
An Efficient Method for Random Delay
Generation in Embedded Software

Jean-Sébastien Coron Ilya Kizhvatov

CHES 2009, Lausanne, Switzerland

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Outline

1 About Random Delays as a Countermeasure

2 Existing Methods for Random Delay Generation in Software

3 The New Method

4 Efficiency Comparison Between the Methods

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 1/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Outline

1 About Random Delays as a Countermeasure

2 Existing Methods for Random Delay Generation in Software

3 The New Method

4 Efficiency Comparison Between the Methods

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 2/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Random Delays: In Brief

time
algorithm execution target operation

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 3/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Random Delays: In Brief

time
algorithm execution target operation delay

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 3/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Random Delays: In Brief

time
algorithm execution target operation delay

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 3/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Random Delays: In Brief

time
algorithm execution target operation delay

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 3/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Random Delays: In Brief

time
algorithm execution target operation delay

Effect
Timing attacks: noise in time domain
DPA attacks: smeared correlation peak
[Clavier et al. CHES’00], [Mangard CT-RSA’04]
Fault attacks: decreased fault injection precision
[Amiel et al. FDTC’06]

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 3/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Random Delays: Implementation Levels

Hardware
random process interrupts (RPI) [Clavier et al. CHES’00]
gate-level delays [Bucci et al. ISCAS’05], [Lu et al. FPT’08]

Software (this work)

dummy loops [Benoit and Tunstall WISTP’07]
...

ld R0, RND
dummyloop:

dec R0
brne dummyloop

...

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 4/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Outline

1 About Random Delays as a Countermeasure

2 Existing Methods for Random Delay Generation in Software

3 The New Method

4 Efficiency Comparison Between the Methods

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 5/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Plain Uniform Delays (PU)

.d1 d2 dN︸ ︷︷ ︸
SN =

N∑
i=0

di

di ∼ U [0, a]

E (SN) = Nµ

Var(SN) = Nσ2

individual delays are independent and uniform
⇒ SN has Gaussian distribution

Desired properties of SN

larger variance to increase the attacker’s uncertainty
smaller mean to decrease performance penalty

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 6/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Method of Benoit and Tunstall [WISTP’07] (BT)

individual delays: uniform −→ pit-shaped to increase variance
pit is asymmetric to reduce overhead
individual delays still generated independently

50 100 150 200 250
0

0.02

0.04

0.06

0.08

500 1000 1500 2000 2500
0

0.02

0.04

0.06

0.08

In this example: σ2 33% ↑, µ 20% ↓ compared to PU

PU
BT

1 delay 10 delays

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 7/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Limitation of Both Methods

Individual delays are independent with mean µ and variance σ2

⇓ Central Limit Theorem

SN
N−→ N (Nµ,Nσ2)

The only way to escape: generate delays non-independently

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 8/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Outline

1 About Random Delays as a Countermeasure

2 Existing Methods for Random Delay Generation in Software

3 The New Method

4 Efficiency Comparison Between the Methods

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 9/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method Step by Step

algorithm execution delay

insert a long uniform delay in the beginning
can be removed like in [Nagashima et al. ISCAS’07]

cut it into equal pieces and distribute along the execution
the cumulative sum is strictly uniform
all delays have identical duration

add small variation to individual delays
the cumulative sum is almost uniform

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 10/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method Step by Step

algorithm execution delay

insert a long uniform delay in the beginning
can be removed like in [Nagashima et al. ISCAS’07]

cut it into equal pieces and distribute along the execution
the cumulative sum is strictly uniform
all delays have identical duration

add small variation to individual delays
the cumulative sum is almost uniform

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 10/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method Step by Step

algorithm execution delay

insert a long uniform delay in the beginning
can be removed like in [Nagashima et al. ISCAS’07]

cut it into equal pieces and distribute along the execution
the cumulative sum is strictly uniform
all delays have identical duration

add small variation to individual delays
the cumulative sum is almost uniform

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 10/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method Step by Step

algorithm execution delay

insert a long uniform delay in the beginning
can be removed like in [Nagashima et al. ISCAS’07]

cut it into equal pieces and distribute along the execution
the cumulative sum is strictly uniform
all delays have identical duration

add small variation to individual delays
the cumulative sum is almost uniform

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 10/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 a

