
University of Texas at El Paso

DigitalCommons@UTEP

Open Access Theses & Dissertations

2018-01-01

An Efficient Method For Online Identification Of
Steady State For Multivariate System
Honglun None Xu
University of Texas at El Paso, xuhonglun38324@gmail.com

Follow this and additional works at: https://digitalcommons.utep.edu/open_etd

Part of the Computer Engineering Commons, Mathematics Commons, and the Statistics and
Probability Commons

This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations

by an authorized administrator of DigitalCommons@UTEP. For more information, please contact lweber@utep.edu.

Recommended Citation
Xu, Honglun None, "An Efficient Method For Online Identification Of Steady State For Multivariate System" (2018). Open Access
Theses & Dissertations. 190.
https://digitalcommons.utep.edu/open_etd/190

https://digitalcommons.utep.edu/?utm_source=digitalcommons.utep.edu%2Fopen_etd%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.utep.edu/open_etd?utm_source=digitalcommons.utep.edu%2Fopen_etd%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.utep.edu/open_etd?utm_source=digitalcommons.utep.edu%2Fopen_etd%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fopen_etd%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.utep.edu%2Fopen_etd%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.utep.edu%2Fopen_etd%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.utep.edu%2Fopen_etd%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.utep.edu/open_etd/190?utm_source=digitalcommons.utep.edu%2Fopen_etd%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


AN EFFICIENT METHOD FOR ONLINE IDENTIFICATION OF STEADY 

STATE FOR MULTIVARIATE SYSTEM 

 

 

 

HONGLUN XU 

Master’s Program in Computational Science Program 

 

 

 

APPROVED: 

 

Bill Tseng, Ph.D., Chair 

Jianguo Wu, Ph.D., Co-Chair 

Paras Mandal, Ph.D. 

 

 

 

Amy Wagler, Ph.D. 

 

 

 

 

Charles Ambler, Ph.D. 

Dean of the Graduate School 
 

 



 

 

 

 

 

 

 

 

 

Copyright © 

 

by 

Honglun Xu 

2018 

 

 
  



AN EFFICIENT METHOD FOR ONLINE IDENTIFICATION OF STEADY 

STATE FOR MULTIVARIATE SYSTEM 

 

 

by 

 

HONGLUN XU, MSc 

 

 

 

THESIS 

 

Presented to the Faculty of the Graduate School of  

The University of Texas at El Paso 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

MASTER OF SCIENCE 

 

 

 

 

 

Computational Science Program 

THE UNIVERSITY OF TEXAS AT EL PASO 

December 2018 



 iv 

Acknowledgements 

The research presented in this M.S thesis benefited from the valuable insights and support 

of many people. It is my pleasure to express my sincere gratitude to all of them. 

First, I would like to express my deepest appreciation to my master advisor, Prof. Bill 

Tseng for his outstanding academic guidance and full support in my UTEP life. Words cannot 

express my sincere gratitude for his help in academic research. I am so lucky to benefit from not 

only his expertise in academic research, but also his great personality in all other aspects. It is 

impossible that my research study would have been so smooth without his encouragement and 

guidance. 

Then, I also would like to appreciate my committee co-chair Prof. Jianguo Wu. I am so 

lucky to get his supervision. I have got a lot from his easy-going personality, his energetic attitude 

towards research and his full support in my research. I am also affected deeply by his academic 

attitude and the substance of a genius: he convincingly conveyed a spirit of adventure in scientific 

research. He always gives me many innovated ways and suggestion to help me out when I was 

struggling in the scientific research. 

Additionally, I would be grateful to my master committee members Prof. Amy Wagler and 

Prof. Paras Mandal for serving on my committee and providing helpful ideas to improve my 

dissertation. Meanwhile, I would like to thank Prof. Ming-Ying Leung from Computational 

Science Program for serving on my director in my qualified exam. 

My thanks also go to my friends in my research group: Dr. Aditya, Akundi, Dr. Hoejin 

Kim, Yuxin Wen, Dr. Zhonghua Hu, Dr. Carlos A Garcia Rosales, Anabel Renteria Marquez, Dr. 

Ivan Renteria Marquez and Md Fashiar Rahman. Thank you for being supportive and 

accompanying me in my Master studies. You really make my life in UTEP enjoyable and 

memorable. I also thank to my roommates in El Paso: Mr. Chunkai Shi, Ms. Xianhui Xiang, Mr. 

Yi Xie, Mr. Zhu and Ms. Xianxian Li. During my El Paso life, they give me a lot of help and 

support so that I can focus on my study and research. 



 v 

Lastly and most importantly, I want to express my special thanks to my parents for their 

unconditional love, support and encouragement. Without my parents’ support and loving care, I 

would not have got this achievement in my life. Whether I have good time or tough time, they 

provide me support and endless love to realize my own dream with no hesitation. I am very happy 

to have them as my parents and so proud of it. 

 

 

 

  



 vi 

Abstract 

Most of the existing steady state detection approaches are designed for univariate signals. 

For multivariate signals, the univariate approach is often applied to each process variable and the 

system is claimed to be steady once all signals are steady, which is computationally inefficient and 

also not accurate. The article proposes an efficient online method for multivariate steady state 

detection. It estimates the covariance matrices using two different approaches, namely, the mean-

squared-deviation and mean-squared-successive-difference.  

To avoid the usage of a moving window, the process means and the two covariance 

matrices are calculated recursively through exponentially weighted moving average. A likelihood 

ratio test is developed to compare the difference of the two covariance matrices and to detect the 

steady state. The intensive numerical studies and real case study show that the proposed method 

can accurately detect the steady state of a multivariate system. 
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Chapter 1: Introduction 

1.1. Background 

Industrial and manufacturing processes includes usually noise and non-stable in nature. 

Due to many reasons like measurement errors, environmental effects and maintenance and so on, 

the process when stable, could be confounded by the noise. Detecting if a system or a process is 

steady is a significantly important task in many engineering problems, such as process analysis 

and optimization [1-4], fault detection and diagnosis [5, 6], data reconciliation [7, 8], process 

automation and control [9-11].  

In these applications, the steady state is often defined as a state where the mean of the time 

series stays unchanging. The steady state detection applies statistical methods to identify or 

monitor the change from the non-stable state to the steady state to facilitate the optimization, 

performance evaluation and process control, etc. Detecting the steady state is different with the 

traditional statistical process control (SPC) which usually uses the control chart to detect the 

change from the normal condition (stable state) to the abnormal condition (non-stable state).  

For example, in the chemical industry, process data (e.g., flow rate, pH values, temperature 

etc.) have to be collected under steady-state conditions for unit design, pinch analysis, process 

optimization, and fault detection [12]. Besides, almost all the fault detection and diagnostic (FDD) 

methodologies are based on steady state models and require that the system is steady [6, 13]. 

Another example is batch process or batch manufacturing. During batch-to-batch start-up periods, 

the batch operations are not steady and cannot guarantee the product quality because the materials 

are not mixed well and the machine conditions such as temperature and pressure are not stable [14, 

15]. Therefore, an efficient method for steady-state detection could help achieve satisfied products 

and avoid expensive quality inspection. 

In process automation and control, the steady state can be used to trigger the next action. 

For example, in ultrasonic cavitation based particle dispersion process, the steady state condition 

of the cavitation noise has been used as a process completion indicator [11]. Once the noise signal 
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is steady state, the dispersion process is considered completed and the process can be stopped. In 

the numerical iterative methods, such as nonlinear regression, optimization and neural network 

training, the steady state condition can also be used as a stopping or convergence criterion. The 

iterative procedures will be stopped once the objective function like the sum of squared error 

reaches a steady state [9, 16].  

Engineers often conduct a series of experiments in a variety of operating conditions for 

data collection and process analysis. When the worker observes that stable conditions are met, 

each sampling event is started and the worker implements the innovative set of operational 

conditions. But this visual approach of detection needs repeated human attention and is subdue to 

human mistake in identifying detection because of noise. Meanwhile, there are factors can affect 

the visual judgement, which are change-of-shift timing, slow process changes and noisy 

measurements. 

In addition, scheduling time can be carried out to create new conditions of operation for 

the experiments. Unfortunately, if the experiment runs are planned for an needlessly long time, 

this technique cannot be efficiency. If the scheduled time is not sufficient for any conditions to get 

the steady state, these data cannot be worth. It is not almost possible to predict the essential holding 

time due to the time reaching steady state varies with different operating conditions.  

As a result, real-time or automated online steady state detection can be valuable to cause 

the next step of process phase or an experimental plan. Based on the steady state identification 

techniques, statistical methods are used in this study since they may be more robust for analyzing 

noisy process signals. 

1.2. Research Objectives 

In the last few decades, detection of steady state is more and more important for many areas 

such as industrial and manufacturing processes. There are more than forty offline steady-state 

detection algorithms developed for univariate signals. These offline methods can efficiently 

identify the steady-state period if the entire signal is available. Nevertheless, they are not suitable 
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for real-time or online applications. The online steady state detection is based on the observations 

up to the current time and is more difficult. 

All the aforementioned methods are for univariate systems. However, almost all systems 

are multivariate inherently. To guarantee that the system is steady, all the signals of the system 

have to be steady. Therefore, steady state detection of multivariate signals are desirable. To our 

best knowledge, there is a very limited number of multivariate steady state detection algorithms in 

the existing literature.  

