
Published in J. Advanced Computational Intelligence, Vol. 1, No. 1, 1997

1

An Efficient Method for Extracting Fuzzy Classification
Rules from High Dimensional Data

Stephen L. Chiu

Rockwell Science Center
1049 Camino Dos Rios

Thousand Oaks, California 91360, USA
E-mail: slchiu@rsc.rockwell.com

We present an efficient method for extracting fuzzy
classification rules from high dimensional data. A cluster
estimation method called subtractive clustering is used to
efficiently extract rules from a high dimensional feature
space. A complementary search method can quickly
identify the important input features from the resultant
high dimensional fuzzy classifier, and thus provides the
ability to quickly generate a simpler, more robust fuzzy
classifier that uses a minimal number of input features.
These methods are illustrated through the benchmark iris
data and through two aerospace applications.

Keywords: Clustering, Classification, Fuzzy rule learning,
Feature selection.

1. Introduction

One of the hallmarks of fuzzy logic is that it allows
nonlinear input/output relationships to be expressed by a set
of qualitative “if-then” rules. Nonlinear control or decision
surfaces, process models, and pattern classifiers may all be
expressed in the form of fuzzy rules. Most fuzzy systems are
hand-crafted by a human expert to capture some desired
input/output relationships that the expert has in mind.
However, often an expert cannot express his or her knowledge
explicitly; and, for many applications, an expert may not even
exist. Hence, there is considerable interest in being able to
automatically extract fuzzy rules from experimental
input/output data. The key motivation for capturing data
behavior in the form of fuzzy rules instead of, say,
polynomials and neural networks, is that the fuzzy rules are
easy to understand, verify, and extend. A system designer can
check the automatically extracted rules against intuition,
check the rules for completeness, and easily fine-tune or
extend the system by editing the rulebase.

While the problem of extracting fuzzy rules from data for
function approximation has been studied for some time [1,2],
research into extracting fuzzy rules for pattern classification
has become active only within the past 5 years. An early
approach to extracting fuzzy rules for pattern classification
involves partitioning the feature space into grid-like fuzzy
cells that correspond to possible combinations of input feature
values; the output class associated with each cell is obtained
from the data samples that fall into the cell. Extensions to this

approach include combining several rule bases, each with
different cell partitioning resolution [3], and dynamically
expanding and splitting fuzzy cells [4]. A related method that
employs nested fuzzy cells (resulting in nested rules) can
extract good fuzzy cells in one pass [5].

Recently, methods for extracting fuzzy rules for pattern
classification have incorporated neural network concepts for
adaptive learning [6,7]. These methods require the user to
prespecify the structure of the rulebase, i.e., number of rules
per class [6] or number of membership functions per input
feature [7], along with initial values for the adjustable
parameters.

Our work has been guided by the objective of developing a
practical, easy-to-use software for extracting fuzzy rules from
data for real-world, high-dimensional problems. Efficiency
and robustness of the algorithm in dealing with high-
dimensional and noisy data are primary factors driving our
approach. Simplicity of the method from a user’s perspective
is also important (i.e., minimize the number of parameters the
user must specify and minimize the need for trial-and-error).

A cluster estimation method called subtractive clustering
[8] forms the basis of our approach. Subtractive clustering is
a fast and robust method for estimating the number and
location of cluster centers present in a collection of data
points. Initial fuzzy rules with rough estimates of
membership functions are obtained from the cluster centers;
the membership functions and other rule parameters are then
optimized with respect to some output error criterion. This
approach can be applied to extract rules for both function
approximation and pattern classification, with some small
differences in the detailed methods for these two types of
applications (see [9]). Using subtractive clustering to extract
rules for function approximation is described in [8,9], and the
algorithm for this purpose is readily available in the
commercial Fuzzy Logic Toolbox software for MATLAB.
Here we focus on extracting rules for pattern classification,
building upon the work described in [10]. We will first
review the basic rule extraction method as presented in [10],
and then present an efficient method for input feature
selection that works jointly with the basic rule extraction
method. We will illustrate these methods through application
to the benchmark iris data. We will also describe two
aerospace applications: one for detecting leakage in the space
shuttle's auxiliary power unit, the other for modeling space
shuttle pilot's control action during docking maneuvers.