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

b

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

b

m1

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

1

m1

b

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

1

m1

2

m2

b

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

1

m1

2

m2

i

mi

b

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

1

m1

2

m2

i

mi

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Floating mean: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

1

m1

2

m2

i

mi

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Floating Mean: Distribution

E (SN) =
Na
2 , Var(SN) = N2 · (a − b + 1)2 − 1

12 + N · b
2 + 2b
12

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0 500 1000 1500 2000 2500
0

0.01

0.02

0.03

0.04

 PU
FM

1 delay 10 delays

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 12/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Floating Mean: Distribution

E (SN) =
Na
2 , Var(SN) = N2 · (a − b + 1)2 − 1

12 + N · b
2 + 2b
12

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0 500 1000 1500 2000 2500
0

0.01

0.02

0.03

0.04

 PU
FM

1 delay 10 delays

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 12/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Floating Mean: Tradeoff

b/a→ 0: individual delays within a trace have small variation,
cumulative sum is almost uniformly distributed
b/a→ 1: plain uniform delays, cumulative sum tends to
normal distribution

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0 500 1000 1500 2000 2500
0

0.01

0.02

0.03

0.04

 b/a→ 0
b/a→ 1

1 delay within an execution 10 delays

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 13/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Outline

1 About Random Delays as a Countermeasure

2 Existing Methods for Random Delay Generation in Software

3 The New Method

4 Efficiency Comparison Between the Methods

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 14/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Comparing Efficiency

Our Criterion
what performance overhead is required to achieve the given
variation of the sum of N delays
use coefficient of variation σ/µ

Plain uniform Benoit-Tunstall Floating mean

1√
3N

σbt
µbt
· 1√

N

√
N((a−b+1)2−1)+b2+2b

a
√
3N

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 15/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Comparing Efficiency

Our Criterion
what performance overhead is required to achieve the given
variation of the sum of N delays
use coefficient of variation σ/µ

Plain uniform Benoit-Tunstall Floating mean

Θ
(

1√
N

)
Θ
(

1√
N

)
Θ (1)

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 15/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Comparing Efficiency

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Efficiency of the methods against the number of delays in SN

PU
BT
FM

N

σ
/µ

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 16/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Comparing Efficiency

0 0.5 1 1.5 2 2.5

x 10
4

0

0.02

0.04

0.06

0.08

Distribution of S100 for the same performance overhead

PU
BT
FM

S100

re
la
tiv

e
fre

qu
en
cy

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 17/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Practical Implementation: Details

AES-128 on Atmel ATmega16
10 delays per round, 3 dummy rounds at start/end
same performance overhead for all methods
no other countermeasures
CPA attack [Brier et al. CHES’04]

. . .

dummy 1 dummy 2 dummy 3 round 1

S-Box 1︷ ︸︸ ︷32 delays

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 18/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Practical Implementation: Results

ND PU BT FM
µ, cycles 0 720 860 862

σ, cycles 0 79 129 442

σ/µ − 0.11 0.15 0.51

CPA, traces 50 2500 7000 45000

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 19/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Conclusion

Our result
a new method for random delay generation in embedded
software
more efficient and secure than existing methods

Not covered in this talk
lightweight implementation

Updated version of the paper: ePrint 2009/419

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 20/20

About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Conclusion

Our result
a new method for random delay generation in embedded
software
more efficient and secure than existing methods

Not covered in this talk
lightweight implementation

Updated version of the paper: ePrint 2009/419

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 20/20

	About Random Delays as a Countermeasure
	In Brief
	Implementation levels

	Existing Methods for Random Delay Generation in Software
	Plain Uniform Delays
	Method of Benoit and Tunstall
	Limitation

	The New Method
	Description
	Properties

	Efficiency Comparison Between the Methods
	Effciency Criterion
	Theoretical Comparison
	Practical Evaluation

	Conclusion