In this study, we have two objectives as following: 

(1) A new and efficient method is developed for online steady state detection of the 

multivariate systems. It is an multivariate extension of Cao’s univariate method [9]. Similar to the 

F-test or variance ratio test, the covariance of the multivariate signals are calculated by using two 

different ways, namely, the mean squared deviation and the mean squared successive difference. 

(2) Then, the likelihood ratio test of two covariances is used. To make the method more 

robust to all signals, the filter factor method again is used to deal with the processed data. 

1.3. Statement Problem and Rationale of the Study 

Based on the background, the offline methods can identify the steady-state period if the 

full or entire signal is available. However, they are not suitable for real-time or online applications. 

The online steady state detection is based on the observations up to the current time and is more 

challenging. Thus, online steady state detection is difficult to be developed. Now there are several 

online steady-state methods, developed for univariate signals. Meanwhile, most of these online 

methods are developed for univariate signal and use the moving data window so that they are not 

robust and suitable for multivariate system. 

However, developing the efficient method for online identification of steady state for 

multivariate systems is very significant in many areas. 

1.4. Outline of the Study 

The rest of this dissertation is organized as follows. 



 4 

Chapter 2 explains a detailed literature review of the existing steady state detection 

methods including the off-line detection and on-line detection. For example, Linear Regression 

method, F-test method, Variance Ratio Test and Wavelet Transform Detection and so on. 

In Chapter 3, a robust steady state detection algorithm is developed. The approximated 

formula for the expectation and covariances of a multivariable systems model will be derived for 

the steady-state detection, computational issues will be addressed, and the virtues of the proposed 

identification method of the steady state is also introduced. Chapter 3 presents the numerical 

analysis and the selection of filter factors. Meanwhile, the comparison with several existing 

methods also will be demonstrated in this chapter. 

Chapter 4 will give the real case study using the proposed method in the micro/nanoparticle 

dispersion process. The cavitation noise signals are obtained from the micro/nanoparticle 

dispersion process. It is found that when the cavitation noise signals enter into steady state, the 

dispersion process is finished. 

The results and conclusion are given in Chapter 5. 
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Chapter 2: Literature Review 

The steady state detection applies statistical techniques to identify the transition from 

nonstationary state (also called transient state, start-up or warm-up period) to the steady state, 

which is opposite to the traditional statistical process control techniques in that it utilize control 

charts to monitor the change from steady state to other steady state or nonstationary state. 

2.1. Offline Steady State Detection 

In the last few decades, there are more than forty offline steady-state detection algorithms 

developed for univariate signals, mostly of which are developed to remove the transient period in 

discrete-event simulations [17]. According to Robinson and Davies [18, 19], these methods can be 

classified into five categories: (1) graphical methods, such as time-series inspection [20], CUSUM 

plots method [21], exponentially weighted moving average method (EWMA) [22], and statistical 

process control method [19]; (2) heuristic approaches (e.g. the marginal standard error rules [23, 

24]) which offer some simple and straightforward rules to truncate the time-series data. These 

methods are very popular in various areas because they are not as subjective as the graphical 

methods; (3) statistical methods including the goodness-of-fit test [25] and wavelet-based spectral 

algorithms [26]; (4) initialization bias tests are to test whether there is initialization bias in the data. 

The representative methods include batch-means-based tests, t-tests and compound test method 

[27]; and (5) hybrid methods which combine the initialization bias tests and graphical or heuristic 

approaches to determine the warm-up period [28]. 

2.1.1. Marginal Standard Error Rules 

The Marginal Standard Error Rules (MSER) [23] determines the truncation point (steady 

state point in this research) which minimizes the marginal confidence interval’s the width about 

the mean of truncated sample (steady state mean). It is better than heuristic methods on models 

which include exponential shift bias. 

This MSER algorithm is explained as follows. Shown the observations {𝑋𝑖: 𝑖 =1,2,3 … , 𝑛}, and the samples of the steady state are {𝑋𝑖: 𝑖 = 𝑑 + 1, 𝑑 + 2, 𝑑 + 3 … , 𝑛}. Then the 
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100(1 − 𝛼)% confidence interval’s the half-width for the estimate of the steady-state mean is 

given by 

 𝐶𝐼(𝑑 + 1, 𝑛) = 𝑧𝛼 2⁄ 𝑆𝑛,𝑑√𝑛 − 𝑑  (2.1) 

 

Where 𝑧𝛼 2⁄  is the inverse of the cumulative density function (CDF) at the probability (1 − 𝛼 2⁄ ) 

for the standard normal distribution, Then, 𝑆𝑛,𝑑 is the standard sample deviation shown by 

 

𝑆𝑛,𝑑 = √ 1𝑛 − 𝑑 − 1 ∑ (𝑋𝑖 − �̅�𝑛,𝑑)2𝑛
𝑖=𝑑+1  (2.2) 

 

Where �̅�𝑛,𝑑 = 1𝑛−𝑑 ∑ 𝑋𝑖𝑛𝑖=𝑑+1 . Therefore, the best truncation point 𝑑∗  which minimizes the 

confidence interval is given as 

 𝑑∗ = arg min𝑛≫𝑑≫0 (𝐶𝐼(𝑑 + 1, 𝑛)) = arg min𝑛≫𝑑≫0 (𝐶𝐼(𝑑 + 1, 𝑛)2) 

= arg min𝑛≫𝑑≫0 (∑ (𝑋𝑖 − �̅�𝑛,𝑑)2𝑛𝑖=𝑑+1(𝑛 − 𝑑 − 1)(𝑛 − 𝑑)) 

(2.3) 

Due to n ≫ d, the denominator of Eq. (2.3) is simplified from (𝑛 − 𝑑 − 1)(𝑛 − 𝑑) to (𝑛 − 𝑑)2. 

Thus, this method is called as “MSER” which is given by 

 

MSER = 1(𝑛 − 𝑑)2 ∑ (𝑋𝑖 − �̅�𝑛,𝑑)2𝑛
𝑖=𝑑+1  (2.4) 

2.2. Online Steady State Detection 

These offline methods can efficiently identify the steady-state period if the full or entire 

signal is available. Nevertheless, they are not suitable for real-time or online applications. The 
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online steady state detection is based on the observations up to the current time and is more difficult 

[2, 3]. In the existing literature, there are only several online steady-state methods, which can be 

summarized as follows: (1) a linear regression is performed over a moving data window, and the 

fitted slope is monitored. If the absolute value of the fitted slope is larger than a threshold or the 

fitted line is not sufficiently “flat”, the process signal is considered not steady [11, 29, 30]; (2) t-

test is applied to compare the means of two recently obtained adjacent moving data windows. 

When there is no significant difference between them, the process is considered steady [31]; (3) 

the standard deviation of a moving data window is monitored. The steady state is detected when 

the standard deviation is below a threshold [6]; (4) an F-test (also called variance ratio test) is 

performed on the ratio of two variances of a moving window calculated by two different methods. 

One is the mean squared deviation, while the other one is the mean of squared differences of 

successive data [32]. When the process is at the steady state, the ratio is close to unity [9].  

However, these methods are not robust due to the usage of a moving window [11, 33, 34]. 

Too long a moving window may delay the detection while too short a moving window may result 

in high false alarm rate. Now these methods will be introduced separately. 

2.2.1. Linear Regression Method 

The technique of linear regression is a direct method to detect steady state. The approach 

involves performing a data sequence’s the linear regression and the evaluation of the linear 

regression line’s slope. When the slope is close to zero, the process is likely to be in a steady state. 

On the other hand, the slope differs considerably from zero, the process may be in transient 

condition [29]. If this method were to be used online during the process, user expertise and great 

storage would be required to determine the length of the holding window.  

For example, For the oscillating response, the slope of the linear regression is zero, which 

could result in incorrect stable state detection. Since human judgment is required when selecting 

the length of the data window, this technique is not automated. This method has also 
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computationally burdensome, because the entire data window needs to be updated at every 

interval. 

2.2.2. T-test Method 

The T-test method is the evaluation of the mean and standard deviation value in successive 

N sample data’s windows and compares the two values successively by T-statistics, which is 

different in averages divided by average’s standard error. When the system is in stable condition, 

the averages are ideally the same. If the process variation is high, the T-statistical value is higher 

than the critical value to assert that the process is in a nonstationary state. However, the method is 

computationally expensive, since the means and the standard deviation must be compared and 

calculated at every moment. 

2.2.3. F-test Method 

The F-test technique [32] is to calculate the variance ratio that is measured from the same 

data’s sequence by two different approaches. One variance is the mean square deviation in the 

window of selected data. Another variance is the mean of squared differences of successive data 

that is from the same data window. The ratio of two variances in a stable state process could ideally 

be unity. The actual ratio, however, is not exactly uniform due to random noise in the real process. 

The ratio may be steady-state unity. 

The F-test approach is valid but has some unwanted characteristics. For example, many 

data must also be stored and calculated by this method, which also makes it computationally 

expensive. In addition, this technique needs user expertise in selecting a suitable time interval to 

remove autocorrelation. 

