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Abstract
A new method to detect snoring episodes in sleep sound recordings is proposed.
Sleep sound segments (i.e., ‘sound episodes’ or simply ‘episodes’) are classified
as snores and nonsnores according to their subband energy distributions. The
similarity of inter- and intra-individual spectral energy distributions motivated
the representation of the feature vectors in a lower dimensional space. Episodes
have been efficiently represented in two dimensions using principal component
analysis, and classified as snores or nonsnores. The sound recordings were
obtained from individuals who are suspected of OSAS pathology while
they were connected to the polysomnography in Gülhane Military Medical
Academy Sleep Studies Laboratory (GMMA-SSL), Ankara, Turkey. The
data from 30 subjects (18 simple snorers and 12 OSA patients) with different
apnoea/hypopnea indices were classified using the proposed algorithm. The
system was tested by using the manual annotations of an ENT specialist as a
reference. The accuracy for simple snorers was found to be 97.3% when the
system was trained using only simple snorers’ data. It drops to 90.2% when
the training data contain both simple snorers’ and OSA patients’ data. (Both
of these results were obtained by using training and testing sets of different
individuals.) In the case of snore episode detection with OSA patients the
accuracy is 86.8%. All these results can be considered as acceptable values
to use the system for clinical purposes including the diagnosis and treatment
of OSAS. The method proposed here has been used to develop a tool for the
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ENT clinic of GMMA-SSL that provides information for objective evaluation
of sleep sounds.

Keywords: snoring, sound analysis, detection, classification, OSAS

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Tissues of the human body are relaxed during sleep. Relaxation may cause constrictions along
the upper airway, and breathing triggers mechanical oscillations of the tissues such as soft
palate or tongue around the constriction. Snoring is a result of the oscillatory motion of the
tissues. In the last 15 years, the snoring problem has entered the realm of clinical medicine.
It is a prevalent symptom, and about 50% of the adult population snore frequently (Lugaresi
et al 1980, Norton and Dunn 1985). It has been reported as a risk factor for the development
of diseases such as ischaemic brain infraction, systemic arterial hypertension, coronary artery
disease and sleep disturbance (Wilson et al 1999). In recent years, several studies have
also shown the relationship between snoring and obstructive sleep apnoea syndrome (OSAS),
which is usually associated with loud, heavy snoring (Lucas et al 1988, Wilkin 1985). It
is a common clinical practice to examine patients’ sleep characteristics via whole night
polysomnography records, which requires the individual to spend a full night in the facility.
On the other hand, investigation of sleep sounds also provides information about breathing
abnormalities, OSAS or other pathologies, such as upper airway resistance syndrome, and
supports health assessment (Jane et al 2003). It is possible to use sleep sound analysis and
polysomnography together. However, sleep sounds can easily be recorded in one’s own
sleeping environment and can be utilized alone as a preliminary source of information before
deciding on a polysomnographic study. Reliable diagnosis of the grade and peculiarities of
an individual’s snore and its possible implications on her/his health requires the analysis of
long (possibly whole night) sound recordings. The rate of snores, their regularity, intensity
variation and other audio qualities provide information to the clinician. The length of a
whole night recording is prohibitive for analysis by listening to and/or visual inspection of
signal patterns in audio recordings during sleep. Automatic methods are needed to speed up
the analysis task. Furthermore, possible objective measures of snoring characteristics may
serve clinicians as a common ground for diagnosis. Therefore, fast automatic snoring signal
analysis can be considered as a promising method to identify breathing abnormalities during
sleep.

Automatic analysis of snoring sounds can be associated at least with the following three
tasks: (i) identification of the source of snoring, e.g. palatal/nonpalatal, (ii) prediction of the
outcome of surgical treatment and (iii) simple snoring/OSAS classification (a simple snorer
can be defined as an individual having a snoring habit without having any kind of sleep apnoea).
Osborne et al (1999) and Hill et al (1999, 2000) proposed the use of the acoustic crest factor of
snoring episodes (the ratio of peak amplitude to root mean square value) to distinguish palatal
from nonpalatal snore. Jones et al (2005, 2006a, 2006b) used snore duration, snore loudness,
snore periodicity and subband energy levels as objective measures to assess the outcome of
surgical treatments. Abeyratne et al (2005) proposed the measure ‘intra-snore-pitch-jump’ to
diagnose OSAS. Sola-Soler et al (2003) studied the differences in spectral envelopes of simple
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and OSAS snores and suggested the standard deviation of formant frequencies as a criterion
for distinction among simple snores and OSAS snores. McCombe et al (1995) introduced a
measure of high frequency content (Hawke Index) for screening OSAS.