2

2. Extracting Fuzzy Rules

2.1 The Subtractive Clustering Method

To extract rules from data, we first separate the training
data into groups according to their respective classes.
Consider a group of n data points {x1,x2,...,xn} for a specific
class, where xi is a vector in the input feature space. Without
loss of generality, we assume that the feature space is
normalized so that all data are bounded by a unit hypercube.
We consider each data point as a potential cluster center for
the group and define a measure of the potential of data point xi
to serve as a cluster center as

Pi = e- α || xi - xj ||
2

Σ
j=1

n
(1)

where
α = 4

ra2
(2)

||.|| denotes the Euclidean distance, and ra is a positive
constant. Thus, the measure of the potential of a data point is
a function of its distances to all other data points in its group.
A data point with many neighboring data points will have a
high potential value. The constant ra is effectively a
normalized radius defining a neighborhood; data points
outside this radius have little influence on the potential. Note
that because the data space is normalized, ra = 1.0 is equal to
the length of one side of the data space.

After the potential of every data point in the group has
been computed, we select the data point with the highest
potential as the first cluster center. Let x*

1 be the location of
the first cluster center and P*

1 be its potential value. We then
revise the potential of each data point xi in the group by the
formula

Pi ⇐ P i - P1
*
 e- β || x i - x1

* ||
2

(3)

where

β = 4

rb
2

and rb is a positive constant. Thus, we subtract an amount of
potential from each data point as a function of its distance
from the first cluster center. The data points near the first
cluster center will have greatly reduced potential, and
therefore will unlikely be selected as the next cluster center
for the group. The constant rb is effectively the radius
defining the neighborhood which will have measurable
reductions in potential. To avoid obtaining closely spaced
cluster centers, we typically choose rb = 1.25 ra .

When the potential of all data points in the group has been
reduced according to Eq. (3), we select the data point with the
highest remaining potential as the second cluster center. We
then further reduce the potential of each data point according

to their distance to the second cluster center. In general, after
the k’th cluster center has been obtained, we revise the
potential of each data point by the formula

Pi ⇐ P i - Pk
* e- β || x i - x

k
* ||

2

where x*
k is the location of the k’th cluster center and P*

k is its
potential value.

The process of acquiring new cluster center and reducing
potential repeats until the remaining potential of all data
points in the group is below some fraction of the potential of
the first cluster center P*

1 ; we typically use P*
k < 0.15P*

1 as
the stopping criterion. Some additional criteria for accepting
and rejecting cluster centers are detailed in [8]. This cluster
estimation method, called subtractive clustering, is an
extension of the grid-based mountain clustering method
introduced by Yager and Filev [11]. The subtractive
clustering method is designed for high dimension problems
with moderate number of data points, because its computation
grows linearly with the data dimension and as the square of
the number of data points.

2.2. Converting Clusters to Initial Rules

Each cluster center found in the training data of a given
class identifies a region in the feature space that is well-
populated by members of that class. Thus, we can translate
each cluster center into a fuzzy rule for identifying the class.
Suppose cluster center x*

i was found in the group of data for
class c1; this cluster center provides the rule:

Rule i: If {x is near x*
i } then class is c1.

The degree of fulfillment of {x is near x*
i } is defined as

µi = e - α || x - x
i
* ||

2
 (4)

where α is the constant defined by Eq. (2). We can also write
this rule in the more familiar form:

Rule i: If X1 is Ai1 & X2 is Ai2 &... then class is c1.

where Xj is the j’th input feature and Aij is the membership
function in the i'th rule associated with the j'th input feature.
The membership function Aij is given by

A ij(X j) = exp - 1
2

X j - xij
*

σij

2

(5)

where x*
ij is the j’th element of x*

i , and σ2
ij = 1/(2α). The

degree of fulfillment of each rule is computed by using
multiplication as the AND operator.

By applying subtractive clustering to each class of data
individually, we thus obtain a set of rules for identifying each
class. The individual sets of rules can then be combined to

3

form the rulebase of the classifier. For example, suppose we
found 2 cluster centers in class c1 data, and 5 cluster centers
in class c2 data, then the rulebase will contain 2 rules that
identify class c1 members and 5 rules that identify class c2
members. When performing classification, the output class of
the classifier is simply determined by the rule with the highest
degree of fulfillment.

