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Abstract

Background: Accurate annotation of protein functions is still a big challenge for understanding life in the post-

genomic era. Many computational methods based on protein-protein interaction (PPI) networks have been

proposed to predict the function of proteins. However, the precision of these predictions still needs to be

improved, due to the incompletion and noise in PPI networks. Integrating network topology and biological

information could improve the accuracy of protein function prediction and may also lead to the discovery of

multiple interaction types between proteins. Current algorithms generate a single network, which is archived using

a weighted sum of all types of protein interactions.

Method: The influences of different types of interactions on the prediction of protein functions are not the same. To

address this, we construct multilayer protein networks (MPN) by integrating PPI networks, the domain of proteins, and

information on protein complexes. In the MPN, there is more than one type of connections between pairwise proteins.

Different types of connections reflect different roles and importance in protein function prediction. Based on the MPN,

we propose a new protein function prediction method, named function prediction based on multilayer protein

networks (FP-MPN). Given an un-annotated protein, the FP-MPN method visits each layer of the MPN in turn and

generates a set of candidate neighbors with known functions. A set of predicted functions for the testing protein is

then formed and all of these functions are scored and sorted. Each layer plays different importance on the prediction

of protein functions. A number of top-ranking functions are selected to annotate the unknown protein.

Conclusions: The method proposed in this paper was a better predictor when used on Saccharomyces cerevisiae

protein data than other function prediction methods previously used. The proposed FP-MPN method takes different

roles of connections in protein function prediction into account to reduce the artificial noise by introducing biological

information.

Background

The accurate annotation of protein functions is the key

to understanding life at the molecular level and has

great biomedical and pharmaceutical implications. Due to

high-throughput biological technologies, a large number

of protein sequences [1] are available, while majority of

their functions are still unknown. With its inherent diffi-

culty and expense, experimental characterization of pro-

tein functions cannot accommodate the ever-increasing

number of sequences and structures produced by Genom-

ics Centers. Recent developments in experiments such as

yeast two-hybrid [2], tandem affinity purification [3] and

mass spectrometry [4] have resulted in the publications of

many high-quality, large-scale protein-protein interaction

(PPI) data, which make it possible and feasible to use com-

putational methods to predict functions for un-annotated

proteins [5].

The past decade has witnessed a rapid development of

computational methods for predicting protein functions

from PPI datasets. A neighbor counting (NC) method

proposed by Schwikowski et al. [6] predicted an un-

annotated protein with the functions that occurred most

frequently among its neighbor proteins. However, this

method ignored the background frequency of different

function annotations. Hishigaki et al. [7] improved the
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neighbor counting method by using the Chi-Square

statistics instead of frequency as a scoring function.

Besides direct neighbors, Chua et al. [8] inferred the func-

tional information within both direct (level 1) and indirect

(level 2) neighbors by giving them different weights. Prior

methods typically measured proximity as the shortest-

path distance in the network, while most proteins are

close to each other. Cao et al. [9] introduced diffusion

state distance (DSD), a new metric based on a graph diffu-

sion property, designed to capture finer-grained distinc-

tions in proximity for transferring functional annotation

in PPI networks. Other methods have been introduced to

make functional prediction by getting the most consistent

agreement throughout the whole PPI networks [10]. Chi

et al. [11] proposed an approach that predicted protein

functions iteratively. This iterative approach incorporated

the local and global semantic influence of protein func-

tions into the prediction. Some kind of network-based

methods partitioned proteins in PPI networks into several

function modules [12], and the proteins in the same mod-

ules are assigned with the same functions. Lee et al. [13]

applied a novel method that generated improved modular-

ity solutions, and developed a better method to use this

community information to predict protein’s functions.

Taking both high noise in PPI data and insufficient

number of available annotated proteins into account,

some researchers have tried to improve the prediction

performance by incorporating other heterogeneous data

sources. Cozzetto et al. [14] proposed an integrative

approach for addressing annotation challenge, which

combines into a wide variety of biological information

sources encompassing sequence, gene expression, and

PPI data. Zhang et al. [15] presented a novel protein

function prediction method that combined protein

domain composition information and PPI networks.

Domain combination similarity (DCS) [16] was applied

to predict protein function by integrating PPI networks

and proteins’ domain information. Different from Zhang’s,

DCS changed the method to calculate domain context

similarity and combined the domain compositions of both

proteins and their neighbors. Liang et al. [17] built a net-

work model called protein overlap network (PON) using

domain co-occurrence information. In a PON, each node

represented a protein and two nodes were connected with

an edge if they share a common domain. The function of

a protein can be predicted by counting the occurrence

frequency of gene ontology (GO) terms associated with

domains of direct neighbors in the PON. Recently, some

new algorithms are proposed to predict protein function

from PPI networks. Gong et al. [18] developed a method

named GoFDR for predicting GO-based protein functions.

The input for GoFDR is simply a query sequence-based

multiple sequence alignment (MSA) produced by PSI-

BLAST (Position-Specific Iterated BLAST). Kumar et al.

[19] proposed an improved approach for protein function

prediction by exploiting the connectivity properties of

prominent proteins. Yu et al. [20] proposed a method

called Predicting Protein Function using Multiple Kernels

(ProMK). ProMK iteratively optimizes the phases of learn-

ing optimal weights and reduces the empirical loss of

multi-label classifier for each of the labels simultaneously.

In conclusion, many computational methods that inte-

grate heterogeneous data for predicting protein (or gene)

functions have been suggested. Most of these techniques

follow the same basic paradigm: firstly, they generate vari-

ous functional association networks by analyzing implicit

information of shared functions of proteins from different

data sources. Then these individual networks are com-

bined into a composite and highly reliable network

through a weighted sum. The weight of each individual

network represents the contribution of the corresponding

data source to the function prediction. A correct setting of

these weights is thought to be the key to designing an ef-

fective function prediction method. In general, the weights

adjustment of individual networks is mainly influenced by

human experience and statistical analysis. The major

drawback of how each network is weighted is that it varies

between different datasets. Furthermore, functions of pro-

teins are diverse and some of them only occur under spe-

cific conditions. Different functional association networks

play different roles and have varying importance in func-

tion prediction. Combining a heterogeneous data source

into a single weighted network could obscure the inherent

nature of the protein function.

