method, the DSC method

reduces the amount of both parameters and calculation, and

significantly improves the calculation speed without perfor-

mance decrease. To improve the accuracy of DPM code

region localization in DPM code dataset, we use feature

pyramid network as the output part of the whole model,

realizing multi-scale prediction of DPM code. Meanwhile,

considering the complicated scenes such as uneven illumina-

tion and overexposure in the industry, the exposure degree

of the DPM code area is evaluated and subdivided into

under-exposure, normal exposure and over-exposure, which

can provide favorable prior knowledge for the imaging and
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FIGURE 2. Framework of DPMLCN.

reading of subsequent DPM code. The rest of this paper is

organized as follow: the network framework is presented in

Section 2, DPM code localization dataset construction pro-

cess is described in Section 3, and network training process

is shown in Section 4. In Section 5, the experimental results

are given and analyzed, and finally the paper is concluded in

Section 6.

II. NETWORK FRAMEWORK

With the rapid development of deep learning, lots of excellent

objection detection frameworks have been proposed to realize

image recognition. Among them, YOLOv3 [12] is one of

the outstanding network models for objection detection, but

the computational cost during both training and recognition

processes is large. As an improved version of YOLO [20],

Tiny_YOLO is a faster network model for objection detec-

tion, however, it reduces the recognition accuracy and gener-

alization ability. Accordingly, these network models cannot

achieve a good balance between recognition accuracy and

computational speed. Therefore, this paper focuses on devel-

oping a DPM code localization network that has both high

accuracy and fast computational speed.

A. CONSTRUCTION OF DPM CODE

LOCALIZATION NETWORK

Due toDPMcodes aremostly applied in industry, DPM codes

localization networkmust satisfy the real-time requirement of

industry application. To solve this problem, a network based

on DSC [21] was proposed to improve the computational

speed while keeping the high accuracy. However, there are

many scales of DPM codes in the DPM code localization

dataset used in this paper. If the network only outputs DPM

code localization boundary box on a single-layer network,

there will be a good localization effect on one scale of DPM

codes, while have a large localization deviation on other

scales of DPM codes. Aiming at this problem, an objection

detection model based on the feature pyramid network was

proposed to improve the accuracy on objects of different

scales [22], whereas the computational speed cannot meet the

real-time requirements.

Since the parameter amount of the DSCmethod is less than

that of the traditional convolution method, the computational

speed is faster than the traditional convolution method with

the same accuracy. Meanwhile, as the output of the network,

the feature pyramid network locates DPM code region on the

last three network layers to realize multi-scale prediction and

improve the localization accuracy of multi-scale DPM code

in the dataset. Based on the advantages of DSC and fea-

ture pyramid network, we propose a DPMCLN (DPM code

localization network) by combiningDSC and feature pyramid

networks to improve the computational speed and localiza-

tion accuracy of multi-scale DPM codes without reducing

the accuracy. The architecture of DPMCLN is provided in

Figure 2.

B. MODEL BLOCK DESIGN

Since the block can simplify the network design, the net-

work model of convolutional neural network is usually

designed using block. Hence, a good block is critical to the

network model design. The inverted residuals structure of

MobileNetv2 [23] is employed in this paper to design the

block, as shown in Figure 3(a). For the block whose stride

is one, the channel dimensions of feature maps are upgraded

using input feature maps by 1×1 convolution. The features

are activated by the activation function of Relu6. Then the

depthwise (DW) convolution and Relu6 activation are per-

formed to extract the useful information of the feature maps

in each channel. The information cross channels is fused

by 1×1 convolution. Finally, the input layer is added to the

output layer after the previous 1×1 convolution by shortcut

way to form a residual structure. For the block whose stride

is two, it is only to reduce the sizes of feature maps.