2.3 Optimizing Membership Functions

After the initial rulebase of the classifier has been obtained
by subtractive clustering, we use a gradient descent algorithm
to tune the individual x*

ij and σij parameters in the
membership functions (cf. Eq. 5) to minimize a classification
error measure.

We define the following classification error measure for a
data sample that belongs to some class c:

E = 1
2

1 - µc,max + µ¬c,max
2

(6)

where µc,max is the highest degree of fulfillment among all
rules that infer class c and µ¬c,max is the highest degree of
fulfillment among all rules that do not infer class c. Note that
this error measure is zero only if a rule that would correctly
classify the sample has degree of fulfillment of 1 and all rules
that would misclassify the sample have degree of fulfillment
of 0. An important attribute of this error measure is that
optimization involves adjusting only the rules responsible for
µc,max and µ¬c,max, since all other rules do not affect the
error measure.

The membership function parameters are updated
according to the following gradient descent formulae [10]:

x ij
*

⇐ xij
* - λ ∂E

∂x ij
*

 and σij ⇐ σij - λ ∂E

∂σij

where λ is a positive learning rate. After carrying out the
partial differentiation, we obtain

x
ij
* ⇐ x ij

* ± λ µi

1 - µc,max + µ¬c,max X j - x ij
*

σij
2

(7)

σij ⇐ σij ± λ µi

1 - µc,max + µ¬c,max X j - x
ij
* 2

σ
ij
3

(8)

where these update formulae are applied to only two rules: the
rule that provided µc,max and the rule that provided µ¬c,max;
the ‘+’ sign is used for the rule that provided µc,max and the ‘-
’ sign is used for the rule that provided µ¬c,max. Here Xj is
the j’th input feature value of the data sample and µi is the
degree of fulfillment of rule i.

This gradient descent algorithm can be viewed as a type of
competitive learning algorithm: a winner in the “good rule”

category is reinforced and a winner in the “bad rule” category
is punished. Because only two rules are updated each time,
the algorithm is highly efficient.

We have found that a classifier can achieve higher accuracy
and the resultant classification rules are easier to understand if
the membership functions are allowed to be “two-sided”
Gaussian functions. A two-sided Gaussian function may have
a flat plateau region and different standard deviations on the
left and right sides (see Fig. 1). For two-sided Gaussian
functions, there are four adjustable parameters per
membership function: the left and right side peak positions
(left and right x*

ij), and the left and right side standard
deviations (left and right σij). The update formulae in Eqs.
(7) and (8) are mathematically valid for two-sided Gaussian
functions when the feature value Xj is outside the plateau
region; these equations apply to the left side parameters if Xj is
on the left side of the plateau and apply to the right side
parameters if it is on the right side of the plateau. However,
the update formulae are no longer valid when Xj is inside the
plateau region, because the error gradient there is zero. We
use the following heuristic procedure to handle this situation:
if the rule is a “good” rule, then do not modify the
membership function (since it already provides the maximum
membership grade); if the rule is a “bad” rule, then use Eq. (7)
with ‘+’ sign and Eq. (8) with ‘-’ sign to adjust the
parameters. The left side parameters are adjusted if Xj is
closer to the left peak and the right side parameters are
adjusted if Xj is closer to the right peak. In this way, the
membership function of a bad rule is still moved away from
Xj in a consistent manner, although the move is not based on
the true gradients.

Fig. 1. A “two-sided” Gaussian function.

3. Selecting Input Features

One of the more difficult challenges in function
approximation and pattern classification is selecting the
important input variables from all possible input variables.
Incorporating only the important variables into a model
provides a simpler, more useful, and more reliable model.
Understanding the relative importance of variables also allows
the system designer to focus his or her efforts on the variables
that matter, eliminating the time and cost involved in
measuring and processing unimportant variables.

Complementing our basic rule extraction method, we have
also developed an efficient method for identifying the

4

important input variables (i.e., features). This method is based
on generating an initial fuzzy classifier that employs all
possible input features, and then systematically removing
particular antecedent clauses in the fuzzy rules of this initial
classifier to test the sensitivity of the classifier with respect to
each input feature. This approach avoids the computational
bottleneck encountered by most feature selection methods: the
need to repeatedly generate new classifiers to test each
combination of features.