2.2.4. R-test Method 

Based on the F-test method, an efficient method without moving windows is developed by 

Cao [9], where exponentially weighted moving average (EWMA) is performed to calculate the 

two variances respectively. This approach estimates the variance using two different approaches, 

namely, the mean squared deviation and the mean squared successive difference. In order to avoid 
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the usage of a moving window, the process means and the two variances are calculated respectively 

through exponentially weighted moving average (EWMA). It also can be extended to a 

multivariate process. The information of R-test method is explained in detail in the next part. This 

study shows that R-statistic technique is applied to detect the steady state in the multivariate 

process. 

Although this method performs well on some kinds of signals, it is also not robust in that 

one set of detection parameters is not able to handle signals of different characteristics, e.g., 

changing rate, noise level. Wu et al. [33-35] developed a robust method through Bayesian 

piecewise linear modeling and online inference of the latest line segment for steady state detection. 

Their method is much more accurate and robust on various types of signals. 

2.2.5. Variance Ratio Test 

All the aforementioned methods are for univariate systems. However, almost all systems 

are multivariate inherently. To guarantee that the system is steady, all the signals of the system 

have to be steady. Therefore, steady state detection of multivariate signals are desirable. To our 

best knowledge, there is a very limited number of multivariate steady state detection algorithms in 

the existing literature. Brown and Rhinehart.R [17] utilized the Cao’s method [9] to detect the 

steady state of each signal separately. Once all the signals reach the steady state, the system is 

claimed steady. Mathematically, the overall test statistic can be written as 𝑆𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = ∏ 𝑆𝑆𝑖𝑁𝑖=1  

where 𝑆𝑆𝑖 is the steady state status (0 denotes nonstationary while 1 denotes steady state) of the 

i-th signal. Once 𝑆𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 1, the system or process is steady.  

The Variance Ratio Test (VRT) [32] can be described as follows. In order to make the 

method more robust, some people propose to use exponentially weighted moving average 

(EWMA) method. The filter method applies three first-order filters to reduce the burden of 

computing to estimate deviation or variance from the measured trend. It evaluates the trend filtered 

based on the following equations. The first filter approximates the average value of the sample 

data. 
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 𝑋𝑓,𝑖 = 𝜆1𝑋𝑖 + (1 − 𝜆1)𝑋𝑓,𝑖−1 (2.5) 

 

Where 𝑋 is the process variable. 𝑋𝑓 is the 𝑋’s filtered value and 𝑋𝑓,𝑖−1 is the previous filtered 

value of 𝑋. 𝜆1 is the filter factor (0 < 𝜆1 ≤ 1), and 𝑖 is the index of time sampling. 

The recent observations are put a weight by a small λ, and this λ can smooth more noises. 

The detection is however delayed due to the too low λ when the process is at the steady state. 

The second filter approach estimates the moving variance, which is exponentially 

weighted, based on the square of the difference between the filtered value and the measured value, 

which is estimated and given by Eq. (2.5). 

 𝑉𝑓,𝑖2 = 𝜆2(𝑋𝑖 − 𝑋𝑓,𝑖−1)2 + (1 − 𝜆2)𝑉𝑓,𝑖−12  (2.6) 

 

Where 𝑉𝑓,𝑖2  is the filtered value of variance that is a measure value, and 𝑉𝑓,𝑖−12  is the previous 

filtered value of variance based on variation from filtered trend.  

Eq. (2.6) is a measurement of the variance applied in or ratio statistic or the numerator. 

Instead of the most newly updated value, the previous filtered value measure is applied to stop 

autocorrelation from biasing the variance estimate. 𝑉𝑓,𝑖2  is used to get the ratio equation simple in 

Eq. (2.6). 

Based on the difference between successive data, the third filter method for evaluating the 

variance is to estimate the exponentially weighted moving variance. It is similar to the approach 

used to evaluate Eq. (2.6). 

 𝛿𝑓,𝑖2 = 𝜆3(𝑋𝑖 − 𝑋𝑖−1)2 + (1 − 𝜆3)𝛿𝑓,𝑖−12  (2.7) 

 

Where 𝛿𝑓,𝑖2  is the filtered value of variance’s measure based on variation between sequential data 

and 𝛿𝑓,𝑖−12  is the previous filtered value of variance. 
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Eq. (2.7) provides estimation of denominator, while Eq. (2.6) provides the R-statistic 

calculation’s the numerator. In order to prevent auto-correlation from biasing the variance 

estimate, the previous filtered value is applied to evaluate the ratio denominator and numerator 

and the recently updated variance will be replaced in both cases. 

The variances ratio now may be estimated by Eq. (2.7) and Eq. (2.6). The R-test value is 

given by: 

 R = (2 − 𝜆1)𝑉𝑓,𝑖2𝛿𝑓,𝑖2  (2.8) 

 

The calculated value should be compared with its critical values in order to make sure 

whether it is steady or not. The variance is not calculated by Eq. (2.6) and Eq. (2.7). These 

equations just calculate the measurement of variances. According to the Eq. (2.8), the coefficient 

of 2 − 𝜆1 is used to scale this ratio in order to denote the variance ratio. In these filter methods, 

the λ values can be associated with the holding window’s length. λ values are recommended [7] 

in order to guarantee or faster a steady state detection or greater confidence. 

In extending this technique for a multivariate system analysis, we claim that the process is 

not steady when any process variable is not steady. If all process variables are at steady state, the 

process may be at steady state. This can easily be calculated by a single statistic: 

 𝑆𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = ∏ 𝑆𝑆𝑖𝑁
𝑖=1  (2.9) 

 

Where 𝑁 is the total number of variables in the process and 𝑖 is the variable numbers. 𝑆𝑆𝑖  is 1 

when this variable is at steady state and 0 when the variable is nonstationary. 𝑆𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is 1 after 

all variables are at steady state and 0 when all variables are nonstationary 
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2.2.6. Wavelet Transform Detection 

Jiang et al. [12] proposed wavelet transform method and to combine multiple monitoring 

indices into one through the Dempster’s balance rule of combination. Clearly, this combination 

approach is just a generalization of the approach by Brown and Rhinehart [17] and therefore faces 

the same multiple testing problems.  

Changes in the measurements can be detected by using WT modulus. Let 𝜓(𝑥) be the 

first-order wavelet which is the first-order derivative of scaling function, 𝜓(𝑥) = 𝑑𝜑(𝑥) 𝑑𝑥⁄ , then 

the Discrete Wavelet Transform(DWT) of 𝑓(𝑡) at dyadic scale 2𝑗 and position t is given by 

 𝑊𝑗𝑓(𝑡) = 𝑓 ∗ 𝜓𝑗(𝑡) = 𝑓 ∗ (2𝑗 ∙ 𝑑𝜑𝑗𝑑𝑡 ) (𝑡) = 2𝑗 𝑑𝑑𝑡 (𝑓 ∗ 𝜑𝑗)(𝑡) (2.10) 

 

where ∗  denotes convolution operation. This equation indicates that 𝑊𝑗𝑓(𝑡)  which 

referred to as the first-order wavelet transform is proportional to the first derivative of 𝑓(𝑡) 

smoothed by a function 𝜑𝑗(𝑡). The wavelet applied in this paper is Mallat wavelet [18]. The 

corresponding 𝜑(𝑡) is a cubic spline, and thus 𝜓(𝑡) is a quadratic spline. If a modulus maximum |𝑊𝑗𝑓(𝑡)| is detected, then there is a corresponding sharp change in 𝑓 ∗ 𝜑𝑗. Based on the above 

Eq. (2.10), an abnormality, which is a spike with a supernormal peak value and a short duration, 

can be detected by a couple of WT modulus maxima with opposite sign and large amplitudes, and 

then the data over the abnormality duration can be processed with average algorithm. After the 

abnormalities are processed, the signals will be decomposed and denoised by the soft threshold 

and then the denoised signals are reconstructed. Above method is called the wavelet-based multi-

scale process trends extraction. 

Finally, after the original data is processed by the wavelet-based multi-scale processing 

technique, the processed data is used to calculate the steady-state index. The Eq. (2.10) again is 

used to calculate the 𝑊𝑗𝑓(𝑡) which measures the variation in 𝑓 ∗ 𝜑𝑗(𝑡). 𝑊𝑗𝑓(𝑡) > 0 indicates 

an increase in 𝑓 ∗ 𝜑𝑗(𝑡) , and 𝑊𝑗𝑓(𝑡) < 0  indicates a decrease. Large values of |𝑊𝑗𝑓(𝑡)| 
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indicate sharp change in 𝑓 ∗ 𝜑𝑗(𝑡), and small values of |𝑊𝑗𝑓(𝑡)| means gradual changes in 𝑓 ∗𝜑𝑗(𝑡). When 𝑊𝑗𝑓(𝑡) = 0, 𝑓 ∗ 𝜑𝑗(𝑡) indicates steady state. However, the zero-crossing points of 𝑊𝑗𝑓(𝑡) should be distinguished. Different with zero points, the zero-crossing points are caused 

by the inflexion points, peak-value or valley-value points instead of the steady duration points of 𝑓 ∗ 𝜑𝑗(𝑡). If 𝑊𝑗𝑓(𝑡𝑧) = 0, 𝑑𝑑𝑡 (𝑊𝑗𝑓(𝑡)) |𝑡=𝑡𝑧 ≠ 0, 𝑡𝑧  is called the zero-crossing points. Zero-

crossing points of 𝑊𝑗𝑓(𝑡) can be defined by 

 𝑊𝑊𝑗𝑓(𝑡) = 𝑊𝑗𝑓 ∗ 𝜓𝑗(𝑡) ≈ 22𝑗 𝑑2𝑑𝑡2 (𝑓 ∗ 𝜑𝑗)(𝑡) (2.11) 