The principle of the inverted residual structure is to

‘‘expand’’ the input layer channel and then perform DW

convolution. It is benefiting to get more feature maps in the

DW convolution layer and improve the expression ability

of network model. The DW convolution method can reduce

the amount of convolution calculation, which speeds up the

calculation of the model. However, in the original inverted

residual structure, the activation function Relu6 is directly

activated after the DW convolution, which would destroy

its original features. Because the DW convolution is per-

formed by channel-wise fashion, the information only can

be exchanged in one channel and cross-channel information

exchange is impossible. When the DW convolution is per-

formed for channel information fusion, the original features
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FIGURE 3. Block structures comparison of stride=1 and stride=2. (a) MobileNet V2. (b) DPMCLN.

FIGURE 4. Example of inaccurate DPM code location.

FIGURE 5. Feature pyramid network.

of the DW convolution may be missed. So, we design a

network DPMLCN to improve the inverted residuals struc-

ture, as presented in Figure 3(b). Comparing with Figure 3(a),

the activation function Relu6 after DW convolution is

removed to protect the original information. The experimen-

tal results indicated that the precision can be improved by

2.5% simply by removing the activation function.

C. MULTI-SCALE PREDICTION

Suffered from imaging orientation, imaging distance, camera

distortion and so on, the DPM codes in the dataset have dif-

ferent sizes (multi-scale). If the DPM code localization only

depends on the feature map in the topmost layer, the local-

ization box may outline the DPM code imperfectly, as shown

in Figure 4.

In the low layers of the convolutional neural network,

the feature maps have little semantic information and their

fine grit is small, which is suitable for small objects. Whereas

in the high layers, the feature maps have large fine grit and

is suitable for large objects. Based on the properties of both

the low and high layers network, the feature pyramid net-

work [22] is employed to get an adaptive method for different

sizes of the DMP codes. As shown in Figure 5, all the last

three layers are outputted to improve the accuracy of the DPM

code boundary.

After the multi-scale prediction, multiple boundary boxes

are obtained. It is necessary to choose the best one. The

key step in this process is to update the score for each

boundary box. The updating process with non-maximum

algorithm (NMS) [24] can be formulated as:

si =
{

si, iou(M , bi) < Nt

0, iou(M , bi) ≥ Nt
(1)

where M is the boundary box getting the highest score, bi is

the boundary box filtered from initial detection result, Nt is

the threshold value of intersection over union (iou), and iou

can be defined as:

iou = area (A) ∩ area (B)

area (A) ∪ area (B)
(2)

where A is the predicted bounding box, B is the ground truth

bounding box.

When iou is larger than the threshold value Nt , the score

of the boundary box is set to zero. However, iou may still be

larger than the threshold value Nt as two objects close nearly,

even though the confidence coefficient of boundary box is

low, resulting in the leak detection. Thus, the Soft-NMS [25]

algorithm is used to delete the repetitive boundary box and

get the best boundary box as:

si = sie
− iou(M ,bi)

2

σ , ∀bi /∈ D (3)

where D is the boundary box collection.

With the Soft-NMS algorithm, when iou is larger than the

threshold value Nt , the score of the boundary box is set to

be the product between the score and exponential damping

coefficient rather than zero. It can avoid the leak detection

to the target object. As presented in Table 1, compared with

the traditional NMS algorithm, the Soft-NMS algorithm can

improve the recall rate about 2.6%. Figure 6 shows the DPM

code prediction result in multiple sizes based on the Soft-

NMS algorithm. It can be seen that the precision of boundary

is obviously improved in comparison with Figure 4.
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TABLE 1. Recall rate comparison between the NMS and Soft-NMS algorithm.

FIGURE 6. DPM code prediction results in multiple sizes using Soft-NMS
algorithm.

D. LOSS FUNCTION

In this paper, we unify the separate components of object

detection into a single neural network. The proposed

DPMLCN uses features extracted from the entire image to

predict each bounding box. It also predicts all bounding boxes

across all classes for an image simultaneously. This means

that DPMLCN can realize end-to-end training and real-time

speed while maintaining high precision.