To address these difficulties, we construct a multilayer

protein network which integrates PPI network topology,

domain information, and protein complexes. Additionally,

we propose an efficient protein function annotation

method, named FP-MPN (function prediction based on

multilayer protein networks). FP-MPN takes into account

the varying influences by multiple connections in the pre-

diction of protein function. Given an un-annotated pro-

tein, FP-MPN generates candidate functions by examining

multilayer networks systematically in turn. The perform-

ance of FP-MPN was tested on the well-studied species of

Saccharomyces cerevisiae. Compared to several previously

reported protein function prediction algorithms, FP-MPN

achieved a greater degree of accuracy in predicting protein

function. The experimental results demonstrate that this

method, which distinguishes different types of connec-

tions in function prediction, is more robust and effective

than those methods combining multiple interactions, and

that FP-MPN is a good example of this.

Materials and methods

Assessment criteria

Cross-validation is a widely used method to evaluate the

performance of protein function prediction algorithms.
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The proteins in the PPI network are partitioned into

two subsets, the training set and the testing set. Func-

tions are removed from the part of proteins in the PPI

network artificially. These proteins consist of the test-

ing set and the rest proteins form the training set.

Functions of proteins in the testing set are predicted,

using functional information of proteins in the training

set. Finally, the comparing results of predicted func-

tions with actual functions are used to evaluate the per-

formance of protein function prediction algorithms.

The cross-validation methods can be classified into two

categories: leave-one-out cross-validation and leave-

percent-out cross-validation. The leave-one-out cross-

validation method puts one protein into the testing set

and the remaining proteins into the training set, while

the leave-percent-out cross-validation method ran-

domly selects a percentage of proteins as the testing set

and then puts other proteins into the training set. Each

function of proteins in the testing set is assigned with a

probability, according to the functions of proteins in

the training set. Then a number of top-ranking func-

tions are selected to annotate the protein with un-

known functions. The quality of prediction depends on

the matching results of predicted functions with actual

ones. There are two widely used criteria to measure the

predicted results. The one is Precision which measures

the percentage of predicted functions that match the

known functions. The other is Recall which measures

the fraction of known functions that are matched by

the predicted ones. They can be calculated as follows:

Precision ¼
TP

TP þ FP
ð1Þ

Recall ¼
TP

TP þ FN
ð2Þ

where TP (true positive) is the number of predicted func-

tions matched by known functions. FP (false positive) is

the number of predicted functions that are not matched

by known functions. FN (false negative) is the number of

known functions that are not matched by predicted func-

tions. Selecting more functions can improve the recall, but

it may lead to the reduction of precision. F-measure, as

the harmonic mean of precision and recall, is another

measure to evaluate the performance of a method synthet-

ically, which is calculated as follows:

F‐measure ¼
2 � Precision � Recall

Precision þ Recall
ð3Þ

At the same time, the coverage rate (CR) [21] is also

used to evaluate a function prediction algorithm, which

shows how many functions of proteins in the testing set

can be covered by predicted functions. Given a testing

protein set TP = {tp1, tp2, …, tpn}, KF = {kf11, kf12,…, kfij,

…, kfnm} is a list of known function sets of TP, KFi = {kfi1,

kfi2,…, kfil} is a known function set of the protein tpi. PF

= {pf11, pf12,…, pfij, …, pfnm’} is a list of predicted function

sets of TP, PFi = {pfi1, pfi2,…, pfil’} is a predicted function

set of the protein tpi. The coverage rate is then defined as

CR ¼
X

n

i¼1

KF i∩PF ij j=
X

n

i¼1

KF ij j ð4Þ

Motivation

Some methods try to reconstruct more reliable networks

by integrating PPI networks and biological information,

in order to reduce the impact of random noise on pre-

dicting performance. There exist complex and diverse

relationships between proteins as demonstrated after in-

tegrating biological information. For example, proteins

can interact with each other through physical interac-

tions which can be identified by biological experiments,

co-expression based on time course gene expression

data [22, 23], or co-annotation based on gene ontology

[24, 25], etc. Most of these methods generate various

functional association networks, such as co-expression

networks and co-annotation networks. Then a single

network can be constructed through a weighted sum of

these individual networks. The weight assigned to each

individual network reflects its contribution towards

protein function annotation, which is computed by a

specific similar metric for the related biological data.

Figure 1 describes an example of constructed networks

by integrating the PPI network and heterogeneous data.

Figure 1a shows an original physical PPI network, which

was derived from experimental methods. In the co-

annotation network, as shown in Fig. 1b, there exists a

connection between a pair of proteins if they perform

the same functions. As for the co-expressed network, it

is based on time course gene expression data. For a pro-

tein v, its gene expression at n different times is denoted

as a variate:Gen(v) = {T(v, 1), T(v, 2), …, T(v, n)}, T(v, i)

denotes the expression level of gene v at the time point

i. Generally, the Pearson correlation coefficient [26] is

used to assess the probability of whether two particular

proteins are co-expressed. If the Pearson correlation co-

efficient of two proteins over all time points is greater

than 0.8, then they are considered to be co-expressed

and are connected in the co-expressed network. The

network shown in Fig. 1d is a reconstructed network

based on three networks currently used. This network

shows that proteins could have a diversity of functions

when exposed to different conditions or at different time

points. Therefore, the importance and roles of different

types of interactions between proteins are not the same

for the protein function prediction. When functions are

predicted for the unknown protein YJL115W using the
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constructed network in Fig. 1d, YPR018W and YDR181C

are treated in the same way. The connection (YPR018W,

YJL115W) and (YDR181C, YJL115W) has the same status

and reliability (they both have an edge clustering coeffi-

cient [27] of one). After analyzing the original PPI net-

work, co-annotation network, and co-expression network

as shown in Fig. 1, it is demonstrated that the connection

(YDR181C, YJL115W) is more reliable than (YPR018W,

YJL115W), due to its occurrence in all three networks.

YPR018W and YJL115W are only co-expressed at the

gene expression level, based on gene expression data.

Therefore, YDR181C should contribute more to the func-

tion prediction of YJL115W, than the protein YPR018W.