Detection of snoring episodes in a full-night recording of sleep sounds is a fundamental
step in all these tasks. Until recently, related studies were based on manual segmentation of
snoring episodes; there is a very limited amount of work on automatic detection. Abeyratne
et al (2005) used the energy and the zero crossing rate as the features in a minimum-probability-
of-error approach to identify snoring episodes. Energy and zero-crossing rate are commonly
used for audio signal activity detection; however, they are not known as having strong
discriminative capabilities in classification. Duckitt et al (2006) adopted speech processing
techniques for snore detection. Mel-frequency-cepstral coefficients (MFCCs) were used as
the features in a hidden Markov model (HMM) based classification framework. Speech is a
sequence of phonemes with evolutionary transitions (loose boundaries) from one to another.
The characteristics of a speech waveform in a transition segment between two phonemes may
deviate considerably more than those observed over the core segments of the neighbouring
phonemes. Phonemes are commonly modelled by three state HMMs in order to represent
initial, core and final segments distinctively. However, sleep sounds are of dominant discrete
nature. Furthermore, snoring sounds remain quite stationary over their intervals of existence.
These observations suggest the possibility of using computationally less intensive classification
approaches. MFCCs are very widely used in speech signal characterization, much more than
they are used with other types of audio signals. Sleep sound recordings contain not only
sounds produced by humans but also sounds from other sources. Therefore, sound feature
definition and classification methods in automatic snoring episode detection still appear as a
ground for exploration.

The motivation of this study was to develop an effective method to detect snoring episodes,
which is sufficiently fast to process full-night recordings in a reasonable amount of time. The
proposed method is a two-step process. Firstly, sound episodes, which can be defined as the
sound activity intervals, were identified and then these episodes were classified as snore or
nonsnore based on the characterization of the spectral energy distribution of snoring signals.
Spectral characterization involves subband decomposition in the frequency domain. The
dimensionality of subband decomposition was investigated via principal component analysis
(PCA). It is found that two-dimensional projection of subband decomposition yields a simple
classifier design to achieve strongly promising correct detection rates.

The data in this study contain full-night sleep sound recordings of 30 individuals while they
were also under polysomnographic recording in Gülhane Military Medical Academy Sleep
Studies Laboratory (GMMA-SSL), Ankara, Turkey. The episodes, taken from 30 patients
with different apnoea/hypopnea indices (AHI), are classified using the proposed algorithm.
In order to validate the system, the results are compared with the manual annotations of an
ENT specialist.

2. Materials and methods

2.1. Recording setup

A Sennhiser ME 64 condenser microphone with a 40–20 000 Hz ± 2.5 dB frequency response
was used for recording sounds. This microphone has a cardioid pattern which helps to suppress
some of the echoes from the environment. It was placed 15 cm over the patient’s head during
sleep. The signal was fed via a BNC cable to the Edirol UA-1000 model multi-channel data
acquisition system connected to a personal computer via universal serial bus. The computer
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Figure 1. 25 s long snoring signal.

Table 1. Number of individuals, their genders, average ages, AHIs and BMIs in OSA patients and
simple snorers. The ranges for age, AHI and BMI are also given.

Patient information OSA patients Simple snorers

Number of patients 12 18
Age 53.26 (44.87–61.65) 46.92 (40.21–53.63)
Gender 12 males, no females 16 males, 2 females
AHI (apnoea h–1) 39.21 (22.17–56.25) 4.29 (3.03–5.55)
BMI (kg m–2) 32.76 (27.47–38.05) 27.66 (23.41–31.91)

was placed outside the sleeping room to avoid its noise in the recording. The acquired signal
was digitized at a sampling frequency of 16 kHz with 16 bit resolution. The data were stored
in the computer together with the patient information. Figure 1 shows a 25 s long snoring
signal.

