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Abstract: Wireless Mesh Networks (WMNs) are increasingly being used in a variety of applications.
To fully utilize the network resources of WMNs, it is critical to design a topology that provides
the best client coverage and network connectivity. This issue is solved by determining the best
solution for the mesh router placement problem in WMN (MRP-WMN). Because the MRP-WMN
is known to be NP-hard, it is typically solved using approximation algorithms. This is also why
we are conducting this work. We present an efficient method for solving the MRP-WMN using
the Multi-Verse Optimizer algorithm (MVO). A new objective function for the MRP-WMN is also
proposed, which takes into account two important performance metrics, connected client ratio and
connected router ratio. Experiment results show that when the MVO algorithm is applied to the
MRP-WMN problem, the connected client ratio increases by 15.1%, 11.5%, and 5.9% on average, and
the path loss reduces by 1.3, 0.9, and 0.6 dB when compared to the Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA), respectively.

Keywords: mesh router placement; multi-verse optimizer algorithm; wireless mesh network;
network design

1. Introduction

Wireless communication is now one of the most common solutions in network tech-
nology. At the access layer, WMNs are commonly used in the local area networks of
government agencies, businesses, schools, and hospitals, etc. [1,2]. Figure 1 depicts the
general architecture of the WMN, in which nodes are connected via a wireless transmission
channel to form a mesh topology. Mesh client (MC), mesh router (MR), and mesh router
with gateway (MR/GW) are the three types of nodes in the WMN. To access the internet,
the MCs connect to the MRs or MR/GWs via a wireless communication medium.

To improve the performance of WMNs, it is essential to study architectures, models, and
network topologies. Many research groups have recently completed this [3–8], where the
MRP-WMN has become an important topic. Because this problem is known as NP-hard [9], con-
ventional algorithms cannot solve it. As a result, the MRP-WMN problem can only be solved by
approximation optimization algorithms, such as heuristic and meta-heuristic [3,4,10,11]. The ma-
jority of published papers consider the MRP-WMN problem in two ways, stationary mesh router
placement [10,12–14] and dynamic mesh router placement based on client mobility [15–18]. The
Coyote Optimization Algorithm (COA) was used by the authors of [3] to solve the MRP-WMN
problem. Their proposed algorithm simultaneously optimized two important performance
metrics, network connectivity and user coverage. The authors demonstrated that the proposed
algorithm outperforms other well-known optimization algorithms using a Matlab simulation
method. Although the work in [3] has significantly improved network connectivity and user
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coverage metrics, this work has not yet considered connectivity to the gateway of mesh routers.
This is a requirement for covered users to access the internet. As a result, the proposed algorithm
in [3] is only appropriate for WMN peer-to-peer network models, such as mobile ad hoc net-
work (MANET), which are only concerned with data transmission between users. The authors
of [10] used the algorithm accelerated PSO algorithm (APSO) to solve MRP-WMN. The APSO
algorithm was chosen for this project because of its fast convergence and low computational
complexity. In terms of coverage and connectivity, simulation results using the C and MATLAB
programming languages show that the APSO algorithm outperforms the linearly decreasing
weight particle swarm optimizer (LDWPSO) algorithm [19]. By optimizing the metrics of the
coverage and connectivity, the authors of [11] have proposed an optimal algorithm, namely
the Chemical Reaction Optimization algorithm (CRO), to solve the MRP-WMN. The CRO
algorithm is inspired by the interactions between molecules in chemical reactions to reach a
low, stable energy state. Simulation results show that their proposed algorithm can improve
client coverage and network connectivity compared to the GA algorithm. In [20], the authors
have proposed a Genetic Algorithm in addition to the approach that was derived from the circle
packing problem. Their proposed algorithm has two goals, maximizing network connectivity
as well as coverage area. The testing findings demonstrated the effectiveness of their approach
in generating high-quality and appropriate mesh router node placement solutions in WMN.
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Figure 1. The general architecture of the WMN [21].

Another study utilized a genetic algorithm and simulated annealing to find a low-cost
WMN configuration while satisfying constraints and figuring out how many gateways
were needed [22]. The performance of the genetic algorithm and simulated annealing
in decreasing WMN network expenses while maintaining quality of service (QoS) was
demonstrated in experiments. The new models are shown to outperform existing solutions
significantly. In [23], the QoT was also considered in the MPR-WMN problem. The authors
have presented a novel particle swarm optimization approach to maximize both network
connectivity and client coverage. The QoS constraints of this work are delay, relay load,
and Internet gateway capacity.

We concluded from our review of the above publications that approximation opti-
mization methods can be employed effectively to solve the MRP-WMN problem. We
continue to develop this research topic in this paper. Using the Multi-Verse Optimizer
algorithm (MVO), we provide an efficient technique for solving the MRP-WMN problem.
The following are the primary contributions of this paper:
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• Proposed an efficient method for solving the RNP-WMN problem using an MVO
algorithm to improve the percentage of covered clients under the connection constraint
to the gateway.