Connections between YDR181C and YJL115W overlap in

the reconstructed network; therefore, it is difficult to de-

termine their relationship. The information mentioned

above was obtained from the reconstructed network.

The analysis of this experiment suggests that existing

methods have two deficiencies. Different biological data

sources (i.e., PPI networks, protein domains, and subcellu-

lar information) often describe protein properties in differ-

ent ways and have different correlations with different GO

terms. Combining multiple biological data into a single

network can not only enhance the matching accuracy (i.e.,

recall, which measures the fraction of known functions that

are matched to the predicted ones) to a certain extent but

also introduce a lot of noise functions and reduce predict-

ing accuracy (i.e., precision, which measures the percent-

age of predicted functions which match the known

functions). As a result, the comprehensive performance

improvement is not apparent. Current methods set differ-

ent weights for heterogeneous data based on the quality of

data sources in order to integrate them into a single net-

work. Setting the weighting system for multiple biological

data is the key to ensuring the accuracy of protein func-

tion prediction. These optimal weighting methods rely on

empirical analysis and have differences between datasets.

Furthermore, these weighting methods may also lead to

the inconsistency of these prediction algorithms.

In conclusion, it is inappropriate to combine multiple in-

teractions or connections between two proteins, as they

often occur under different conditions and play different

roles in protein function prediction. In this paper, we de-

scribe a multilayer protein network developed by integrat-

ing PPI network topology and heterogeneous data. In the

constructed network, a pair of proteins has more than one

connection which is connected through multiple links.

Based on the multilayer protein network, we propose a new

method for predicting protein functions, named FP-MPN.

Multilayer protein networks construction

The complex network is a hot, new research area as a re-

sult of the increased use of networks in various fields, such

as mathematics, social science, and life science. The fea-

tures of many real-life complex networks are that they are

small-world (i.e., high clustering coefficient and small aver-

age path length) and scale-free (i.e., follow the power-law

distributions in node degree and display the growth and

Fig. 1 a is the original protein-protein interaction network experimentally validated. b is the constructed co- annotation network based on the

GO profile. c is the constructed co-expression network based on time course gene expression data. d is reconstructed network based on the PPI

network, co- annotation network and co-expression network by current methods
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preferential attachment). In reality, connections among

nodes in complex networks are diversified. For instance, in

social networks, people can contact each other via emails,

telephones or MSN, etc., and hence make up a complex

network with multi-links. Similarly, in biological networks

there are diverse links among proteins via co-expression or

co-annotation of the proteins. Multilayer networks are

more complex than those with single link.

We consider a multilayer network G = (V, E), where V

= {v1, v2,…, vn} represents a set of proteins, the edge set

E = {Me1, Me2,…, Mem} consists of edges of L different

types representing different relations. That is, Mei = {ei1,

ei2,…, eiL} (0 < i < =m), eij (0 < j < =L) represents the ith

connection in the jth layer of G. We can view the multi-

layer network as a graph with vector valued edge infor-

mation, i.e., the adjacency matrix A consists of elements

Aij, who are themselves L dimensional vectors: Aij = {Aij
(1), Aij

(2),…, Aij
(L)}. An alternative way to approach the

problem is to view the multi-graph as a collection of L,

N ×N adjacency matrices {A(1), A(2),…, A(L)}, each corre-

sponding to one type of relation. Figure 2 describes an

example of a multilayer network according to Fig. 1. The

multilayer network consists of five nodes and three

layers. Each layer represents a different level of connec-

tion or relationship between nodes.

Functions are often performed by proteins physically

interacting with each other, located within the same com-

plex, or by having similar structures. A protein consists of

one or more domains which have independent functions.

There may be discrepancies within domain combinations

among different proteins and it is of great significance to

recognize these. In this paper, we develop a multilayer net-

work by integrating the PPI network, protein domain infor-

mation, and protein complexes. The multilayer network

consists of three layers, which include the physical inter-

action layer (PIL), sharing domain layer (SDL), and sharing

complex layer (SCL). The physical interaction layer is de-

rived from original PPI networks. On the SDL, two proteins

are physically connected if there is at least one domain

common to both of them. On the SCL, each node repre-

sents a protein and two nodes are physically connected if

they are contained in a common complex. Our previous re-

search on protein complex prediction [28] and essential

protein identification [26] suggests that the performance of

the prediction algorithm based on weighted networks is

superior to that based on un-weighted networks. An

Fig. 2 Example of multilayer protein networks
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explanation for this could be that the weight stands for the

reliability of interactions and therefore, weighted networks

can be more useful than un-weighted networks in the rep-

resentative of PPI networks. In this work, appropriate

weighting methods for the three types of connections are

developed for the multilayer network.

Methods of Zhang and DCS successfully integrated do-

main information and PPI networks, improving the per-

formance of protein function prediction. The two methods

rely on the same principle, which is to implement function

prediction by way of computing similarities between the

two proteins. The two methods differ in that the method

described by Zhang only computes similarity through the

domain information of the protein itself, while the DCS

method expands on the extra domain information of the

neighbors surrounding it. The two methods are all based

on the computing similarity of the combination formula.

However, they have the problem of being highly complex to

program. To balance the pros and cons of the two methods,

this study has set up the weighting computational formula

aiming at the interaction of shared domain as follows:

W vi; vj
� �

¼

Di∩Dj

�

�

�

�

2

Di �j jDj

�

�

�

�

; Di≠∅ and Dj≠∅

0 ; otherwise

8

<

:

ð5Þ

where Di and Dj are sets of distinct domain types of vi
and vj, respectively.

In a similar way, the weight of sharing complexes be-

tween vi and vj on the SCL can be calculated as follow:

W vi; vj
� �

¼

Ci∩Cj

�

�

�

�
2

Ci �j jCj

�

�

�

�

; Ci≠∅ and C j≠∅

0 ; otherwise

8

<

:

ð6Þ

where Ci and Cj are the sets of protein complexes that

contained vi and vj, respectively, and Ci∩Cj denotes the

set of common protein complexes.