2.2. Snoring database

The database contains whole night sound recordings of 30 individuals taken in GMMA-SSL.
These individuals were also under polysomnographic recording during their whole night sleep
in order to determine their AHIs. Each recording has a duration of approximately 6 h. Among
the 30 individuals, 18 of them were simple snorers and 12 of them were diagnosed with
OSAS. The average values and ranges of the ages, AHIs and body mass indices (BMI) of these
individuals are given in table 1. The sound episodes were manually annotated by an ENT
(ear-nose-throat) specialist as snore or nonsnore to create the testing and training datasets
for the classification problem. The data were presented to the specialist before automatic
segmentation. The compositions of training and testing datasets are described in section 3.
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Figure 2. A signal sample (top), its energy pattern (middle) and its ZCR pattern (bottom).

2.3. Segmentation subsystem

The first step in snoring detection is to identify the intervals of sound activity. Energy and zero
crossing rate (ZCR), which are conventional measures for determining boundaries of sound
activity, were used to determine the boundaries of sound segments. Energies and ZCRs of
signal frames of length 100 ms, with 50 ms overlaps, are calculated. The energy, Ek , in the
kth frame of the signal is computed as

Ek =
N−1∑
i=0

s2
k [i] (1)

where sk [i] is the signal in the kth frame of length N samples. Figure 2 shows a sample
recording and the corresponding energy and ZCR patterns.

Sound activity episodes were determined in three steps. First, those frames for which
the energy and the ZCR values are above certain thresholds simultaneously were marked as
activity frames. Then, the starting and ending points of episodes were found by searching for
continuities of activity frames. Finally, those episodes separated by less than a certain duration
were merged.

The energy threshold, TE , was determined as

TE = min(I1, I2) (2)

where

I1 = a × [max(Ek) − min(Ek)] + min(Ek)

I2 = b × min(Ek).

The ZCR threshold, TZ , was determined as

TZ = c × ZC (3)
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Figure 3. Spectrogram of a sample recording.

where ZC is the average ZCR of snoring episodes in the training dataset. The values of
constants a, b and c were set experimentally (a = 0.02, b = 3, c = 0.3).

2.4. Classification of the episodes

Classification as snore or nonsnore of the sound episodes identified by the segmentation
subsystem was carried out in two steps. In the first step, spectral features are computed and
the feature space is reduced. In the second step, episodes are classified by finding a linear
boundary between the two classes. The developments of these steps are described in the
following two subsections.

2.4.1. Feature extraction. When the spectrograms of snoring sound waveforms and those of
other sound waveforms (cough, breath, sounds of vehicles/doors/animals, and sounds due to
the motion of the subject, etc) are examined, it is observed that the energy distributions differ
over the frequency spectrum. In particular, the spectra of snoring sounds have been observed
to exhibit a significant coherence while displaying discriminative characteristics relative to
other sounds’ spectral patterns. The spectrogram of a sequence of snoring and some other
sound episodes is shown in figure 3. The regularity of snoring episodes and their distinction
from some other sound patterns can be observed in this figure. The disparity of spectral energy
distributions among snoring and other sounds suggests the use of spectral features in order to
distinguish among snoring sounds and other waveforms.

The spectral features in this study have been obtained by dividing the 0–7500 Hz frequency
range into 500 Hz subbands and calculating the average normalized energy in each subband
for each episode. To cope with inter- and intra-patient variation of sound intensity the energy
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Figure 4. The eigenvalues of the covariance matrix sorted in descending order.

of each 500 Hz subband was normalized by the total energy of the episode. For the kth episode
consisting of Nk subframes (with each subframe containing 1600 samples), the ith element,
ξk
i , of its feature vector, ξk , is computed as

ξk
i =

∑Nk

j=1

∑500i
f =500(i−1) |y(j, f )|2∑Nk

j=1

∑7500
f =0 |y(j, f )|2

i = 1, 2, . . . , 15 (4)

where y(j, f ) is the short time Fourier transform (using the Hanning window) of the j th frame
of the episode.