 

where 𝑊𝑊𝑗𝑓(𝑡)  is called the second-order WT and is proportional to the second 

derivative of 𝑓 ∗ 𝜑𝑗. If |𝑊𝑗𝑓(𝑡)| < 𝛿1 and |𝑊𝑊𝑗𝑓(𝑡)| > 𝛿2, the t is a zero-crossing point where 𝛿1, 𝛿2 are small value constants. Based on the above method, the steady-state index, 0 ≤ 𝛽 ≤ 1, 

is computed to detect the steady state. 𝛽 = 0 indicates the unsteady, and 𝛽 = 1 indicates the 

steady [12]. For a multivariate system, every signal is processed and the steady-state index of every 

signal is calculated based on the mentioned methods. Then, the steady-state index 𝐵(𝑡) of a 

multivariate system is computed from the individual index of the key variables. For example, there 

is a multivariate system with N critical variables. 𝐵(𝑡)  can be calculated following the 

Dempster’s ruler of combination: 

 𝐵(𝑡) = ∏[𝛽𝑖(𝑡)]𝜔𝑖 ∑ 𝜔𝑖⁄𝑁
𝑖=1  (2.12) 

 

where 𝛽𝑖(𝑡)  refers to the individual index of the ith key variable, 𝜔𝑖  is the weight, 

indicating the contribution of the ith critical variable. 𝜔𝑖  is 1.0 as default. Thus, 𝐵(𝑡) = 0 

indicate the unsteady state. 𝐵(𝑡) = 1 indicate the steady state, and 0 < 𝐵(𝑡) < 1 indicate the 

state between steady state and unsteady state. The results of simulation are show in Figure.4. 
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2.2.7. Other Methods 

To keep the overall significance level, the individual significance level is reduced or 

corrected from the well-known Sidak inequality, Kelly et.al [19] proposed a moving window-

based method where a residual Student t test using the estimated mean of the process signal without 

any drift and the estimated standard-deviation of the underlying white-noise driving force is used 

to test if the signal is steady. To handle multivariate signals, they also followed Brown and 

Rhinehart.R’s way [17] and chose to correct the individual significance level. However, similar to 

applying multiple univariate control charts on a multivariate data in SPC literature, this method 

faces the famous multiple testing problem [9] with inflated type I error or false discovery rate. 

The basic assumption about any single signal is to suppose that in the window it can be 

operating by a non-zero slope multiplied using its qualified time as followed: 

 𝑥𝑡 = 𝑚𝑡 + 𝜇 + 𝑎𝑡 (2.13) 

 

where mt is key drift component, 𝜇 is the mean of steady process, namely, it is the mean 

with the zero slope of the time window. 𝑎𝑡  is the i.i.d random series of error or white-noise 

sequence with standard deviation 𝜎𝑎 and zero mean. 

By the first difference of 𝑥𝑡 it is likely to unbiasedly estimate the drift module’s slope m, 

mt is the arithmetic mean of 𝑥𝑡 − 𝑥𝑡−1 with 𝑥𝑡’s n sampled values in the window which in the 

time are similarly spaced. Then, the intercept 𝜇 is got by subtracting mt from 𝑥𝑡 based on the 

above equation 𝑥𝑡 − 𝑚𝑡 = 𝜇 + 𝑎𝑡. 

 𝜇 = 1𝑛 (∑ 𝑥𝑡𝑛
𝑡=1 − 𝑚 ∑ 𝑡𝑛

𝑡=1 ) (2.14) 

 

Now the estimate of the mean 𝜇 and drift slope m of 𝑥𝑡 is got. The standard-deviation of 

the white-noise can be got as: 
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𝜎𝑎 = √ 1𝑛 − 2 ∑(𝑥𝑡 − 𝑚𝑡 − 𝜇)2𝑛
𝑡=1  (2.15) 

At a particular significance level α and degrees of freedom n, the Student’s t critical value 

as a threshold value can be calculated. All of the essential information is available to check whether 

the process is steady or stationary about 𝜇. If |𝑥𝑡 − 𝜇| ≤ 𝑡𝑐𝑟𝑖𝑡𝜎𝑎, then 𝑦𝑡 = 1 else 𝑦𝑡 = 0 

The summation of 𝑦𝑡 divided by n is a portion about the chance that the null hypothesis 

is false. For example, a fraction of 95% indicates that there is 5% probability that the signals are 

not at steady state. For multivariate system, the individual significance level 𝛼′ is corrected from 

the overall significance level α derived from the Sidak inequality as followed: 

 𝛼′ = 1 − (1 − α)1 𝑘⁄  (2.16) 

 

where k is the number of key process variables. When the fraction of individual signal at the same 

time is beyond the overall confidence interval (1 − α) over the same window, the multivariate 

system is steady or stationary.  

In the batch processes, several methods are developed [15]. In these methods, various 

dimension reduction and feature extraction techniques are used first, such as multi-way principal 

component analysis (MPCA), dynamic principal component analysis (DPCA), and then one of the 

above-mentioned multivariate methods is used for steady state detection. Therefore, these methods 

are basically the same. The only difference lies in the preprocessing step, i.e., dimension reduction 

or feature extraction. Yao et.al [15] proposed Mahalanobis Distance Test (MDT) to reduce the 

dimension and extract the specific information from the signals. 

The MDT method which is based on Mahalanobis Distance between the following batches 

and the first batch can be computed as follows:  
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𝜑𝑖 = √(�̅�1 − �̅�𝑖)𝑇∑1+(�̅�1 − �̅�𝑖) (2.17) 

 

where 𝜑𝑖  is the Mahalanobis distance. 𝑋  is a four dimensions data, ∑1+  is the 

pseudoinverse of covariance matrix of 𝑋1 which is regarded as the reference data. Then the two 

kinds of variance estimations are calculated using moving windows. One is ordinary variance 

estimation, another is a variance estimation of the mean square successive difference. The formulas 

of two kinds of variance estimations are defined as following: 

 𝑆2 = ∑ (𝜑𝑖 − �̅�)2𝑛𝑖=1𝑛 − 1  (2.18) 

 𝛿2 = ∑ (𝜑𝑖+1 − 𝜑𝑖)2𝑛−1𝑖=1 𝑛 − 1  (2.19) 

 

Finally, the ratio of the mean square successive difference to the variance can be computed 

as: 

 𝑅 = 2𝑆2𝛿2  (2.20) 

This R is suitable as a basis to judge whether this process is at steady state in MDT method. 
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Chapter 3: A EWMA Based LRT for Multivariate Steady State Detection 

3.1. Introduction 

The efficient method is proposed to detect the steady state for the multivariate systems. 

This method is called Exponentially Weighted Moving Average-Likelihood Ratio Test (EWMA-

LRT). This method estimates the covariance matrices using two different approaches, namely, the 

mean-squared-deviation and mean-squared-successive-difference. To avoid the usage of a moving 

window, the process means and the two covariance matrices are calculated recursively through 

exponentially weighted moving average. A likelihood ratio test is developed to compare the 

difference of the two covariance matrices and to detect the steady state. 

3.2. Methodology 

The computation of the covariance matrices is an multivariate extension of Cao [9]. 

Similarly, three EWMA filters are used to approximate the sample average and two covariance 

matrices.  

The conventional sample covariance for a moving data window can be calculated as 

 ∑̂𝑥 = 1𝑁 − 1 ∑(𝑋𝑡 − �̅�𝑡)(𝑋𝑡 − �̅�𝑡)𝑇𝑁
𝑡=1  (3.1) 

 

where 𝑁 is total number of observations in the moving window or the window size, 𝑋𝑡 

is t-th the p-dimensional observation, and �̅�𝑡 is the mean of the 𝑁 observations. It is assumed 

that the observations are independently distributed as Gaussian distributions. To avoid the usage 

of moving window, the mean and the covariance can be calculated recursively through EWMA, 

which is computationally faster and requires much less storage. The moving average can be 

calculated as 

 𝑋𝑓,𝑡 = 𝜆1𝑋𝑡 + (1 − 𝜆1)𝑋𝑓,𝑡−1 (3.2) 



 18 

 

where 0 < λ1 ≤ 1 is the filtering coefficient. The covariance of 𝑋𝑓,𝑡 can be derived as 

 Σ𝑋𝑓,𝑡 = [𝜆1(1 − (1 − 𝜆1)2𝑡)2 − 𝜆1 + (1 − 𝜆1)2(𝑡−1)] Σ𝑥 (3.3) 

 

where Σ𝑥 is the true covariance matrix, which is assumed to be unchanged in the whole process. 