As for the weight of connections on the PIL, we suggest

that the weight of an interaction can be reflected by the

number of common neighbors between the proteins. Here

we use a variant of edge clustering coefficient (ECC) [27]

to calculate the weight of protein pairs. Given a pair of

proteins vi and vj, the weight of edge (vi, vj) on the PIL is

defined as follows:

W vi; vj
� �

¼
N i∩N j

�

�

�

�

2

N ij j−1ð Þ � N j

�

�

�

�−1
� � ; N ij j > 1 and

( �

�

�

�

�

N jj > 10; otherwise

ð7Þ

where Ni and Nj are sets consisting of all neighbors of vi
and vj, respectively.

Figure 3 is the visualization of our constructed multi-

layer protein network. The network consists of three

layers, i.e., PIL, SDL, and SCL. There are the same set of

proteins and different connections sets on these three

layers. The multilayer protein network can be modeled

as G = (V, E), where V = {v1, v2,…, vn}, E = {Me1, Me2,…,

Mem}. Mei = {ei1, ei2, ei3} (0 < i < =m), eij (0 < j < =3) rep-

resents the ith connection in the jth layer of G.

FP-MPN algorithm

Based on the weighted multilayer protein network, we

propose a new method for protein functional prediction,

named FP-MPN. How to deal with the multilayer net-

works is the first problem to be addressed. Current

algorithms combine different connections into a single

connection when dealing with these complex biological

networks. In reality, it is inappropriate to combine mul-

tiple connections between two proteins, as they often

occur under different conditions and play different roles

in protein function prediction. The influences of different

types of interactions in protein function prediction are not

the same. Combining different interactions into a single

event can lead to false positive results. So, it is necessary

to deal with multilayer networks in another way.

The different connections among proteins may have

different impacts on function prediction. To address this,

FP-MPN visits each layer of the multilayer network in turn

to generate candidate functions. Each layer has different

contribution to predict ion of functions for an un-

annotated protein. The FP-MPN algorithm operates in two

stages, pre-processing data and predicting functions.

To assign functions of proteins in the testing of a set of

probabilities, pre-processing of the multilayer protein net-

work is required. The constructed multilayer protein net-

work can be represented as a tensor A = (ai,j,k) n×n×m,

where n is the number of proteins and m is the number of

types of interconnections. If node i is connected to node j

by the kth type link, ai,j,k is equal to 1; otherwise, it equals

0. Figure 4 depicts the tensor representation of the multi-

layer network as shown in Fig. 2. Given a tensor A, we can

get a new tensor A(1), which is calculated as follows:

a
1ð Þ
i;j;k ¼ ai;j;k =

X

n

j¼1

ai;j;k ;
X

n

j¼1

ai;j;k > 0; otherwise

(

ð8Þ

Therefore, for each row i of the tensor A(1),
X

n

j¼1

a
1ð Þ
i;j;k ¼ 1 or

X

n

j¼1

a
1ð Þ
i;j;k ¼ 0.

The second stage of FP-MPN is predicting functions for

un-annotated proteins. The FP-MPN method visits each

layer of the corresponding multilayer network of the ten-

sor A(1), Given that the proteins interact with each other

under different conditions or stimuli in order to perform

different functions, FP-MPN generates predicted functions

across all layers. While the importance of each layer to the

prediction is not the same. We assign different importance
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Fig. 3 Visualization of constructed multilayer protein networks

Fig. 4 The tensor representation of a multilayer protein network
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coefficient (IC) for each layer of the MPN. For the ith

layer, its IC value can be calculated as follow:

IC ið Þ ¼
1

2i
ð9Þ

The final score of a predicted function is the weighed

sum of scores achieved from all layers. The IC value of a

layer is used to present the weight. The layer accessed

firstly has higher IC value than that rest of the layers. For

this reason, the set up access sequence of each layer in the

MPN is critical for the FP-MPN method. This paper ad-

dresses the problem of the impact of each layer on the ac-

curacy of function predictions using statistical analysis.

More detailed statistical results can be found in Table 1.

In this experiment, we used the NC [6] method on the

SDL, SCL, and PIL to annotate all unknown proteins, using

leave-one-out cross-validation. Then, we calculate the aver-

age Precision, Recall, and F-measure to evaluate the signifi-

cance of each layer for function prediction. The original

PPI network consisted of 5093 proteins with 24,743 inter-

actions. For the PIL, SDL, and SCL, there are 13,871,

23,749, and 7337 connections, respectively. Using PIL,

there are 2388 proteins, which had at least one neighbor.

The number of nodes with neighbors on the SDL and SCL

is 2972 and 1494, respectively. From Table 1, it can be seen

that SCL archives the highest F-measure among the three

layers. In addition, 73.83 % (1103/1494 = 73.83 %) of pro-

teins with neighbors on the SCL have been annotated as at

least one function. While the proportion of PIL and SDL is

53.35 % (1274/2388 = 53.35 %) and 40.88 % (1215/2972 =

40.88 %), respectively. The SDL gets the second highest F-

measure and Recall after SCL among all the layers. Thus,

we assigned the highest access sequence to SCL, the sec-

ond highest priority to SCL, and the lowest order to PIL.

The second stage of FP-MPN consists of two major

steps. The first step is to search its neighbors in the

MPN for a particular protein u with unknown function,

to generate candidate functions. Starting from the layer

in MPN which has the highest access sequence, the FP-

MPN method creates a functions list PF. These lists of

functions are derived from neighbors of the testing pro-

tein u. Assume that P = {p1, p2,…, pn} is a set of neigh-

bors of the protein u on the first layer, F = {f1, f2,…, fm} is

a set of functions of all these proteins in P. The score of

a certain function fj in F can be calculated by the follow-

ing formula:

S f j

� �

¼
X

n

i¼1

W u; pið Þ � tij; j∈ 1;m½ �ð Þ ð10Þ

where W(u, pi) represents the weight of the connection

between u and pi. If pi contains function fj, then tij = 1,

otherwise tij = 0. Then, the FP-MPN enters the next layer

of MPN and continues to predict functions. If a function

has been predicted on previous layers, its score is accu-

mulated. This process is repeated for the next layer etc.,

until all the layers are traversed. For a predicted function

f, its final score is the weighed sum of scores on all

layers and can be calculated as follow:

Score fð Þ ¼
X

L

i¼1

IC ið Þ � S f ið Þ ð11Þ

where L is the number of layers, IC(i) is the IC value of

the ith layer, and S(fi) is the score of function f on the

ith layer calculated using Equation (10). From Equation

(9), it is not difficult to deduce the formula
X

m

i¼1

IC ið Þ < 1,

thus ensuring that Score(f ) is less than 1 and can be used

as a probability of the function f. Figure 5 illustrates how

the FP-MPN method gets the predicted functions list.