The dimensionality of snoring sound feature vectors was studied via principal component
analysis. The principal components are found by first computing the covariance matrix, C, of
all snoring sound feature vectors, ξk , in the training database,

C = 1

K

∑
k

(ξ k − ξ̄ )(ξ k − ξ̄ )T , (5)

where ξ̄ is the mean of snoring feature vectors obtained from the training data set and K is
the total number of snoring feature vectors. The eigenvectors corresponding to the largest
eigenvalues of the covariance matrix are the basis vectors of the subspace. These eigenvectors
span the new classification space. By examining the eigenvalues of the covariance matrix (see
figure 4), it is seen that the largest two eigenvalues are much higher than the others. This
implies that two-dimensional classification subspace is sufficient for this problem.

New features can be computed by projecting the feature vectors onto this subspace. These
projection vectors are computed as

ξ̂ k =
[
xk

yk

]
= WT ξ k (6)

where the columns of W are the two eigenvectors corresponding to the largest two eigenvalues
of the covariance matrix. Figure 5 shows a typical distribution of two-dimensional projection
vectors of simple snorers. The figure includes all sound events (a total of 3978) of a whole
night recording from one subject. Two useful observations can be made. First, the projection
vectors obtained from snoring and other sound episodes are distributed almost in a completely
separable manner. Second, the projection vectors of snoring episodes are confined to an almost
linear strip.
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Figure 5. Typical distribution of two-dimensional projection vectors of simple snorers.

2.4.2. Finding the classification boundary by robust linear regression. The idea behind
the classification method is to identify the boundary separating the strip where snore vectors
are mainly clustered from the region where nonsnore vectors are distributed. The simplest
way would be to fit a straight line aligned with the strip and to define a range around this
line. However, the existence of outliers (sparsely distributed red crosses among green circles)
complicates the identification of this straight line. To overcome this difficulty robust linear
regression (RLR) was used (Holland and Welsch 1977). RLR attempts to minimize the effects
of outliers by a weighted least square formulation in which those samples yielding large errors
are weighted less.

Let ξ̂ k = [xk yk]T , k = 1, 2, . . . , K, be the projection vectors obtained from the training
set. The problem is to find the coefficients a and b in the equation yk = a xk + b such that

w1 [y1 − (ax1 + b)]2 + w2 [y2 − (ax2 + b)]2 + . . . + wN [yN − (axN + b)]2 (7)

is minimized. In this problem, the weight, wp, values depend on the coefficients a and b so
they are not known in advance. They have to be found together with the coefficients iteratively.
In general, to suppress the effect of outliers, a weight value wp decreases as |yp − (axp + b)|
increases. There are a number of weighting functions proposed for iterative solution in the
literature (Street et al 1988, Baryamureeba 2000). In this study, we used ‘bisquare function’
(Street et al 1988, Baryamureeba 2001) according to which wp at the kth iteration is defined
as

wp,k = |rp,k−1|
(
1 − r2

p,k−1

)2
(8)

where rp,k is

rp,k = pth residual in the kth iteration

tune × s × √
1 − hp,k

(9)

where hp,k is the leverage value from the least squares fit for the pth weight, s is an estimate of
the standard deviation of the error term and the constant ‘tune’ is used to adjust the sensitivity
to the distance between data points and the regression line in the computation of weight values
(tune = 4.685).
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Figure 6. The distribution of snore and nonsnore data, the illustration showing line fit according
to robust linear regression and the classification boundary line.

After fitting a line to the snore train data, a parallel line at some distance below is
determined empirically and is used as the classification boundary between snore and nonsnore
episodes. Figure 6 shows the distribution of snore and nonsnore data, the line fit according to
robust linear regression and the classification boundary line.

3. Experiments and results

Figures 7 and 8 depict the detection of snoring episodes of two simple snorers. Figure 9 shows
the detection of snoring episodes of an OSA patient. Sound activity segments identified by
the system are shown in rectangular pulses. Then, those which are classified as snore episodes
are marked by a second rectangular pulse above the first one. In these figures, we show parts
of recordings where there are no false negatives (i.e., missed snore episodes) and no false
positives (i.e., nonsnore episodes marked as snore).