For example, suppose that the initial classifier has three
inputs, with rules of the form:

If X1 is Ai1 & X2 is Ai2 & X3 is Ai3 then class is c.

We can test the importance of the X2 input in the classifier by
temporarily removing the antecedent clauses that involve X2,
thus truncating the rules to the form:

If X1 is Ai1 & X3 is Ai3 then class is c.

If the resultant classifier's performance does not degrade with
respect to some performance measure (e.g., by testing the
classifier with respect to an independent set of checking data),
then we can eliminate X2 from the list of possibly important
inputs. In practice, we need not actually remove antecedent
clauses from the rules, but simply let the associated clauses
(e.g., “X2 is Ai2”) be assigned a truth value of 1.0 to achieve
the effect.

The systematic procedure for input feature selection is as
follows:

1. Evaluate the performance of the initial classifier with
all candidate inputs present.

2. For each remaining input, evaluate the performance of
the classifier with this input temporarily removed.

3. Permanently remove the input associated with the best
classifier performance obtained in step 2. Record the
resultant reduced input set and the associated classifier
performance.

4. If there are still inputs remaining in the classifier, go
back to step 2 to eliminate another input. Otherwise go
to step 5.

5. Choose the best input set from among the sets recorded
in step 3.

This is essentially a backward selection procedure that
starts with all possible inputs and reduces the number of
inputs by one at each stage. For example, starting with 4 input
features, this procedure first selectively removes one input to
arrive at the best 3 input set; from among the 3 remaining
inputs, it then selectively removes one more input to arrive at
the best 2 input set, and so on; among these “best” input sets,
the set that provided the best overall performance is chosen at
the end, after we have reached a classifier with no input. The
input selection process for a four-input initial classifier is
shown in Fig. 2. Because testing the different input
combinations requires only truncating the rules in an initial

full-input classifier and not generating any new classifiers, the
input selection process is highly efficient.

While a typical backward selection process stops when the
classifier's performance becomes unacceptable at some stage,
we found it more useful to carry the process to the end until
the performance of a classifier with no input is evaluated. It is
important to let the human designer examine the classifier
performance as a function of the number of inputs removed
and determine how to trade off accuracy for simplicity.

This input selection procedure can be used with various
classification performance measures. The simplest
performance measure is the misclassification rate with respect
to an independent set of checking data. However, we found
that using the average of the classification error measure
defined in Eq. (6) provides finer discriminating ability in
ranking the relative importance of inputs. Specifically, we use
the following performance measure:

J = 1
n

1 - µc,max (x i) + µ¬c,max (x i)
2

Σ
i=1

n

 (9)

where xi is a sample in the checking data set and n is the
number of checking data. Comparing this performance
measure with Eq. 6 shows that this is basically our
classification error measure averaged over the checking data
set; the purpose of the square root operation is to make this
performance measure similar to the standard RMS-type error
measure. Note that when all input features (or antecedents)
are removed from the rules, all rules will have a degree of
fulfillment of 1.0 and the performance measure in Eq. 9 will
be 1.0.

1 2 3 4

2 3 4 1 3 4 1 2 4 1 2 3

2 4 1 4 1 2

2 4

Remove #3

Remove #1

Remove #2

Remove #4

Classifier using all input features

Classifier using no input feature

Fig. 2. Input selection process for a four-input initial
classifier. The different subsets of inputs considered at each
stage are shown; the shaded subsets are the ones that
provided the best performance at each stage. After the input
removal process is carried to the end, we select from among
the shaded subsets the subset that provides the best
performance/complexity trade-off.

5

4. Application Examples

4.1 Classification of Fisher's Iris Data

We have applied the rule extraction method to the
benchmark iris data [12]. The iris data consists of a set of 150
data samples that maps 4 input feature values (sepal length,
sepal width, petal length, petal width) into one of 3 species of
iris flower. There are 50 samples for each species. We used
120 samples (40 samples of each species) as training data and
30 samples (10 samples of each species) as checking data.