Figure 5a depicts the constructed multilayer protein net-

work. Numbers on the edges of each layer in the MPN

represent their corresponding weights. Figure 5b is the

tensor representation of MPN after pre-processing, using

Equation (8). Figure 5c shows the predicted functions list

for the unknown protein A generated by the FP-MPN

method. In this example, FP-MPN predicts functions f3

and f4 according to its neighbors on the SCL. FP-MPN

computes the scores of f3 and f4 on the SCL by Equation

(10), which is 1 and 1, respectively. Then, FP-MPN enters

the SDL and continues to generate functions. The candidate

function set of A’s neighbors on SDL consists of {f1, f2, f3,

f4}. The score of f1, f2, f3, f4 on the SDL is 0.28, 0.28, 0.72,

and 0.72, respectively. In a similar way, FP-MPN records the

functions {f1, f2, f3, f4, f5} on the PIL. Scores of the five func-

tions are the same that is 0.5. According to Equation (11),

the final score of f3 can be calculated as follow:

Score f 3ð Þ ¼ 1�
1

2
þ 0:72�

1

22
þ 0:5�

1

23
¼ 0:7425

The final score of f1, f2, f4, f5 is 0.1325, 0.1325, 0.7425,

and 0.0625, respectively.

The last step of the second stage is to rank functions

according to their scores and select a top N of the ranked

functions for the protein with unknown function. This is a

key factor which influences the performance of the function

prediction algorithm. Existing methods for function selection

Table 1 Statistical analysis of the influence of three layers

Layers Annotated proteins Precision Recall F-measure

PIL 1274 0.3791 0.1094 0.1697

SDL 1215 0.3595 0.1538 0.2154

SCL 1103 0.3404 0.1829 0.238
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are mainly implemented in two ways: one is

represented by the methods of Zhang [15] and DCS

[16], which computes the similarity between proteins and

endow all functions of the protein with the highest similarity

to the protein with unknown function. Another is repre-

sented by the method of NC, which forms candidate func-

tions set by all the functions of the neighbors, then grades

and ranks these functions according to a strategy. We have

performed statistical analysis for the overlap of functions be-

tween the annotated proteins, in order to determine a solu-

tion to function selection, as shown in Table 2.

The first column in Table 2 refers to the function over-

lap between each pair of proteins. The function overlap

score of two proteins u and v is defined as follows [28]:

OS u; vð Þ ¼
Fu∩Fvj j2

Fu �j jFvj j
ð12Þ

where Fu and Fv is the function set of proteins u and v,

respectively. The second column in Table 2 has shown

statistical results of overlaps of all pairs of proteins with

shared functions, among which the overlap score of

54.22 % protein pairs has exceeded 0.8. As many proteins

have only one function, we made statistics again after ex-

cluding those with only one function (the result is shown

in the third column). It turned out that the overlap score

of more than half of the protein pairs falls in (0.4, 0.6], and

the protein pairs with overlap score over 0.6 accounts for

only 11.99 %. Based on these statistical results, the FP-

MPN method adopts the second strategy of function

selection mentioned above.

All functions are sorted in descending order accord-

ing to their scores. The top N of these functions can

be selected to annotate the testing protein u, where N

is the number of functions of the protein most closely

associated with u. In this paper, we used the highest

weight of a pair of proteins to evaluate the close de-

gree of all their layers. We limited the number of pre-

dicted functions to be less than or equal to that of the

annotated GO terms in the protein with highest

weight to u. Algorithm FP-MPN illustrates the overall

framework to predict protein functions based on

multilayer protein networks.

Fig. 5 a is the constructed multilayer protein network. b is the tensor representation of MPN after pre-processing. c is the predicted functions list

for the un-known protein A generated by the FP-MPN method

Table 2 Statistical analysis of overlaps of functions

OS Proportion (all proteins) Proportion (proteins with
more than one function)

(0, 0.2] 2.81 % 5.64 %

(0.2, 0.4] 13.90 % 27.95 %

(0.4, 0.6] 27.05 % 54.41 %

(0.6, 0.8] 2.02 % 4.06 %

(0.8, 1] 54.22 % 7.93 %
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Results and discussion
Experimental data

The S. cerevisiae (yeast) PPI networks are widely used in

the research of network-based function prediction

methods, because the species of yeast has been well char-

acterized by knockout experiments and is the most

complete and convincible. Here, we also adopt the yeast

PPI network to test our method. We have applied our

method and four other competing algorithms by integrat-

ing network topological features, domain information, and

protein complexes data: Zhang [15], DCS [16], domain

combination similarity in context of protein complexes

(DSCP) [16], and PON [17] on DIP data [29]. DSCP is a

variant of DSC, which combines protein complex infor-

mation. The DIP dataset, updated to Oct. 1, 2014, consists

of 5017 proteins and 23,115 interactions among the pro-

teins. The self-interactions and the repeated interactions

are filtered out in DIP data. The annotation data of pro-

teins used for method validation is the latest version

(2012.3.3) downloaded from GO official website [30]. The

GO system consists of three separate categories of annota-

tions, namely molecular function (MF), biological process

(BP), and cellular component (CC). The predictions are

validated separately for each of the three GO categories.

To avoid too special or too general, only those GO terms

that annotate at least 10 and at most 200 proteins will be

kept in the experiments. After processing by this step, the

number of GO terms is 267. The domain data is derived

from Pfam database [31], including 1107 different types of

domains among 3056 proteins. As for the protein complex

information, we used the dataset CYC2008 [32], which

consists of 408 protein complexes involving 1492 proteins

in the yeast PPI network. The GO data and Pfam domain

data are transformed to use the ensemble genome protein

entries because the original PPI network uses such a label-

ing system.