Three different experiments were performed:

(1) Snore detection tests for only simple snorers (Exp-1). The individuals in the training and
testing datasets are different. The training dataset contains 300 randomly selected snoring
episodes from each of 12 simple snorers (a total of 3600 snoring episodes). The testing
dataset was composed of 6 simple snorers. For each of these subjects a randomly selected
recording interval containing 300 snoring episodes was included in the testing dataset.
Random selection of episodes means that they have been chosen by the observer with no
specified rule.

(2) Snore detection tests for both simple snorers and OSA patients (Exp-2A). The individuals
in the training and testing datasets are the same; however, the recording intervals in each
of these datasets are different. The first half of the recordings (first 3 h) was used to
compose the training dataset and the second half (the last 3 h) to compose the testing
dataset. The training dataset contains 150 randomly selected snoring episodes from each
of the 30 subjects. The testing dataset contains a randomly selected recording interval
that includes 150 snoring episodes from each of the 30 subjects.
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Figure 7. Detection of snoring episodes that belong to a simple snorer. Sound activity segments
identified by the system are shown in rectangular pulses. Those which are classified as snore
episodes are marked by a second rectangular pulse above the first one.

breath cough breathbreath breath 

Figure 8. Output of the detection system to a cough episode. Sound activity segments identified
by the system are shown in rectangular pulses. Those which are classified as snore episodes are
marked by a second rectangular pulse above the first one.

Figure 9. Detection of snoring episodes taken from an OSA patient. Sound activity segments
identified by the system are shown in rectangular pulses. Those which are classified as snore
episodes are marked by a second rectangular pulse above the first one.

(3) Snore detection tests for both simple snorers and OSA patients (Exp-2B). The individuals
in the training and testing datasets are different. Each dataset involves 9 simple snorers
and 6 OSA patients (two disjoint datasets of 15 subjects). The training dataset contains
300 randomly selected snoring episodes from each of 15 training subjects (a total of 4500
snoring episodes). For each of the 15 subjects in the testing dataset, a randomly selected
recording interval containing 300 snoring episodes was included in the testing dataset.

Table 2 summarizes the compositions of the testing and training datasets in these
experiments.

The results of Exp-1, Exp-2A and Exp-2B are shown in tables 3–5, respectively. The
numbers of true positive (TP), false negative (FN), true negative (TN) and false positive (FP)
detections are given in these tables. Detection performance was evaluated in terms of accuracy,
which is defined as 100 × TP/(TP + FN), and the positive predictive value (PPV), which is



An efficient method for snore/nonsnore classification of sleep sounds 851

Table 2. Compositions of testing and training datasets in the experiments.

EXP-1 EXP-2A EXP-2B

Training Testing Training Testing Training Testing

Simple 12 subjects 6 subjects 18 subjects 18 subjects 9 subjects 9 subjects
snorers 3600 snoring 1800 snoring 2700 snoring 2700 snoring 2700 snoring 2700 snoring

episodes episodes episodes episodes episodes episodes
OSA – – 12 subjects 12 subjects 6 subjects 6 subjects

patients 1800 snoring 1800 snoring 1800 snoring 1800 snoring
episodes episodes episodes episodes

Table 3. Results of Exp-1.

TP FN TN FP Accuracy PPV

Simple snorers 1752 48 1917 6 97.3% 99.6%

Table 4. Results of Exp-2A.

TP FN TN FP Accuracy PPV

Simple snorers 2505 195 2743 19 92.8% 99.2%
OSA patients 1607 193 1855 87 89.2% 94.8%

Table 5. Results of Exp-2B.

TP FN TN FP Accuracy PPV

Simple snorers 2438 262 2636 32 90.2% 98.7%
OSA patients 1564 236 1859 103 86.8% 93.8%

defined as 100×TP/(TP + FP). All performance figures were computed with reference to the
manual annotations.