Using a cluster radius of ra = 0.5 (the default in our rule
extraction software), our method extracted a 4-input initial
classifier consisting of 6 rules: 1 rule for class 1 (Iris setosa),
2 rules for class 2 (Iris versicolor), and 3 rules for class 3 (Iris
virginica). The membership functions were optimized using
Eqs. 7 and 8; the optimization stops when the improvement in
the average error measure after a pass through the training
data becomes less than 0.01 percent of the previous average
error measure. (The average error measure is given by Eq. 9
evaluated over the training data.) The classification error on
the training data was 2.5% and the error on the checking data
was 0%. This result is similar to that reported in [13] for two
neural networks. However, our method achieved this result
the first time it is applied, and the computation time for rule
extraction was only 25 seconds on a Macintosh computer with
a 68040 processor running at 25MHz.

We then applied the input selection procedure to the 4-
input initial classifier, using the performance measure of Eq.
(9) evaluated over the checking data as the selection criterion.
The performance measure as a function of the number of
inputs remaining in the classifier is shown in Fig. 3, where the
name of the input removed at each stage is indicated next to
each performance datum. We see that petal width is the last
input removed; hence it is probably the most important feature
for classifying the flowers. The performance measure reached
an optimum (minimum) after sepal width and sepal length are
removed; this suggests that we should remove these two
features and keep the remaining petal length and petal width
features. The computation time for input selection was 2
seconds on the Macintosh computer. A new classifier based

on only the petal length and petal width features was then
generated from the training data, again using a cluster radius
of 0.5. The resultant classifier has only 3 rules (one rule for
identifying each class) and produced the same classification
error with respect to the training and checking data as the
previous 4-input initial classifier. The computation time for
extracting the 2-input classifier was 4 seconds on the
Macintosh computer. The rules for the 2-input classifier are
shown in Fig. 4.

4.2 Shuttle Auxiliary Power Unit Leakage Detection

The rule extraction method was applied to detect leakage
in the space shuttle's auxiliary power unit (APU). The input
to the classifier is a sequence of APU chamber pressure values
as a function of time; the output is an indication of whether
there is a leakage. Figure 5 shows some time responses of the
APU chamber pressure in the presence and absence of leakage.
There are 103 pressure response curves in the data set; each
time response consists of pressure measurements at 57
consecutive time points (i.e., 57 input features). Because of
the limited number of data samples, we used the entire 103

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

Number of Input Variables Remaining

P
er

fo
rm

an
ce

 M
ea

su
re

petal width

No variable
removed

petal length

sepal length
sepal width

All
variables
removed

Fig. 3. Classification performance measure with respect to
checking data as a function of number of inputs remaining in
the initial classifier. The point of minimum error is shown as a
black circle. The input removed at each stage is shown next to
the resultant error point.

thenif petal width is petal length isand species is

Rule 1

Rule 2

Rule 3

species = 1

species = 2

species = 3

Fig. 4. Rules extracted for the 2-input iris classifier.

6

samples as both training data in the rule extraction phase and
as checking data in the input selection phase.

Using ra = 0.5, we extracted an initial 57-input classifier
consisting of 2 rules (one rule for identifying leakage cases
and one rule for identifying non-leakage cases). This initial
classifier produced no error on the data set. We then applied
the input selection procedure to the initial classifier; pressure
values at only 3 time points were found to be important for
distinguishing the two cases (pressure at times t=12, t=13, and
t=55, as shown in Fig. 5). Finally, a new classifier based on
the three selected inputs was generated. The total
computation time for extracting the initial classifier, selecting
inputs, and extracting the final classifier was 3.5 minutes on
the Macintosh computer. The rules for the final classifier,
which also produced no error on the data set, are shown in Fig
6.

4.3 Shuttle Pilot Docking Emulation

The rule extraction method was applied to mimic the space
shuttle pilot's control actions during docking maneuvers. The
inputs to the system are the shuttle's distance, azimuth,
elevation, and their rates of change with respect to the docking
target (total of 6 inputs); the outputs are the shuttle's jet firing
commands along the three (x-y-z) translational axes (total of 3
outputs). The jet firing command for each translational axis
can be either +1 (fire in positive direction), -1 (fire in negative
direction), or 0 (do not fire), resulting in three possible classes
for each output.