The detailed derivation of Eq. (3.3) is given in Appendix A. As time t goes infinite, 

 Σ𝑋𝑓,𝑡 = λ12 − λ1 ∑𝑥 (3.4) 

 

To calculate the covariance matrix recursively, the filtered value 𝑋𝑓,𝑡−1 is used to replace 

the sample mean in Eq. (3.4), and the EWMA is also applied: 

   Σ̂𝑓,𝑡 = 𝜆2(𝑋𝑡 − 𝑋𝑓,𝑡−1)(𝑋𝑡 − 𝑋𝑓,𝑡−1)𝑇 + (1 − 𝜆2)Σ̂𝑓,𝑡−1 (3.5) 

 

where 0 < λ2 ≤ 1  is the filtering coefficient. Alternatively, the mean squared successive 

difference can be used to estimate the covariance. Define ∑𝑠,𝑡 as the expectation of the squared 

successive difference. It can be expressed as 

 Σ𝑠,𝑡 = 𝐸((𝑋𝑡 − 𝑋𝑡−1)(𝑋𝑡 − 𝑋𝑡−1)𝑇) (3.6) 

Similarly, to calculate it recursively, another EWMA is applied as 

 Σ̂𝑠,𝑡 = 𝜆3(𝑋𝑡 − 𝑋𝑡−1)(𝑋𝑡 − 𝑋𝑡−1)𝑇 + (1 − 𝜆3)Σ̂𝑠,𝑡−1 (3.7) 

 

where 0 < λ3 ≤ 1 is the filtering coefficient. 
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In the stationary period, as 𝑡 approaches infinite, the expectations 𝐸(Σ̂𝑓,𝑡) and 𝐸(Σ̂𝑠,𝑡) 

can be proved to satisfy the following equations 

 𝐸(Σ̂𝑓,𝑡) = 22 − 𝜆1 Σ𝑥 (3.8) 

and 𝐸(Σ̂𝑠,𝑡) = 2Σ𝑥 (3.9) 

 

The proof of Eq.(3.8) and Eq. (3.9) are given in Appendix B and C, respectively. 

Based on Eq.(3.8) and Eq.(3.9), the covariance matrix Σ𝑥 can be unbiasedly approximated 

using the following two approaches 

 Σ̂𝑥(1) = 2 − 𝜆12 Σ̂𝑓,𝑡 (3.10) 

and   Σ̂𝑥(2)  = 12 Σ̂𝑠,𝑡 (3.11) 

 

In the steady state period, the covariance matrices estimated using Eq. (3.10)and Eq. (3.11) 

would be comparable. However, in the non-stationary period, the second approach using the 

squared successive differences would result in much larger dispersion than the first approach. To 

evaluate the difference, we use the likelihood ratio test (LRT), which is similar to LRT based 

control charts in statistical process control charts. The following absolute value of the likelihood 

ratio is utilized: 

 𝑅𝑡 = | log (𝐿(𝑋𝑡|𝜇 = 𝑋𝑓,𝑡 , Σ = Σ̂𝑥(1)  )𝐿(𝑋𝑡|𝜇 = 𝑋𝑓,𝑡 , Σ = Σ̂𝑥(2)) )| 
= |12 log (|Σ̂𝑥(1)||Σ̂𝑥(2)|) + 12 (𝑋𝑡 − 𝑋𝑓,𝑡)𝑇(Σ̂𝑥(1))−1(𝑋𝑡 − 𝑋𝑓,𝑡) − 12 (𝑋𝑡 − 𝑋𝑓,𝑡)𝑇(Σ̂𝑥(2))−1(𝑋𝑡 − 𝑋𝑓,𝑡)| (3.12) 
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In order to make the 𝑅t calculated by the likelihood ratio test more stable and sensitive to 

the detection of small drift, the EWMA is also used as follows 

 𝐷𝑡 = 𝜆4𝑅𝑡 + (1 − 𝜆4)𝐷𝑡−1 (3.13) 

 

In the non-stationary period, the index 𝐷𝑡 is expected to be larger than 0 while in the 

stationary period, it will approach to 0. We denote this method as EWMA-LRT. In the following 

section, we use numerical studies and real case study to demonstrate the effectiveness of the 

proposed approach. 

3.3. Illustration of the EWMA-LRT Method 

In this section we use simulated signals is to illustrate the detection process of the EWMA-

LRT algorithm for multivariate system. The simulated signals are generated by bias functions and 

noise. These bias functions are composed of an initial transient state and a steady-state. There are 

four bias functions used in this article: linear function, quadratic function, exponential function 

and oscillating function, as show in Table 3.1. These bias functions have been widely used in 

evaluating the initial bias truncation algorithms for discrete-event simulations [20]. 

To illustrate how the algorithm works, four-dimensional (p=4) signals are simulated with 

each bias function simulating one dimension. For these four functions, ℎ = 1 (the height of the 

signal), 𝑇 = 600 (the total number of observations of the signal). Two steady state times are 

considered, 𝑇0 = 200 and 𝑇0 = 300, which represents two different initial bias changing rates. 

For the oscillating function, 𝑓 = 30 (the total of 10 peaks and troughs). The signal noise is set to ∑ = 0.01𝐼4, where 𝐼4 is a 4 × 4 identity matrix. The filter factors for the EWMA-LRT method 

are selected as: 𝜆1 = 0.1, 𝜆2 = 0.1, 𝜆3 = 0.1, 𝜆4 = 0.1. The threshold 𝐷𝑐 is set to 0.5. 

Figure 3.1 shows that the steady-state detection process for the two randomly generated 

four-dimensional output. Clearly, the detection index 𝐷𝑡 rapidly increases at the beginning, and 

then gradually decreases until the signal enters into steady state, where 𝐷𝑡 is stable around a value 
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close to 0. Once the value of 𝐷𝑡 is below the threshold 0.5, the multivariate signal is claimed 

steady. The detection times are 𝑇∗ = 205 and 𝑇∗ = 288, respectively, which are very close to 

the true values. 

 

Table 3.1: Four Mean Bias Functions and Their Shapes 

Bias Type Function Form Shape 

Linear 𝑦(𝑡) = { 𝑡𝑇0 ℎ,     𝑡 = 1,2 … . , 𝑇0ℎ,       𝑡 = 𝑇0 + 1, … . , 𝑛 

 

Quadratic 𝑦(𝑡) = {ℎ [1 − (𝑡 − 𝑇0)2(𝑇0 − 1)2] ,     𝑡 = 1,2 … . , 𝑇0ℎ,      𝑡 = 𝑇0 + 1, … . , 𝑛  

 

Exponential 𝑦(𝑡) = {ℎ [1 − 10 1−𝑡𝑇0−1] ,     𝑡 = 1,2 … . , 𝑇0𝑦(𝑇0),      𝑡 = 𝑇0 + 1, … . , 𝑛  

 

Oscillating 𝑦(𝑡) = {ℎ 𝑇0 − 𝑡𝑇0 − 1 𝑠𝑖𝑛 (𝜋𝑡𝑓 ) ,     𝑡 = 1,2 … . , 𝑇00,      𝑡 = 𝑇0 + 1, … . , 𝑛  

 

 

3.4. Performance Evaluation and Comparison 

In this section, we compare the proposed method with several existing algorithms. The 

performance measures for steady state detection often include the closeness of detected time to the 

actual one, and the false alarm rate (FAR) [21]. The closeness measure alone is often inadequate 

for detection performance evaluation since it does not consider the false alarm (early detection) or 

detection delay. For example, for the same detection closeness, the detection delay is often better 
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than early detection in many practical applications. To consider both detection closeness and FAR, 

we use another evaluation metric, the weighed standard error (WSE) [21, 22]: 

 

 

Figure 3.1: Illustration of the steady state detection of EWMA-LRT: (a) 𝑇0 = 200 , the 

detected steady state time 𝑇∗ = 205, (b) 𝑇0 = 300, the detected steady-state time 𝑇∗ = 288. 

The vertical dashed line indicates the detected steady state time. 

 

WSE = √1𝑁 ∑ 𝑤(𝑇𝑖∗)(𝑇𝑖∗ − 𝑇0)2𝑁
𝑖=1  (3.14) 

 

where 𝑁 is the total number of replications, 𝑇𝑖∗ and 𝑇0 are the detected value and true value 

respectively for the ith multivariate output, and 𝑤(𝑇𝑖∗) is the penalty weight expressed as 

 

(a) (b) 
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𝑤(𝑇𝑖∗) = { 𝑤 ∈ (0,1], 𝑖𝑓 𝑇𝑖∗ ≥ 𝑇01,                 𝑖𝑓 𝑇𝑖∗ < 𝑇0   (3.15) 

 

If 𝑤(𝑇𝑖∗) ≡ 1, then WSE is just the closeness measure. If 𝑤 < 1, then a lower penalty is 

put on detection delay than early detection. 𝑤 can be treated as the penalty ratio of the detection 

delay to the early detection. To show how many signals are early-detected, we also use the FAR 

as an auxiliary metric. 

Table 3.2: Noise Types and Their Parameters 

Type Equation Parameter 

AR(0) 𝜓𝑡 = 𝜖𝑡 𝜖𝑡~𝑁(0, 𝜎2𝐼𝑝) 

AR(1) 𝜓𝑡 = 𝜙1𝜓𝑡−1 + 𝜖𝑡 𝜖𝑡~𝑁(0, 𝜎2𝐼𝑝), 𝜙1 = 0.4 

AR(2) 𝜓𝑡 = 𝜙2𝜓𝑡−1 + 𝜙3𝜓𝑡−2 + 𝜖𝑡 𝜖𝑡~𝑁(0, 𝜎2𝐼𝑝), 𝜙2 = −0.25, 𝜙3 = 0.5 

In the performance evaluation and comparison, 𝑝 = 4 and  8  are selected and each 

dimension is simulated using a bias function randomly selected from the four given in Table 3.1. 