Effect of access sequence of each layer

The access sequence of each layer in the MPN plays an

important role in the performance of the proposed FP-

MPN method. In this paper, the priority of each layer

was determined using statistical analysis. Different

schemes were used to sequence layers of the MPN and

then compare these results to verify the effectiveness of

the FP-MPN method. Table 3 depicts the results of FP-

MPN when different schemes were adopted. Table 3

demonstrates that the first scheme (SCL→ SDL→ PIL),

in which SCL was visited first and the SDL was visited

second, performed the highest in terms of BP (biological

process), MF (molecular function), and CC (cellular

component). The comparison of these results with the

statistical results show they are in agreement. Experi-

mental results also verify the method used to access the

sequence of each layer in the FP-MPN.

Leave-one-out cross-validation

A representative set of function prediction algorithms

was run: FP-MPN, Zhang, DCS, DSCP, and PON, and

their performance was examined using the leave-one-out

cross-validation method. In the DIP PPI network, 2870,

1592, and 2427 proteins from a total of 5017 proteins

were annotated by BP, MF, and CC, respectively. We an-

alyzed the overall prediction performance of FP-MPN

on these annotated proteins, as well as four other

Table 3 The influence of access sequence

Categories Schemes Precision Recall F-measure CR

BP SCL→ SDL→ PIL 0.444 0.427 0.435 0.426

SCL→ PIL→ SDL 0.462 0.401 0.429 0.374

SDL→ PIL→ SCL 0.452 0.404 0.426 0.396

SDL→ SCL→ PIL 0.442 0.424 0.433 0.422

PIL→ SDL→ SCL 0.453 0.404 0.427 0.397

PIL→ SCL→ SDL 0.459 0.398 0.426 0.372

MF SCL→ SDL→ PIL 0.569 0.544 0.556 0.508

SCL→ PIL→ SDL 0.566 0.535 0.55 0.495

SDL→ PIL→ SCL 0.585 0.54 0.561 0.505

SDL→ SCL→ PIL 0.568 0.543 0.555 0.507

PIL→ SDL→ SCL 0.584 0.539 0.561 0.504

PIL→ SCL→ SDL 0.573 0.541 0.557 0.5

CC SCL→ SDL→ PIL 0.463 0.439 0.451 0.415

SCL→ PIL→ SDL 0.468 0.43 0.448 0.4

SDL→ PIL→ SCL 0.473 0.424 0.447 0.402

SDL→ SCL→ PIL 0.461 0.439 0.45 0.413

PIL→ SDL→ SCL 0.473 0.424 0.448 0.403

PIL→ SCL→ SDL 0.467 0.429 0.447 0.4

Table 4 Overall comparisons of various methods

Categories Methods MP Precision Recall F-measure CR

BP FP-MPN 1595 0.444 0.427 0.435 0.426

Zhang 810 0.225 0.220 0.222 0.216

DCS 1148 0.312 0.314 0.313 0.327

DSCP 1298 0.357 0.359 0.358 0.363

PON 572 0.150 0.140 0.145 0.161

MF FP-MPN 995 0.569 0.544 0.556 0.508

Zhang 608 0.332 0.332 0.332 0.316

DCS 839 0.461 0.462 0.461 0.441

DSCP 927 0.518 0.515 0.516 0.489

PON 413 0.223 0.216 0.22 0.228

CC FP-MPN 1265 0.463 0.439 0.451 0.415

Zhang 561 0.197 0.196 0.197 0.198

DCS 876 0.306 0.309 0.307 0.315

DSCP 1014 0.364 0.363 0.364 0.356

PON 440 0.148 0.138 0.143 0.158
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methods. The results are shown in Table 4, which in-

clude the average Precision, Recall, and F-measure and

coverage rate (CR) of the various algorithms.

In Table 4, MP is the number of proteins which have

been matched to at least one function with known func-

tion. Among the five methods, FP-MPN and PON are

two methods of selecting top-ranking functions from the

set of candidate functions, whereas the methods of

Zhang, DCS, and DSCP are three methods of endowing

un-annotated proteins with all functions of proteins with

the highest similarity values. From Table 4, we can see

that FP-MPN can predict functions for more proteins

and archive higher performance than the other four

methods, with respect to BP, MF, and CC. For BP, the F-

measure of FP-MPN is 95.95, 38.98, 21.51, and 200 %

higher than Zhang, DCS, DSCP, and PON, respectively.

After integrating protein complexes and domains, DSCP

improves the performance compared to DCS. FP-MPN

outperforms DSCP, including the F-measure and cover-

age rate. When looking at MF, the performances of these

five methods are better. The F-measure of FP-MPN is

67.47, 20.61, 7.75, and 152.73 % higher than the results

using the methods of Zhang, DCS, DSCP, and PON, re-

spectively. As for CC, the F-measure of FP-MPN is

128.93, 46.91, 23.9, and 215.38 % higher than the results

using the methods of Zhang, DCS, DSCP, and PON,

respectively. Compared to BP and MF, FP-MPN had a

higher F-measure growth rate compared to other methods.

A comprehensive comparison of the performances of

these five methods was undertaken using a Precision-

Recall (PR) curve to evaluate the global performance of

every method in terms of the different strategies of func-

tion selection adopted by the five prediction methods.

The same number of functions was chosen for each

method, i.e., the top K functions of each prediction

method. When examining the methods of Zhang, DCS,

and DSCP, the top M (M < =K) proteins which had the

highest similarity value were selected and the top K

functions from the function list as a predictor of func-

tions was listed in descending order according to the

maximum value of protein similarity (e.g., given a certain

function Fi found in more than one protein, the score of

Fi is the similarity value of this protein when compared

to the tested proteins). As for the FP-MPN and PON

methods, the top K GO terms are chosen to assign func-

tional properties to the unknown proteins (K ranges from

1 to 50). The areas under the curve (AUC) for FP-MPN

and other methods are used to compare their performance.

AUC is considered to be a standard method to assess the

accuracy of predictive distribution models. From Fig. 6, we

can see that FP-MPN outperforms other methods in terms

of BP, MF, and CC. For example, on the BP, the AUC of

FP-MPN is 347.67, 53.76, 31.76, and 195.46 % higher than

Zhang, DCS, DSCP, and PON, respectively.