Of the 3600 data samples obtained from simulation, we
used half as training data and half as checking data. Using ra
= 0.5, we extracted an initial 6-input classifier to determine
the x-axis jet firing command. This initial classifier consisted
of 18 rules and produced 1.6% error on the training data and
2.0% error on the checking data. After applying the input
selection procedure to the initial classifier, 4 of the inputs
were identified as important. A new classifier based on the
four selected inputs was then generated by using ra = 0.5. The
resultant 4-input classifier has 12 rules, and produced 2.9%
error on the training data and 2.4% error on the checking data.
The total computation time for extracting the initial classifier,
selecting inputs, and extracting the final classifier was 19
minutes on the Macintosh.

5. Summary

We presented an efficient method for extracting fuzzy
classification rules from high dimensional data. This method
incorporates several novel, computationally efficient
techniques: the use of subtractive clustering to obtain the
number of rules and initial membership functions; an efficient
gradient descent algorithm for optimizing membership
functions; and a method for selecting input features without
generating new classifiers to test feature combinations.
Applications of this method have shown that it is
computationally fast and robust. A good classifier can usually
be extracted the first time the method is applied, without any
trial-and-error adjustment of parameter settings. This method
was illustrated through the benchmark iris data and through
two aerospace applications.

References

1. T. Takagi and M. Sugeno, “Fuzzy identification of systems and
its application to modeling and control,” IEEE Trans. on
Systems, Man & Cybernetics, vol. 15, pp. 116-132, 1985.

2. R. Yager and D. Filev, Essentials of Fuzzy Modeling and
Control, John Wiley, New York, 1994.

3. H. Ishibuchi, K. Nozaki, H. Tanaka, “Pattern classification by
distributed representation of fuzzy rules,” Proc. 1st IEEE Int'l
Conf. on Fuzzy Systems, pp. 643-650, San Diego, USA, 1992.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

leakage
no leakage

Time
t = 12 t = 13 t = 55

Pr
es

su
re

Fig. 5. Time responses of APU chamber pressure.

if P(12) is P(13) is P(55) isand and Leakage is

NO

YES

Rule 1

Rule 2

then

Fig. 6. Rules extracted for detecting APU leakage.

7

4. P.K. Simpson, “Fuzzy min-max neural networks,” Proc. IJCNN-
91, Singapore, pp. 1658-1669, 1991.

5. S. Abe and M.S. Lan, “A classifier using fuzzy rules extracted
directly from numerical data,” Proc. 2nd IEEE Int'l Conf. on
Fuzzy Systems, pp. 1191-1198, San Francisco, USA, 1993.

6. F.L. Chung and T. Lee, “A fuzzy learning method for
membership function estimation and pattern classification,” Proc.
3rd IEEE Int'l Conf. on Fuzzy Systems, pp. 426-431, Orlando,
USA, 1994.

7. C.T. Sun and J.S. Jang, “A neuro-fuzzy classifier and its
applications,” Proc. 2nd IEEE Int'l Conf. on Fuzzy Systems, pp.
94-98, San Francisco, USA, 1993.

8. S. Chiu, “Fuzzy model identification based on cluster
estimation,” J. of Intelligent and Fuzzy Systems, vol. 2, no. 3,
pp. 267-278, 1994.

9. S. Chiu, “Extracting fuzzy rules from data for function
approximation and pattern classification,” to appear as Chapter 9
in Fuzzy Set Methods in Information Engineering: A Guided
Tour of Applications, ed. D. Dubois, H. Prade, and R. Yager,
John Wiley, 1997.

10. S. Chiu, “Extracting fuzzy rules for pattern classification by
cluster estimation,” Proc. 6th Int. Fuzzy Systems Association
Congress (IFSA ‘95), vol. 2, pp. 273-276, Sao Paulo, Brazil, July
1995.

11. R. Yager and D. Filev, “Approximate clustering via the mountain
method,” IEEE Trans. Syst. Man, & Cybernetics, vol. 24, pp.
1279-1284, 1994.

12. R.A. Fisher, “The use of multiple measurements in taxonomic
problems,” Annals of Eugenics, 7, pp. 179-188, 1936.

13. C.H. Chen and H. Lai, “A comparison study of the gradient
descent and the conjugate gradient backpropagation neural
networks,” Proc. World Congress on Neural Networks, vol. 3,
pp. 401-405, Portland, USA, 1993.

