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Random Delays: In Brief

time
algorithm execution target operation delay

Effect
Timing attacks: noise in time domain
DPA attacks: smeared correlation peak
[Clavier et al. CHES’00], [Mangard CT-RSA’04]
Fault attacks: decreased fault injection precision
[Amiel et al. FDTC’06]
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Random Delays: Implementation Levels

Hardware
random process interrupts (RPI) [Clavier et al. CHES’00]
gate-level delays [Bucci et al. ISCAS’05], [Lu et al. FPT’08]

Software (this work)

dummy loops [Benoit and Tunstall WISTP’07]
...

ld R0, RND
dummyloop:

dec R0
brne dummyloop

...
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Plain Uniform Delays (PU)

. . . . . .d1 d2 dN︸ ︷︷ ︸
SN =

N∑
i=0

di

di ∼ U [0, a]

E (SN) = Nµ

Var(SN) = Nσ2

individual delays are independent and uniform
⇒ SN has Gaussian distribution

Desired properties of SN

larger variance to increase the attacker’s uncertainty
smaller mean to decrease performance penalty

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 6/20



About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Method of Benoit and Tunstall [WISTP’07] (BT)

individual delays: uniform −→ pit-shaped to increase variance
pit is asymmetric to reduce overhead
individual delays still generated independently
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In this example: σ2 33% ↑, µ 20% ↓ compared to PU

PU
BT

1 delay 10 delays
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Limitation of Both Methods

Individual delays are independent with mean µ and variance σ2

⇓ Central Limit Theorem

SN
N−→ N (Nµ,Nσ2)

The only way to escape: generate delays non-independently
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The New Method Step by Step

algorithm execution delay

insert a long uniform delay in the beginning
can be removed like in [Nagashima et al. ISCAS’07]

cut it into equal pieces and distribute along the execution
the cumulative sum is strictly uniform
all delays have identical duration

add small variation to individual delays
the cumulative sum is almost uniform
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The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20



About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 a

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20



About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

b

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20



About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

b

m1

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20



About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

1

m1

b

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20



About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

1

m1

2

m2

b

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20



About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

1

m1

2

m2

i

mi

b

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20



About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

The New Method: More Formally

Individual delay length

Re
la
tiv

e
fre

qu
en
cy

0 aa−b

1

m1

2

m2

i

mi

J.-S. Coron, I. Kizhvatov An Efficient Method for Random Delay Generation in Embedded Software 11/20



About Random Delays Existing Methods The New Method Efficiency Comparison Conclusion

Floating mean: More Formally
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Floating Mean: Distribution

E (SN) =
Na
2 , Var(SN) = N2 · (a − b + 1)2 − 1

12 + N · b
2 + 2b
12
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Floating Mean: Tradeoff

b/a→ 0: individual delays within a trace have small variation,
cumulative sum is almost uniformly distributed
b/a→ 1: plain uniform delays, cumulative sum tends to
normal distribution
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 b/a→ 0
b/a→ 1

1 delay within an execution 10 delays
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Comparing Efficiency

Our Criterion
what performance overhead is required to achieve the given
variation of the sum of N delays
use coefficient of variation σ/µ

Plain uniform Benoit-Tunstall Floating mean

1√
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σbt
µbt
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Comparing Efficiency
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Efficiency of the methods against the number of delays in SN
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Comparing Efficiency
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Distribution of S100 for the same performance overhead
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Practical Implementation: Details

AES-128 on Atmel ATmega16
10 delays per round, 3 dummy rounds at start/end
same performance overhead for all methods
no other countermeasures
CPA attack [Brier et al. CHES’04]

. . .

dummy 1 dummy 2 dummy 3 round 1

S-Box 1︷ ︸︸ ︷32 delays
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Practical Implementation: Results

ND PU BT FM
µ, cycles 0 720 860 862

σ, cycles 0 79 129 442

σ/µ − 0.11 0.15 0.51

CPA, traces 50 2500 7000 45000
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Conclusion

Our result
a new method for random delay generation in embedded
software
more efficient and secure than existing methods

Not covered in this talk
lightweight implementation

Updated version of the paper: ePrint 2009/419
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