The number of incorrect predicted functions when

matching a function correctly using these methods was

Fig. 6 The precision-recall curves of FP-MPN compared to other four existing algorithms

Fig. 7 FP/TP curves of various methods
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determined. For each testing protein, the top K functions

are selected as its predicted ones, and TP and FP values

are calculated according to its known functions. The TP

and FP values of all testing proteins are added to calcu-

lated TP and FP pairs. Selecting different values of K

(ranging from 1 to 50), a FP/TP curve can be generated

with different TP and FP pairs, as shown in Fig. 7.

Figure 7 clearly shows that the curvature of FP-MPN

curve is the lowest as compared to others, which means

that, if matched functions are the same, the number of

functions incorrectly matched by FP-MPN is the least.

Table 5 lists the statistical results of the various FP/TP

curves, including maximum value, the minimum value,

the average value, and the middle value. These results in-

dicates that to match a protein function correctly, the

number of average noise functions (i.e., predicted function

incorrectly matched) produced by FP-MPN is smaller

compared to the Zhang, DCS, and DSCP methods. FP-

MPN has comparable results with PON’s. For example, on

the BP, the number of average noise functions of the

methods of FP-MPN, Zhang, DCS, DSCP, and PON is 7,

21, 19, 18, and 7, respectively. The results illustrate that

FP-MPN has the high prediction efficiency and accuracy.

Tenfold cross-validation

The performance of FP-MPN was tested using leave-

one-out validation. Experimental results demonstrate

improvements when predicting protein functions by the

FP-MPN method compared to competing methods.

However, in practical applications, there are much more

proteins without annotations, instead of one unknown

protein. In this section, we will use the leave-percent-out

cross-validation method to verify the effectiveness of FP-

MPN on PPI networks that have less functional informa-

tion. Tenfold cross-validation is a widely used leave-

percent-out cross-validation, which is used in this paper.

The tenfold cross-validation requires the entire set of ex-

amples to be divided into ten equal sets randomly. Nine

of the ten parts are used for training, and one part is

used for testing. This is repeated ten times, each time

using another testing set. We evaluate the performance

of each method using area under precision-recall (PR)

curve. Figure 8 illustrates the PR curve using tenfold

cross-validation, in terms of biological processes, mo-

lecular functions, and cellular components. When com-

pared to the results of leave-one-out cross-validation,

the performance of all methods using tenfold cross-

validation decrease slightly, due to the decrease of the

number of training proteins. It appears that Fig. 8 is very

similar to Fig. 6, except for the coordinate values of the

various methods. Figure 8 demonstrates that FP-MPN

still outperforms other methods when tenfold cross-

validation is used to test all methods.

Analysis of the overlaps and differences between FP-MPN

and other methods

To further analyze the differences between the FP-MPN

and other methods, we selected 12 testing proteins and

predicted their functions using the five methods. Table 6

lists the functions of these selected proteins predicted by

Table 5 Statistical analysis of FP/TP of various methods

Categories Methods Maximum Minimum Average Middle

BP FP-MPN 9.44 0.72 6.48 7.18

Zhang 40.29 1.59 20.96 21.04

DCS 33.94 2.12 18.64 18.94

DSCP 32.14 1.75 17.49 17.75

PON 9.39 3.07 6.98 7.41

MF FP-MPN 6.19 0.53 5.23 5.99

Zhang 45.5 0.9 22.81 22.71

DCS 39.41 1.18 21.28 21.88

DSCP 38.54 0.94 20.4 20.73

PON 4.57 1.85 4.2 4.57

CC FP-MPN 7.39 0.72 5.88 6.59

Zhang 53.51 2.12 27.29 27.09

DCS 38.15 2.36 21.49 22.25

DSCP 37.02 1.81 20.45 21.04

PON 6.88 3.07 6.02 6.57

Fig. 8 The precision-recall curves of various methods using tenfold cross-validation
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various methods. The third to the seventh column of

Table 6 lists functions predicted by the FP-MPN, Zhang,

DCS, DSCP, and PON methods, respectively. In this

table, functions in italics represent the matched

functions of the testing proteins, the rest are mis-

matched functions. In Table 6, we can see that FP-MPN

can record more correct functions and fewer error func-

tions compared to the other competing methods.

Table 6 Selected functions predicted by various methods

Categories Proteins FP-MPN Zhang DCS DSCP PON

BP YGL100W
(8 GO terms)

GO:0006409
GO:0006607
GO:0006913
GO:0006999
GO:0006406
GO:0006609
GO:0006611
GO:0006407
GO:0000973
GO:0000055

GO:0000723
GO:0006348
GO:0006355
GO:0051568

GO:0043161 GO:0043161 GO:0000001
GO:0000002
GO:0000027
GO:0000055
GO:0000082
GO:0000086
GO:0000122
GO:0000209

YNL262W
(7 GO terms)

GO:0006272
GO:0006273
GO:0006289
GO:0006298
GO:0000084

GO:0006273
GO:0000084
GO:0006270

GO:0006273
GO:0000084
GO:0006270

GO:0006273
GO:0000084
GO:0006270

GO:0006272
GO:0006273
GO:0006289
GO:0000084
GO:0006260
GO:0006270
GO:0006284

YLR321C
(6 GO terms)

GO:0006337
GO:0006368
GO:0043044
GO:0000086

GO:0006302
GO:0043044
GO:0006338
GO:0042766
GO:0045944

GO:0006302
GO:0043044
GO:0006338
GO:0042766
GO:0045944

GO:0006302
GO:0043044
GO:0006338
GO:0042766
GO:0045944

GO:0006302
GO:0043044
GO:0006338
GO:0042766
GO:0045944

YBR278W
(5 GO terms)

GO:0006272
GO:0006273
GO:0006289
GO:0006298
GO:0006348
GO:0006303
GO:0007064

GO:0006348
GO:0000723
GO:0006281
GO:0007064
GO:0030466

GO:0006348
GO:0000723
GO:0006281
GO:0007064
GO:0030466

MF YBR114W
(3 GO terms)

GO:0004842
GO:0003684
GO:0008094

GO:0008094 GO:0008094 GO:0008094 GO:0000386
GO:0000990
GO:0001102

YJR052W
(3 GO terms)