The height of the signal is set to ℎ = 1 and ℎ = 2. To simulate different bias severity, two values 

for 𝑇0 are selected: 𝑇0 = 200 and 𝑇0 = 300. It is assumed that all dimensions reach steady state 

at the same time. The length of the signal is set to be 600. 100 replications are generated for each 

set of signal parameters. Three types of Gaussian noise are used to test the algorithm: (1) no auto-

correlation, denoted by AR(0); (2) first-order autoregressive correlation, denoted by AR(1); (3) 

second-order autoregressive correlation, denoted by AR(2). The noises types and their parameters 

are listed in Table 3.2. Different noise amplitudes are also considered: for AR(0), 𝜎 =0.06, 0.1, 0.14 ; for AR(1) and AR(2), 𝜎 = 0.055, 0.089, 0.13  and 𝜎 = 0.045, 0.071, 0.106  
respectively to match the noise variances of AR(0). 

The proposed EWMA-LRT method is compared with the well-known Variance Ratio Test 

(VRT) [9], SSD method to detect non-stationary drifts [19] and Wavelet Transform Detection 

(WTD) method [12]. Since VRT is a univariate method, it is applied to each dimension of the 

multivariate signal and then the largest detection value is selected as the steady state time. It means 

that a multivariate process is not steady if any process variable is at transient state, while it is steady 
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once all process variables enter into steady state. For all methods, the optimal filter factors, 

threshold values and other parameters are selected by minimizing the overall WSE. For the SSD 

method, the optimal window size of 22 is selected. The overall significance level α is set as 0.05. 

Based on the Sidak inequality, the individual significance level should be 0.0127.For WTD 

method, the process trends are extracted from the raw measurements to eliminate the random noise 

and abnormalities. Then, the steady-state index is calculated for every process variable and the 

second-order WT modulus is used to address the zero-crossing points. Finally, the steady-state 

index of a multivariate system is computed from the Dempster’s ruler. 

 

 

Figure 3.2: The WSE of EWMA-LRT, VRT, SSD and WTD method as a function of penalty 

weight w: top row (a, b, c): p=4; bottom row (d, e, f):p=8; (a, d): AR(0), (b, e): AR(1) and (c, 

f): AR(2). 

Figure 3.2 shows the WSE as a function of w for EWMA-LRT, VRT, SSD and WTD under 

different p and noise types. Table 3.3 and Table 3.4 shows the detailed detection results for w≡1, 

i.e., closeness and FAR, for 𝑝 = 4. For space limitation, the detailed detection results for 𝑝 = 8 
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is not provided here. The proposed EWMA-LRT outperforms other methods significantly for all 

cases in terms of WSE. For WTD, the WSE is almost unchanged when w varies. The reason is that 

WTD has a very high FAR, e.g., almost 90% for all cases; besides, increasing 𝑇0 or noise 𝜎 will 

reduce the detection closeness and increase the FAR for all methods, as shown in Table 3.3 and 

Table 3.4. The reason is that more initial bias will be immersed into signal noise and becomes 

undetectable when the noise amplitude is increased or the mean shifting rate before steady state is 

reduced; in addition, the performances are almost the same under different noise types for all 

methods, indicating that they are also applicable for autoregressive noises with mild or medium 

autocorrelation. Increasing the dimension from 𝑝 = 4 to 𝑝 = 8, the performances of all methods 

are improved, which is an important advantage of multivariate detection method over univariate 

method. 

3.5. Conclusion 

(1) An efficient method named Exponentially Weighted Moving Average-Likelihood Ratio 

Test (EWMA-LRT) has been developed to detect the steady state of the multivariate 

systems.  

(2) The covariance matrices are estimated through two approaches, the mean-squared-deviation 

and the mean-squared successive difference. Two covariance matrices are computed 

recursively through EWMA. While in steady state period, both these two covariance 

matrices are unbiased estimator of the true covariance matrix. Based on these findings, a 

likelihood ratio test is proposed to compare these two estimated covariance matrices. 

(3) The performance of the proposed method was evaluated and compared with existing ones 

through numerical studies. The simulation results demonstrated that the proposed methods 

outperforms others for various types of signals. 

(4) The results of this research provide useful guidelines for establishing an online steady state 

detection scheme. It should be pointed that the detection parameters, including the filtering 

weights and detection threshold, are essential to achieve a reliable detection. 
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Table 3.3: Detailed Comparison of EWMA-LRT, VRT, SSD and WTD for the Case of p=4,w≡1 

Signal 
 

WSE(𝑤 ≡ 1) 
 

FAR 

Noise 𝑇0 h σ LRT VRT SSD WTD LRT VRT SSD WTD 

AR(0) 

200 

1 

0.06  31.8 47.5 57.2 32.9  0.04 0.01 0.2 0.99 

0.10  24.2 30.9 73.5 38.7  0.28 0.15 0.59 0.98 

0.14  38.1 41.4 83.3 48.6  0.62 0.59 0.71 0.95 

2 

0.06  45.9 67.1 65.8 31.8  0 0 0.02 1 

0.10  36.8 52.2 60.2 30.7  0.01 0 0.15 0.98 

0.14  30.4 43.0 59.2 33.0  0.05 0.01 0.34 0.99 

300 

1 

0.06  26.4 39.2 74.1 67.3  0.24 0.1 0.5 0.98 

0.10  56.5 65.3 118.3 92.3  0.71 0.6 0.78 0.95 

0.14  94.6 90.5 166.6 120.9  0.97 0.81 0.93 0.99 

2 

0.06  39.0 54.2 61.8 54.3  0.01 0.01 0.17 1 

0.10  31.5 40.5 75.6 53.9  0.05 0.08 0.4 0.98 

0.14  35.2 39.3 115.1 69.9  0.41 0.41 0.73 0.99 

AR(1) 

200 

1 

0.06  35.7 36.2 45.1 32.8  0.02 0.02 0.43 0.97 

0.10  27.4 26.3 57.6 37.1  0.16 0.41 0.58 0.95 

0.14  40.3 54.2 88.5 38.8  0.64 0.82 0.8 0.93 

2 

0.06  51.2 53.5 50.6 37.0  0 0 0.11 1 

0.10  38.6 45.4 39.5 35.9  0.01 0.01 0.29 1 

0.14  30.3 30.8 47.2 30.9  0.02 0.12 0.42 0.99 

300 

1 

0.06  25.6 36.5 108.1 64.6  0.21 0.42 0.79 0.99 

0.10  45.7 78.6 130.9 85.8  0.63 0.77 0.81 0.98 

0.14  107.4 115.8 160.7 118.7  0.96 0.91 0.95 0.99 

2 

0.06  43.0 44.8 62.1 61.0  0.01 0.02 0.31 1 

0.10  29.6 34.3 95.2 70.3  0.12 0.24 0.63 0.99 

0.14  30.7 50.6 115.3 64.5  0.3 0.65 0.79 0.97 

AR(2) 

200 

1 

0.06  42.9 46.0 51.3 37.9  0.01 0.01 0.22 0.97 

0.10  35.3 30.1 68.6 42.5  0.11 0.27 0.61 0.94 

0.14  28.5 44.4 87.1 40.9  0.39 0.75 0.73 0.95 

2 

0.06  60.2 60.7 71.8 31.9  0 0 0.02 1 

0.10  47.8 47.9 57.6 35.3  0 0 0.14 1 

0.14  41.7 38.4 63.2 32.0  0 0.04 0.34 0.95 

300 

1 

0.06  33.3 36.3 97.8 66.7  0.08 0.16 0.59 0.98 

0.10  43.8 74.5 124.1 95.0  0.56 0.74 0.83 0.97 

0.14  74.7 106.5 161.2 108.5  0.79 0.83 0.86 0.97 

2 

0.06  50.1 50.6 62.9 64.3  0 0.02 0.18 0.97 

0.10  36.2 36.8 75.2 66.2  0.05 0.18 0.46 0.96 

0.14  32.9 32.0 85.5 66.8  0.18 0.29 0.62 0.98 

Overall  45.8 54.6 90.2 62.1  0.24 0.29 0.50 0.98 
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Table 3.4: Detailed Comparison of EWMA-LRT, VRT, SSD and WTD for the Case of p=8,w≡1 

Signal 
 

WSE(𝑤 ≡ 1) 
 

FAR 

Noise 𝑇0 h σ LRT VRT SSD WTD LRT VRT SSD WTD 

AR(0) 

200 

1 

0.06  29.0 40.5 55.9 13.6  0.01 0 0.08 0.6 

0.10  16.2 17.6 62.0 23.7  0.24 0.28 0.21 0.59 

0.14  17.6 19.4 68.0 35.4  0.7 0.72 0.48 0.72 

2 

0.06  49.1 57.8 61.3 14.9  0 0 0 0.81 

0.10  33.4 47.0 62.4 17.5  0 0 0.01 0.59 

0.14  23.8 32.7 56.3 16.3  0.03 0 0.08 0.6 

300 

1 

0.06  18.7 20.5 55.6 41.2  0.18 0.22 0.1 0.79 

0.10  32.0 40.6 56.7 72.8  0.84 0.69 0.36 0.89 

0.14  79.9 86.0 79.1 107.1  0.98 0.93 0.66 0.92 

2 

0.06  37.4 48.9 80.9 24.3  0 0 0 0.82 

0.10  23.0 30.7 71.7 33.1  0.04 0.08 0.05 0.79 

0.14  19.1 25.7 68.2 54.6  0.33 0.41 0.1 0.8 

AR(1) 