As shown in Figure 7, DPMLCN divides the input image

into an S × S grid. If the center of an object falls into a

certain grid cell, then this grid cell is responsible for detecting

the corresponding object. Each grid cell predicts B bounding

boxes and confidence scores for those boxes. These confi-

dence scores reflect the confidence level that an object is

contained in the bounding box. Each bounding box consists

of 5 predictions: x, y, w, h, and confidence c. The (x, y)

represents the center coordinate of the box relative to the

bounds of the grid cell. The width and height are predicted

relative to the whole image. Finally, the confidence prediction

can be represented as Pr (Object) ∗ IOU truth
pred . If no object

exists in that cell, the confidence score should be zero. Oth-

erwise the confidence score should be equal to iou between

the predicted box and the ground truth. Each grid cell also

predicts C conditional class probabilities, P(Classi|Object).
These probabilities are conditioned on the grid cell containing

an object. We only predict one set of class probabilities per

grid cell regardless of the number of boxes B.

For evaluating DPMLCN on DPM code localization

dataset (DPMCLD), we use the K-means clustering algo-

rithm to determine the difference scales of DPM code on

DPMCLD. According to the number of DPM codes sorted

by different scales, we select the top 9 clustering centers,

and then we set B to 3 as each grid cell on the last three

output layers of the network has 3 bounding boxes priors.

Meanwhile, based on interactive experiments, it is found

that the network performs best as the feature map sizes of

the last three output layers are set to 13×13, 26×26 and

52×52 respectively, sowe set S to 13, 26, 52 on three different

output layers. The purpose of this work is not only to locate

the DPM code area, but also to evaluate its exposure level.

Therefore, the DPM codes are classified into three categories:

under-exposure, normal exposure and over-exposure. The

definition of loss function is improved by locating the DPM

code regions with three different exposures. Thus, DPMCLD

has three labeled classes and then C is set to 3. The final pre-

diction is an S×S×18 tensor, where S is 13, 26 or 52, respec-

tively corresponding to the last three output layers of the

network.

The training process is to optimize the multi-part loss

function consisting of the bounding box center coordinate

error, the bounding boxwidth and height error, the confidence

value error and the class probability error. The loss function

is commonly expressed in the form of mean square error as

shown in (4).

loss

= λcood

S2
∑

i=0

B
∑

j=0

R
obj
ij

[

(

xi − x̂i
)2 +

(

yi − ŷi
)2

]

+ λcood

S2
∑

i=0

B
∑

j=0

R
obj
ij

[

(√
wi −

√

ŵi

)2
+

(

√

hi −
√

ĥi

)2
]

+
S2
∑

i=0

B
∑

j=0

R
obj
ij

(

Ci − Ĉi

)2
+ λnoobj

S2
∑

i=0

B
∑

j=0

(

1 − R
obj
ij

)

×
(

Ci − Ĉi

)2
+

S2
∑

i=0

R
obj
i

∑

c∈classes

(

pi (c) − p̂i (c)
)2

(4)

S - The number of grids in which the input image is

divided (here is 13, 26 and 52)

B - Number of bounding boxes predicted by each

grid (here is 3)

R
obj
i - the value of 1 if object appears in cell i,

otherwise 0.

R
obj
ij - the value of 1 if the jth bounding box predictor in

cell i is ‘‘responsible’’ for that prediction,

otherwise 0.

xi, yi - the center coordinate of boundary box in cell i

wi, hi - The width and height of the bounding box in

cell i (wrt the whole image)

λcood - Weight coefficient of the center coordinate, width

and height error of the bounding box (here is 4)

λnoobj - Confidence error for no object in the cell

(here is 0.6)
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FIGURE 7. Prediction process of DPM code localization boundary box.

FIGURE 8. Framework of depthwise separable convolution.

Ci - the value of IOU between the predicted box and

the ground truth if object appears in cell i,

otherwise 0.

pi (c) - probabilities are conditioned on the grid cell i

containing an object

where classes label includes underexposure (DM_Low), nor-

mal exposure (DM_Normal), and overexposure (DM_High)

of DPM code area labeled in DPMCLD.