GO:0004842
GO:0003684
GO:0008094

GO:0008134 GO:0043130

YJR140C
(3 GO terms)

GO:0003677
GO:0031491
GO:0003714

GO:0046933
GO:0046961

GO:0003677
GO:0031491

YBL021C
(2 GO terms)

GO:0001077
GO:0000978

GO:0003713
GO:0003714

GO:0003713
GO:0003714

GO:0003713
GO:0003714

GO:0003713
GO:0003714

CC YNL161W
(6 GO terms)

GO:0005933
GO:0005934
GO:0005935
GO:0043332

GO:0005935
GO:0005816

GO:0005935
GO:0005816

GO:0005935
GO:0005816

GO:0000131
GO:0000139
GO:0000142
GO:0000307
GO:0000324
GO:0000329

YBR198C
(3 GO terms)

GO:0000124
GO:0046695
GO:0005669

GO:0070210 GO:0070210 GO:0070210 GO:0000124
GO:0000139
GO:0000228

YDR167W
(3 GO terms)

GO:0000124
GO:0046695
GO:0005669

GO:0005666 GO:0000124
GO:0046695

YNL273W
(3 GO terms)

GO:0031298
GO:0000228
GO:0043596

GO:0005751 GO:0005751
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In addition, we continued to look for sources of func-

tions predicted by various methods. For the protein

YGL100W, the functions set predicted by the method of

Zhang consists of GO:0000723, GO:0006348, GO:0006355,

and GO:0051568, which were derived from the protein

YAR003W. In this study, YAR003W is regarded as having

the most similar domain to YGL100W among all the

proteins. Unfortunately, these predicted functions are mis-

matched by the real functions of YGL100W. As for DCS

and DSCP, the protein YCL039W is considered to be the

most similar in domain to YGL100W than the other

known proteins. Similarly, the predicted functions of

GO:0043161, which were derived from YCL039W, created

errors in predicted functions for YAR003W. Predicted

functions by PON were GO:0000001, GO:0000002,

GO:0000027, GO:0000055, GO:0000082, GO:0000086,

GO:0000122, and GO:0000209, which were derived from

YBR234C, YJL112W, YKL021C, YDR267C, YDR364C,

YFL009W, YLR055C, and YIL046W, respectively. All of

these proteins have at least one domain with YGL100W.

So, we can draw a conclusion that we cannot predict func-

tions for the protein YGL100W based on domain informa-

tion only. Our FP-MPN predicts ten functions, in which

eight are matched and two are mismatched. These

matched functions were derived from protein YDL116W,

which is located in the transcription factor TFIID complex

with the YGL100W protein. FP-MPN successfully matched

eight functions for the protein YGL100W, with the help of

protein complexes information. The results suggest that

complexes information improves the accuracy of protein

function prediction. However, protein complexes data is

also used in the DSCP methods, which has a different pre-

dictor results compared to that of FP-MPN. This could be

due to the difference in how the data is used between the

two methods. For the protein YNL262W, the methods of

Zhang, DCS, and DSCP created the same function lists,

consisting of GO:0006273, GO:0000084, and GO:0006270.

These three functions are derived from the protein

YNL102W, which has common domains with the pro-

tein YNL262W. In the predicted functions list, only

GO:0006273 is correct as a function for the protein

YNL102W. Compared to the methods of Zhang, DCS,

and DSCP, PON can identify two other correct functions

GO:0006273 and GO:0006289 from another protein

YDL102W, which shares domains with the protein

YNL102W. The result suggests that annotating proteins

according to multiple known proteins is more reliable

than predicting functions from a single protein. Besides

the three matched functions identified by other methods,

FP-MPN identifies a new correct function GO:0006298.

In this example, FP-MPN predicts more matched func-

tions compared to other methods, due to the domain and

complexes information being used. This phenomenon

suggests that proper use of multiple heterogeneous

biological data can effectively improve the performance of

function prediction algorithms. The analysis for the rest of

the ten proteins described above is consistent with that of

YGL100W and YNL262W.

Efficiency analysis

To compare the efficiency of these methods, we ran FP-

MPN and competing methods under the same conditions

and looked at their running time. All methods in this

paper were run on a notebook computer with Inter(R)

Core(TM) i5-4300M 2.6 GHz CPU and 4 GB RAM.

Figure 9 illustrates a comparison of the running time of

FP-MPN and the other four methods used for predicting

protein functions. The methods of Zhang, DCS, and

DSCP are all based on combined number computation.

So, they have the disadvantage of being time consuming.

From Fig. 9, it can be seen that FP-MPN is extremely fast,

25, 52, 55, and 0.8 times faster than the methods of Zhang,

DCS, DSCP, and PON, respectively. As protein-protein

interactions are accumulating, FP-MPN can be used in

larger scale PPI networks.

Conclusions

Different types of interactions or connections play differ-

ent roles in protein function prediction. Combining mul-

tiple interactions or connections between two proteins

could reduce the impact of false negatives and increase

the number of correct predicted functions. However, there

appears to be more false functions identified compared to

positive functions, thus the overall performance of func-

tion prediction would not be improved greatly. In this

paper, multilayer protein networks (MPN) are constructed

based on topological characteristics, protein domain infor-

mation, and protein complex information, with each layer

given various priorities. Based on the constructed net-

works, we proposed a new method, named FP-MPN, to

predict the functions of a particular protein. The proposed

Fig. 9 Comparison of the running time of various methods
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method is based around visiting each layer of the MPN in

turn and forming a set of candidate neighbors with known

functions. The set of predicted functions is then formed

and all of these functions are scored and sorted. Each layer

contributes differently to the predicted functions in the

un-annotated protein. The experimental results indicate

that it is an effective method to predict protein functions.
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proteins and 23115 interactions among the proteins. Domain.txt: The

domain data derived from Pfam database, including 1107 different types

of domains among 3056 proteins. FP-MPN.exe: The FP-MPN algorithm.

FPMPN.txt: The predicted results by FP-MPN. GO_C.txt, GO_F.txt and

GO_P.txt: Represents cellular component (CC), molecular function (MF)

and biological process (BP), respectively. (ZIP 437 kb)
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