200 

1 

0.06  30.2 35.3 68.5 15.7  0.01 0 0.02 0.63 

0.10  22.9 18.1 49.5 25.0  0.16 0.5 0.24 0.67 

0.14  21.9 27.1 54.3 34.7  0.55 0.83 0.48 0.74 

2 

0.06  45.3 53.3 71.2 15.9  0 0 0 0.79 

0.10  36.0 40.8 57.8 16.2  0 0 0.02 0.7 

0.14  30.2 30.1 59.3 16.4  0.02 0.04 0.03 0.61 

300 

1 

0.06  22.5 23.6 67.3 39.3  0.09 0.43 0.05 0.93 

0.10  29.5 53.8 59.7 70.3  0.65 0.85 0.35 0.91 

0.14  71.4 84.5 76.8 103.1  0.94 0.98 0.62 0.98 

2 

0.06  36.5 44.2 79.5 24.9  0.01 0.02 0 0.85 

0.10  25.8 23.0 75.8 31.7  0.05 0.21 0.02 0.89 

0.14  24.4 25.2 61.8 48.5  0.23 0.66 0.14 0.85 

AR(2) 

200 

1 

0.06  28.2 39.7 60.7 19.7  0.01 0 0.05 0.59 

0.10  15.7 15.4 51.7 20.6  0.22 0.37 0.27 0.58 

0.14  22.3 30.6 54.4 34.4  0.73 0.74 0.46 0.67 

2 

0.06  48.5 55.3 70.3 18.8  0 0 0 0.79 

0.10  33.0 49.2 64.4 18.7  0 0 0.02 0.66 

0.14  25.0 37.2 65.5 17.3  0.03 0.02 0.05 0.64 

300 

1 

0.06  19.2 29.4 75.2 35.1  0.08 0.25 0.04 0.81 

0.10  35.6 58.1 58.9 76.2  0.85 0.83 0.36 0.89 

0.14  61.0 70.6 82.7 96.7  0.98 0.95 0.6 0.96 

2 

0.06  37.1 47.6 77.5 24.8  0 0 0.01 0.81 

0.10  22.4 30.5 79.3 31.6  0.05 0.08 0.01 0.83 

0.14  14.2 31.0 68.9 56.9  0.28 0.39 0.11 0.82 

Overall  36.0 43.2 65.4 46.5  0.26 0.32 0.17 0.76 
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Chapter 4: Case Study 

4.1. Introduction 

In this chapter, the application to the Micro/nanoparticle dispersion process will be given 

to demonstrate the proposed method can detect the steady state for multivariate system, and the 

EWMA-LRT can be used in many areas. As we know, due to high surface-to-volume ratio and 

high surface energy, the micro/nanoparticles tend to agglomerate and cluster together, which may 

significantly limit their effectiveness. However, they must be dispersed each other before use. 

Ultrasonic cavitation is an effective method to disperse them. At the ultrasonic power level, the 

steady state of the Cavitation Noise Power (CNP) signals corresponds to the maximum extent of 

dispersion. CNP signals is the integration of cavitation noise spectrum over frequency in a 

logarithmic scale. 

4.2. Application to the Micro/nanoparticle Dispersion Process 

In this chapter, the proposed method is applied to cavitation noise signals obtained from 

the micro/nanoparticle dispersion process [11]. Recently, micro/nanoparticles have attracted 

significant scientific interests, due to a wide variety of potential applications in biomedical, optical, 

electronic, and mechanical fields. However, in actual applications, due to high surface-to-volume 

ratio and high surface energy, the micro/nanoparticles often agglomerate or cluster together, which 

may significantly limit their effectiveness. Therefore, the micro/nanoparticles must be dispersed 

before use. Ultrasonic cavitation is an effective method to disperse micro/nanoparticles. It is found 

that when the cavitation noise signals enter into steady state, the dispersion process is finished 

[11]. Thus, the dispersion process can be monitored by detecting the steady state of cavitation 

noise signals. 

Ultrasonic cavitation is a good technology to disperse particles in the liquid [38]. Ultrasonic 

waves are high intensive so that they can generate important non-linear effects in the liquid and be 

dependable for handling fluid-based materials. The essential thought is to shoot a ultrasound beam 

via the particle-liquid framework. At that point due to nearby violent pressure variations produced 
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by the ultrasonic vibrations, we are going have a “cavitation” phenomenon, which alludes to the 

foundation, growth, fluctuation, and implosive breakdown of vapor bubbles or gas triggered by 

the ultrasonic sound in the liquids [11], as shown in Figure 4.1. 

The cavitation is classified in two types based on the duration of the bubbles: steady 

cavitation and nonstationary cavitation. The bubbles non-linearly oscillate around the size of the 

balance for the steady cavitation. They will last for lots of acoustic pressure cycles and are 

relatively stable. Meanwhile, the bubbles usually oscillate for a much shorter time during transient 

cavitation. They grow explosively into a hole with the size of their innovative sizes many times 

and then violently collapse. After these bubbles break, they will get transient micro “hot spot”. In 

addition, acoustic streaming can lead to violent agitation in liquids. Because of these intense 

effects, the cavitation breaks particles clustering effectively into dispersion particles and can mix 

well in liquids. Ultrasound cavitation is therefore promising as a reliable and cost-effective tool 

for the dispersion of nanoparticles in metal melt is given Figure 4.1. 

 

 

Figure 4.1: Ultrasonic dispersion of nanoparticles 
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Until now there are a number of methods for cavitation detection and monitoring. The 

analysis of cavitation noise spectrum is the most popular method, because of its low cost, ease of 

implementation and ability to get many cavitation information by acoustic transducers. In this 

research we can use the cavitation noise spectrum to capture some information about dispersion 

process, such as cavitation noise power (CNP). CNP will be described by the two different indices. 

One is CNP-1, another is CNP-2. CNP-1 is defined as the integration of cavitation noise spectrum 

from 0-200KHz in a logarithmic scale to enhance the “white noise” contribution. In this 

dissertation, we mainly use the CNP-1 to detect the steady state. 

 CNP1 = ∫ 𝐴(𝑓)𝑑𝑓 ≈ ∑ 𝐴(𝑓)𝑑𝑓 (4.1) 

Where, 𝐴(𝑓) = Discrete Fourier Transform (DFT) amplitude in the logarithmic scale 𝑓 = Frequency 

CNP-2 is defined as the averaged square of the cavitation noise signal in each second. 

 CNP2 = ∑ 𝑈𝑖2𝑛𝑖=1𝑛  (4.2) 

Where, 𝑈𝑖 = Cavitation noise signal 𝑛 = The number of samples in every second. 

4.3. Simulation Results 

To get the evolution of cavitation’s noise, Wu et al. [11] developed a univariate monitoring 

index, termed as cavitation noise power (CNP), which is the integration of cavitation noise 

spectrum over frequency in a logarithmic scale. However, such information fusion will inevitably 

result in information loss. Here we consider spectrum amplitudes of four critical frequency 

components, 0 KHz, 20 KHz, 40 KHz and 60 KHz, which are harmonics, subharmonics, and 

ultraharmonics. They are directly related with the physical dispersion process. 
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Figure 4.2: Steady state detection of cavitation noise signals in the dispersion of 30g Al2O3 in 

water with ultrasonic power 40W. 

Figure 4.2 shows the steady state detection of the four-dimensional spectrum amplitude 

signals in the dispersion of 30g Al2O3 particles with ultrasonic power 40W. The same detection 

parameters (𝜆𝑖 = 0.1, 𝑖 = 1, … ,4, 𝐷𝑐 = 0.5) are used to detect and evaluate the steady state. The 

detected steady state time is 327, which is higher than using univariate CNP signal (around 300). 

It is expected since CNP signal has information loss. If the process reaches steady state, CNP 

signal will be steady. However, the reverse is not necessarily true, i.e., the steady state of CNP 

signal does not necessarily indicate a steady state of the whole system. 

4.4. Conclusion 

Ultrasonic cavitation is an effective method to disperse micro/nanoparticles. At the 

ultrasonic power level, the steady state of Cavitation Noise Power (CNP) signals corresponds to 

the maximum extent of dispersion. Thus, detecting the steady state of CNP signals can well 

monitor this dispersion process. The simulation result demonstrates that the proposed method can 

identify the steady state in the Micro/nanoparticle dispersion process. The detected steady state 

time is 327 that is very close to the true value (around 300). 

  



 32 

Chapter 5: Conclusion and Recommendation for Future Work 

In this study, we have developed a new online method to detect the steady state of the 

multivariate systems. The covariance matrices are estimated through two approaches, the mean-

squared-deviation and the mean-squared successive difference. To reduce the computational cost 

and avoid the usage of moving windows, these two covariance matrices are computed recursively 

through exponentially weighted moving average. In the non-stationary period, the dispersion of 

the covariance matrix estimated using mean-squared successive difference is expected to be larger 

than that using mean-squared-deviation. While in steady state period, both these two covariance 

matrices are unbiased estimator of the true covariance matrix. Based on these findings, a likelihood 

ratio test is proposed to compare these two estimated covariance matrices. 