E. DISCUSSION ON DW

Depthwise separable convolution consists of depthwise (DW)

convolution and pointwise (PW) convolution as shown in

Figure 8. The DW convolution convolutes the input fea-

ture maps by channel-wise fashion and the PW convolution

convolutes the feature maps of all channels with a 1×1

convolution kernel.

The computational advantage of depthwise separable con-

volutions can be verified by comparing parameter numbers

and theoretical calculation amounts between the traditional

convolution and depthwise separable convolutions. To be

brief, we set the convolution kernel to be Kh × Kw, the input

and output channels as Cin and Cout respectively. The res-

olution of input image is H × W . Params denotes weights

of the network without the bias. FLOPs denotes theoretical

calculation amounts, not taking the additions into attention.

a) The parameter numbers and theoretical calculation

amounts in the traditional convolution are:

Params : Kh × Kw × Cin × Cout

FLOPs : Kh × Kw × Cin × Cout × H ×W (5)

b) The parameter numbers and theoretical calculation

amounts in the depthwise separable convolutions are:

Params : Kh×Kw×Cin×Cout/Cin = Kh×Kw×Cout
FLOPs : Kh × Kw × Cout × H ×W (6)

According to (5) and (6), it can be found that the parameter

numbers and theoretical calculation amounts in the depthwise

separable convolutions are reduced by Cin times.

III. DPM CODE LOCALIZATION DATASET

The process of constructing DPM code localization dataset

includes two key parts. The first part is collecting a diverse

set of DPM code images in different scenarios. The second

part is annotating large amounts of collected images to obtain

a DPM code localization dataset.

A. SOURCE OF DPM CODE LOCALIZATION DATASET

SinceDPMcodes aremostly used in industry, images used for

DPM code localization are captured by industrial cameras in

various complex industrial environments.

Herein, the process is briefly introduced as follows: 1) Can-

didate images are collected from a variety of different

materials, such as cell phone, battery, metal, transparent

material, screen etc. 2) To obtain as many images as possible,

we expand the number ofDPMcodes images on eachmaterial

by adjusting the camera’s shooting distance and angle. For

example, we fixed the camera at a certain height and adjusted
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the roll, pitch, and yaw angles to take multiple shots of DPM

codes on different materials, then adjusted the camera height

and repeated the process. 3) Meanwhile, in order to evaluate

the exposure of DPM code area in experiments, we obtained

different exposure DPM code images by adjusting illumina-

tion intensity in industrial environments.

B. DPM CODE LOCALIZATION DATASET ANNOTATION

1) DEFINING OBJECT CATEGORIES FOR DPM

CODE LOCALIZATION DATASET

In this paper, we not only need to locate the DPM code area,

but also evaluate the exposure level of the area. Besides, con-

sidering the fact that the DM code is the most commonly used

barcode for DPMcodes in practice, we classify the DPMcode

area into three categories, namely DM_Low, DM_Normal,

and DM_High, which represent the under-exposed DPM

code, the DPM code of normal exposure, and the over-

exposed DPM code, respectively, as shown in Figure 9.

FIGURE 9. DPM codes on different exposure. (a) DM_Low (the
under-exposed DPM code). (b) DM_Normal (the DPM code of normal
exposure). (c) DM_High (the over-exposed DPM code).

2) DPM CODE DATASET ANNOTATION PROCESS

The labeling of the dataset mainly includes two steps: The

first step is to set the folder name, picture name and format,

and generate the .txt file used for training, testing, and verifi-

cation; The second step is to use the labelImg tool to draw a

bounding box on the target object on the image and mark the

corresponding category, and generate .xml files.

In the first step, we create three folders, namely JPEGIm-

ages, Annotations, and ImageSets. JPEGImages folder is

used to store training and test pictures (image format is .jpg).

Annotations folder is used to store files in .xml format, which

is the label corresponding to the image. Each .xml file cor-

responds to a picture in the JPEGImages folder. ImageSets

folder contains the main folder, which stores train.txt, val.txt

and test.txt files. These files store the image paths used for

table training, validation and testing respectively.