The following observations can be made in the detection of snores of simple snorers. The
best detection performance was achieved in Exp-1 where both the training and the testing
datasets contain only simple snorers. Accuracy dropped by 4.6% (from 97.3% to 92.8%) in
Exp-2A where snores of OSA patients were included in the training dataset, even though the
testing and training datasets are obtained from the same individuals. Accuracy dropped by
7.3% in Exp-2B (from 97.3% to 90.2%). On the other hand, PPV values are in general higher
than, and do not decrease as much as, the accuracy values in this sequence of experiments.

In the detection of snores of OSA patients, accuracy and PPV values are less than those of
the simple snorers. However, the accuracy values in Exp-2A and Exp-2B are still high enough
(89.2% and 86.8%, respectively) to be considered for clinical applications.

In these experiments, it has been found that the average snore episode duration is about
1.7 s for both simple snorers and OSA sufferers. The average of absolute values of snore
duration errors (automatically found duration − manually found duration) is 0.05 s (3.32%)
for simple snorers; this figure is 0.07 s (4.3%) for OSA cases. Both of these errors are
significantly small compared to the average duration of snoring episodes, especially in the
context of the targeted use of the results (such as snore intensity variation, ratio of total snore
time to total sleep time).
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4. Discussion and conclusion

In this study, we proposed a new algorithm to detect snoring episodes from the sleep sound
recordings. The algorithm classifies sleep sound segments as snores and nonsnores according
to their subband energy distributions. It was observed that inter- and intra-individual spectral
energy distributions of snore sounds show significant similarities. This observation motivated
the representation of the feature vectors in a lower dimensional space which was achieved using
principal component analysis. Sleep sounds have been efficiently represented and classified as
snore or nonsnore in a two-dimensional space. The proposed system was tested by using the
manual annotations of an ENT specialist as a reference. The accuracy for simple snorers was
found to be 97.3% when the system was trained using only simple snorers’ data. It dropped
to 90.2% when the training data contain both simple snorers’ and OSA patients’ data. (Both
of these results were obtained by using training and testing sets of different individuals.) This
suggests that, in a practical setting, the individual can first be roughly identified as a simple
snorer or OSA patient using a composite training dataset and then the results can be refined
by using a system trained with the specific type of data. In the case of snore episode detection
with OSA patients, the accuracy was 86.8%. All these results can be considered as acceptable
values to use the system for clinical purposes including the diagnosis and treatment of OSAS.

The tests were carried out on a dataset formed by the 6 h recordings of 30 individuals (18
simple snorers and 12 OSA patients). The size of this dataset can be assumed to be sufficient
for the reliability of the results of the particular binary classification problem.

The information, such as total snoring time, snore-to-sleep ratio, variation of snoring rate
and regularity of snoring episodes in time and in amplitude, may be useful for the diagnosis of
sleep disorders. These kinds of information can be obtained by detecting snore episodes. This
fact and the need for a reasonable processing time of night-long recordings justify a binary
classification scheme as snore or nonsnore. It takes 6 min to process 6 h of data (whole night
sleep recording) sampled at 16 kHz. This can be considered as a reasonable processing time
for night-long recordings.

The classification boundary in this work was found heuristically. It may be possible to
improve the performance by using boundaries generated in a more systematic and optimal
manner via large margin classification methods such as support vector machines (Bartlett
et al 2000).

It has been found that the first three subbands dominate the formation of the two-
dimensional feature vectors obtained by PCA. Therefore, it may be possible to perform
the classification task with similar performance by using only the first three subbands without
projection operation and provide computational saving.

The method proposed here has been used to develop a tool for the ENT clinic of GMMA-
SSL. It provides information for objective evaluation of sleep sounds (Cavusoglu et al 2007).
The tool can be used to support clinicians in the following tasks:

• identification of sleep disorders such as simple snoring or OSAS;
• evaluation of the treatment effectiveness of sleep disorders by comparison of snore

statistics obtained before and after treatment;
• studying the relationship between the nightlong recordings of physiological signals

(polysomnography) and corresponding snoring profiles, e.g., the relationship between
sleep stages and snore characteristics.

Future work includes identification of the physiological sources, such as palatal/
nonpalatal, of snoring to guide the treatment strategy. Currently, data collection is being
carried out for this purpose.
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