The performance of the proposed method was evaluated and compared with existing ones 

through numerical studies. The simulation results demonstrated that the proposed methods 

outperforms others for various types of signals. A real case study is also performed to show its 

application and effectiveness. The results of this research provide useful guidelines for establishing 

an online steady state detection scheme. It should be pointed that the detection parameters, 

including the filtering weights and detection threshold, are essential to achieve a reliable detection. 

In practical applications, these parameters can be tuned using simulated signals with various types 

of bias functions and bias severities 

My future work will focus on the adaptive minimal confidence region rule for multivariate 

initial bias truncation. This algorithm is similar to the Marginal Standard Error Rules that we call 

MSER. However, the MSER just is suitable for the univariate signal not multivariate systems. My 

work will focus on the multivariate. The MSER determines the truncation point (steady state point 

in this research) which minimizes the marginal confidence interval’s the width about the mean of 

truncated sample (steady state mean). Thus, my work will do two things: 

First, based on the MSER, I will try to get the volume of the confidence region of 

multivariate signals. This is very challenging and complex. 
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Second, I will try to find a truncation point that minimizes the confidence region (volume) 

of the mean estimate of the observations after the truncation point. 
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Appendix 

Appendix A: Covariance of 𝑿𝒇,𝒕 
Based on the Eq.(3.2), we can get 𝑋𝑓,𝑡 = 𝜆1𝑋𝑡 + (1 − 𝜆1)𝑋𝑓,𝑡−1 = 𝜆1𝑋𝑡 + (1 − 𝜆1)[𝜆1𝑋𝑡−1 + (1 − 𝜆1)𝑋𝑓,𝑡−2] = 𝜆1𝑋𝑡 + 𝜆1(1 − 𝜆1)𝑋𝑡−1 + ⋯ + 𝜆1(1 − 𝜆1)𝑡−2𝑋2 + (1 − 𝜆1)𝑡−1𝑋𝑓,1 = {𝜆1𝑋𝑡 + 𝜆1(1 − 𝜆1)𝑋𝑡−1 + ⋯ + 𝜆1(1 − 𝜆1)𝑡−2𝑋2} + (1 − 𝜆1)𝑡−1𝑋𝑓,1 

Since 𝑋𝑓,1 = 𝑋1 and the covariance of 𝑋𝑡 is unchanged in the whole process, the covariance of 𝑋𝑓,𝑡 can be derived as Σ𝑋𝑓,𝑡 = 𝜆12(1 + (1 − 𝜆1)2 + (1 − 𝜆1)4 + ⋯ + (1 − 𝜆1)2(𝑡−2))Σ𝑥 + (1 − 𝜆1)2(𝑡−1)Σ𝑥 = [𝜆1(1 − (1 − 𝜆1)2𝑡)2 − 𝜆1 + (1 − 𝜆1)2(𝑡−1)] Σ𝑥 

As 𝑡 → ∞, Σ𝑋𝑓,𝑡 = λ12 − λ1 ∑𝑥 
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Appendix B: Expectation of �̂�𝒇,𝒕  

Based on the Eq. (3.2), we can get  𝐸(𝑋𝑓,𝑡) = 𝜆1𝐸(𝑋𝑡) + (1 − 𝜆1)𝐸(𝑋𝑓,𝑡−1) 

In the stationary state, the expectation of 𝑋𝑡 is unchanged. For simplicity, we assume 𝑡0 is the 

steady state transition time. Denote the mean 𝐸(𝑋𝑡) = 𝜇 for 𝑡 ≥ 𝑡0, then 𝐸(𝑋𝑓,𝑡) − 𝜇 = 𝜆1𝐸(𝑋𝑡) + (1 − 𝜆1)𝐸(𝑋𝑓,𝑡−1) − 𝜇 = 𝜆1𝜇 + (1 − 𝜆1)𝐸(𝑋𝑓,𝑡−1) − 𝜇= (1 − 𝜆1)(𝐸(𝑋𝑓,𝑡−1) − 𝜇) = (1 − 𝜆1)(𝑡−𝑡0)(𝐸(𝑋𝑓,𝑡0) − 𝜇) 

As 𝑡 → ∞, (1 − 𝜆1)(𝑡−𝑡0)(𝐸(𝑋𝑓,𝑡0) − 𝜇) → 0. Therefore 𝐸(𝑋𝑓,𝑡) =  𝜇 = 𝐸(𝑋𝑡) 

Based on Eq. (3.5), the expectation of Σ̂𝑓,𝑡 is derived as follows. 𝐸(Σ̂𝑓,𝑡) = 𝜆2𝐸 ((𝑋𝑡 − 𝑋𝑓,𝑡−1)(𝑋𝑡 − 𝑋𝑓,𝑡−1)𝑇) + (1 − 𝜆2)𝐸(Σ̂𝑓,𝑡−1) = 𝜆2𝐸 ((𝑋𝑡 − 𝜇 + 𝜇 − 𝑋𝑓,𝑡−1)(𝑋𝑡 − 𝜇 + 𝜇 − 𝑋𝑓,𝑡−1)𝑇) + (1 − 𝜆2)𝐸(Σ̂𝑓,𝑡−1) = 𝜆2 (𝐸[(𝑋𝑡 − 𝜇)(𝑋𝑡 − 𝜇)𝑇] + 𝐸 [(𝑋𝑡 − 𝜇)(𝜇 − 𝑋𝑓,𝑡−1)𝑇] + 𝐸[(𝜇 − 𝑋𝑓,𝑡−1)(𝑋𝑡 − 𝜇)𝑇]+ 𝐸 [(𝜇 − 𝑋𝑓,𝑡−1)(𝜇 − 𝑋𝑓,𝑡−1)𝑇]) + (1 − 𝜆2)𝐸(Σ̂𝑓,𝑡−1) 

Since 𝑋𝑡  and 𝑋𝑓,𝑡−1  are independent, 𝐸 [(𝑋𝑡 − 𝜇)(𝜇 − 𝑋𝑓,𝑡−1)𝑇] = 𝐸[(𝜇 − 𝑋𝑓,𝑡−1)(𝑋𝑡 −𝜇)𝑇] = 0 . Meanwhile, 𝐸[(𝑋𝑡 − 𝜇)(𝑋𝑡 − 𝜇)𝑇] = Σ𝑥  and 𝐸 [(𝜇 − 𝑋𝑓,𝑡−1)(𝜇 − 𝑋𝑓,𝑡−1)𝑇] =Σ𝑋𝑓,𝑡−1 = Σ𝑋𝑓,𝑡 (based on Eq.(3.4)). Therefore 𝐸(Σ̂𝑓,𝑡) = 𝜆2 (Σ𝑥 + Σ𝑋𝑓,𝑡) + (1 − 𝜆2)𝐸(Σ̂𝑓,𝑡−1) 

Denote 𝐶𝑡 = Σ𝑥 + Σ𝑋𝑓,𝑡 . Suppose 𝑡 ≫ 𝑡′ ≫ 𝑡0 , based on Eq.(3.4), 𝐶𝑡 = 𝐶𝑡−1 = ⋯ = 𝐶𝑡′+1 =22−λ1 ∑𝑥. When 𝑡 − 𝑡′ → ∞ 𝐸(Σ̂𝑓,𝑡) = λ2𝐶𝑡 + 𝜆2(1 − 𝜆2)𝐶𝑡−1 + ⋯ + 𝜆2(1 − 𝜆2)𝑡−𝑡′−1𝐶𝑡′+1 + (1 − 𝜆2)𝑡−𝑡′𝐸(Σ̂𝑓,𝑡′) = 𝜆2 × 2Σ𝑥2 − λ1 (1 − (1 − 𝜆2)𝑡−𝑡′)1 − (1 − 𝜆2) + (1 − 𝜆2)𝑡−𝑡′𝐸(Σ̂𝑓,𝑡′) = 2Σ𝑥2 − λ1 
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Appendix C: Expectation of �̂�𝒔,𝒕  𝐸(Σ̂𝑠,𝑡) = 𝜆3𝐸((𝑋𝑡 − 𝑋𝑡−1)(𝑋𝑡 − 𝑋𝑡−1)𝑇) + (1 − 𝜆3)𝐸(Σ̂𝑠,𝑡−1) = 𝜆3(𝐸(𝑋𝑡 − 𝜇)(𝑋𝑡 − 𝜇)𝑇 + 𝐸(𝜇 − 𝑋𝑡−1)(𝜇 − 𝑋𝑡−1)𝑇) + (1 − 𝜆3)𝐸(Σ̂𝑠,𝑡−1) 

In the stationary period, 𝐸(𝑋𝑡−1) = 𝐸(𝑋𝑡) = 𝜇, therefore 𝐸(Σ̂𝑠,𝑡) = 2𝜆3Σ𝑥 + (1 − 𝜆3)𝐸(Σ̂𝑠,𝑡−1) 

Similar to the derivation of 𝐸(Σ̂𝑓,𝑡), as 𝑡 → ∞, 𝐸(Σ̂𝑠,𝑡) = 2Σ𝑥 
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