In the second step, we firstly pick out all the DPM code

areas in the image and draw the bounding box. Meanwhile,

every bounding box is required to be as small as possible

while including all visible parts of the object instance. Then,

we put the corresponding category label on each bounding

box. Notice that every DPM code needs to have a bounding

box. This is important for training localization algorithms

because it decides whether an area contains an object or not.

Finally, after tagging the DPM code in the image, we generate

the .xml file and store it in the Annotations folder. The file

name must also be the same as the current image. The above

steps are repeated until all images are tagged.

IV. NETWORK TRAINING AND EXPERIMENTAL ANALYSIS

A. TRAINING DATA

Based on the above DPM code localization dataset, we only

use the DPM code image on the cell phone as the training

set, and the dataset of other scenes as the test set to verify the

generalization ability of DPMLCN. To increase the diversity

of the dataset, the DPM code images on the cell phone are

processed by means of data augmentation such as rotation,

translation, reversal, cutting and so on. Finally, there are

2,500 DPM code images on the battery as a training and vali-

dation set, in which the proportion of DM_Low, DM_Normal

and DM_High is 1:1:1, and the proportion between the train-

ing and validation set is 9:1. That is there are 2250 images

for training and 250 images for verification. Meanwhile,

1200 DPM code images in other scenes including battery,

metal, transparent material and screen are chosen as the test

set in order to verify the generalization ability of the proposed

networks.

B. TRAINING

The computer configurations used in this paper include

CPU (Inter Core-i7), basic frequency (3.6 GHz), graphics

card (TATAN XP), video memory (12 GB), operation sys-

tem (Ubuntu 16.04). Two frameworks, including Keras and

TensorFlow are applied.

To optimize the network, we use the Adam algorithm [26]

and set the exponential decay rate of the firstmoment estimate

to be 0.9 and the exponential decay rate of the secondmoment

estimate to be 0.99. Meanwhile, epoch and Batch sizes are set

to 625 and 32 respectively. The learning rate is dynamically

changed as follows: the initial learning rate is 0.001 and

learning rate will be reduced 10 times if the loss function is

not declined after training the Batch data 200 times. In order

to accelerate the network convergence, the Batch Normaliza-

tion [27] is performed behind the convolution layer.

FIGURE 10. Loss function for different networks.

C. LOSS FUNCTION RESULT ANALYSIS

Figure 10 shows the loss function curves for different net-

works, including YOLOv3, Tiny_YOLO and the proposed

DPMLCN. It can be observed that the convergence rate of

loss function in the YOLOv3 network is slower than the

other two networks because it has more layers. The proposed
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FIGURE 11. Accuracy of the validation datasets for different networks.

DPMLCN has the fastest convergence speed and the smallest

loss error, indicating that the DPMLCN has better training

results than the other two networks.

Figure 11 presents the accuracy of the validation datasets.

It is clear that the Tiny_YOLO network has the lowest accu-

racy, indicating that the model expression ability of net-

work with few layers is limited. Usually, adding the network

layers can improve the model expression ability. Although

the DPMLCN has less layers than the YOLOv3 network,

their accuracy is comparable. Therefore, it can be concluded

that the DPMLCN can improve the accuracy and reduce the

calculation simultaneously.

D. PERFORMANCE ANALYSIS

1) PRECISION AND RECALL

In order to evaluate the performance of different networks on

DPM code location tasks, the validation datasets in the scene

of cell phone are tested. The precision and recall are chosen

to evaluate the network performance. The precision denotes

the rate of discovery of real positive samples, and the recall

denotes the proportion of predicted positive samples that are

correctly real positives.

Comparison results of the three networks are presented

in Table 2. It is clear that the detection rates of DPMLCN

and Tiny_YOLO network are faster than the YOLOv3 net-

work about 4.5 times. With the similar detection rate,

the DPMLCN network has a better precision and recall than

the Tiny_YOLO network. It means that the proposed net-

work can achieve a good localization precision and accelerate

localization speed to the DPM codes.

2) GENERALIZATION ABILITY

To further evaluate the generalization ability of different net-

works, the test datasets (1200 images) in the complex scenes

including battery, metal, transparent material and screen are

tested using different networks. The corresponding results

with different networks are shown in Table 3.

As shown in Table 3, the localization precision of DPM

codes using the DPMLCN network is still higher than 99%

although the test scenes are not included in the training scenes

and the recall is 99.3%. Obviously, the proposed DPMLCN

network has a strong generalization ability, so that it can be

well applied to different complex scenes.

According to the above analysis, DPMCLN is superior

to the YOLOv3 network in DPM code localization. More-

over, its computational speed is significantly faster than

the YOLOv3 network, reaching to more than 90 fps on a

Titan X GPU. Furthermore, DPMCLN achieves higher accu-

racy than the real-time systems Tiny-YOLO. It indicates that

the DPMLCN exhibits high localization performance and

computational speed in the application of DPM code location.

E. DPM CODE LOCATION RESULTS

1) LOCALIZATION ABILITY COMPARISON

To assess the localization ability of different networks

on DPM codes at different exposures levels, we make

use of the under-exposed DPM code images, the normal

exposed DPM code images, and the over-exposed DPM code

images from the untrained DPM code localization dataset.

Figure 12 shows the localization results of Tiny_YOLO,

YOLOv3 and DPMLCN with different exposure DPM code

images. It can be seen that the normal exposed DPM code

images can be successfully located by the three networks,

but the bounding box of the DPMLCN output is the closest

to the real DPM code area. For under-exposed and over-

exposed DPM codes, Tiny_YOLO can only locate part of

the DPM code area, and YOLOv3 can correctly locate the

TABLE 2. Experimental results of DPM code validation datasets in the cell phone scene.

TABLE 3. Experimental results on the DPM code test dataset in the different scenes.
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FIGURE 12. Location comparison of the three networks for
underexposed, normal exposed and overexposed DPM codes:
(a) Tiny_YOLO, (b) YOLOv3, (c) DPMLCN.

FIGURE 13. Localization results of DPMLCN on different materials: (a) cell
phone, (b) battery, (c) metal, (d) transparent material and screen.

DPM code area while the bounding box is a bit larger that

the real DPM code area. Comparing with the Tiny_YOLO

and YOLOv3 networks, the proposed DPMLCN network can

locate the DPM code area well and the boundary box is very

close to the actual area.

From the above analysis, it is concluded that the proposed

DPMLCN has better localization ability in different exposure

DPM codes than the other two networks, and the bounding

box can cover the DPM code area exactly. Additionally,

Tiny_YOLO and YOLOv3 both have some limitations in

underexposed and overexposed DPM codes.

2) LOCATION ABILITY FOR DIFFERENT MATERIALS

The localization effects of DPMLCN in different materials

are shown in Figure 13, where the colors of boundary boxes

denote the exposure level, which is useful to the subsequent

process of DPM codes. Orange, green, and red imply normal,

low and over exposure, respectively. As can be seen from

Figure 13, DPMLCN has an accurate localization for DPM

codes in different scenarios, indicating that DPMLCN is

with good localization performance and strong generalization

ability.

V. CONCLUSIONS

This paper proposes a DPMLCN network based on the depth-

wise separable convolution and feature pyramid network to

realize the DPM code localization precisely and quickly in

complex scenes. Benefiting from the improved network struc-

ture and multi-scale prediction output, the model expression

ability is improved and the calculation speed is enhanced

obviously. Experimental results in the DPM code localization

datasets demonstrate that the proposed DPMLCN network

performs better than the Tiny_YOLO and YOLOv3 networks

in terms of localization accuracy and computational effi-

ciency. It can accurately localize the DPM code in different

scenes, such as multiple sizes, different materials, uneven

illumination, under/over-exposure, polluted, and wear etc.

It also has good generalization ability for different materials,

and its speed of location reaches to 90fps. In addition, the pro-

posed DPMLCN network can output the exposure level of the

DPM code, which is useful to adjust the imaging system to

improve quality of the obtained DPM code in practice.
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