• Formulate a multi-objective function for the RNP-WMN problem to simultaneously
maximize two important performance metrics, namely connected client ratio and
connected router ratio.

• Evaluation and comparison of the performance of the MVO algorithm with algorithms
PSO, WOA and GA in solving RNP-WMN problem.

The next sections of this paper are organized as follows. Section 2 describes the
formulation of the RNP-WMN problem. Section 3 presents the MVO algorithm and its
application to solve the RNP-WMN problem. Section 4 presents the simulation results and
discussion. Finally, concluding remarks and promising future study items are given in
Section 5.

2. RNP-WMN Problem

To provide clarity in formulating the RNP-WMN problem, we first list the important
notation used for the problem formulation, which is shown in Table 1.

Table 1. The notation used for formulating the node placement problem in the WMN.

Notation Description

m Number of mesh routers
n Number of mesh clients
k Number of gateway routers
ri The i-th mesh router
R = {r1, r2, . . . , rm} Set of mesh routers
ci The i-th mesh client
C = {c1, c2, . . . , cn} Set of mesh clients
rgwi The i-th gateway router
GW = {rgwi , rgw2 , . . . , rgwk} Set of gateway routers
V = R ∪ C ∪ GW Set of mesh nodes
E Set of links between mesh nodes
G = (V, E) Undirected graph topology describes WMN
Ψ(G) Connected router ratio
Γ(G) Connected client ratio
dCR Coverage radius of mesh routers
W The width of the WMN area
H The height of the WMN area
λ Parameters control the metrics

2.1. System Model

Mathematically, a WMN can be represented as an undirected graph with the formula
G = (V, E), where V represents the set of network nodes and E represents the set of
wireless links connecting these nodes. The WMN has three different types of nodes: mesh
routers, mesh clients, and gateway routers. The following is a representation of these nodes:

• R = {r1, r2, . . . , rm} the set of mesh routers. The coverage radius of each mesh router
is a dCR meter. Two mesh routers ri and rj can be connected by a wireless link if and
only if the distance between them is less than or equal to twice the coverage radius. i.e.,
d(ri, rj) ≤ 2dCR, where d(ri, rj) is the distance between routers ri and rj, determined by

d(ri, rj) =
√
(xri − xrj)

2 + (yri − yrj)
2 (1)

with pairs (xri , yri ) and (xrj , yrj) are the coordinates of the mesh routers ri and rj,
respectively.
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• C = {c1, c2, . . . , cn} is the set of mesh clients. If the client ci is within the coverage area
of the router ri (i.e., d(ci, ri) ≤ dCR), a wireless link exists between ci and ri. In case a
client is within the coverage area of many routers, it will connect to the nearest router

• GW = {rgw1 , rgw2 , . . . , rgwk} is the set of gateway routers. In real network models, the
mesh routers can connect to the gateway routers by a wired or wireless transmission
medium. In the context of this work, the wireless transmission medium is used to
connect them. If the mesh router ri is in the coverage area of the gateway router rgwj ,
there is a wireless link that connects ri and rgwj . In this case, the mesh router ri acts as
a mesh router with a gateway (as we describe the principle of WMN in Figure 1).

2.2. Problem Formulation

Consider a WMN in a 2D area of dimensions W × H, where the number of mesh
routers, mesh clients and gateway routers are m, n and k, respectively. The RNP-WMN prob-
lem is stated as finding the optimal set of locations for m mesh routers (set {(xri , yri )|∀ri ∈
R}, as defined in Table 1), depending on the given set of locations of mesh clients. To
formulate this problem, we first define some concepts.

2.2.1. Connected Router

The mesh router ri is a connected router if and only if there exists a path from it to at
least one gateway router in the WMN.

To better understand the concepts of connected routers, consider the example shown
in Figure 2, where a WMN consists of 18 mesh routers, 30 mesh clients and 1 gateway
router (rgw), located in an area of 2000 × 2000 meters. For the current state, mesh routers
r2, r3, r4, r5, r6, r8, r9, r10, r11, r12, r13, r14, r15, r16 and r18 are connected routers because there
are paths from these mesh routers to the gateway router (rgw). The mesh routers r1,
r7 and r17 are not connected routers because there is no path from these routers to the
gateway router.
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Figure 2. An example of the topology of the WMN.
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2.2.2. Connected Router Ratio

The connected router ratio is defined as the ratio of the number of connected routers
to the number of routers in a WMN, calculated by

Ψ(G) =
∑m

i=1 αri

m
× 100(%) (2)

where m is the number of mesh routers, αri is a variable that indicates whether router ri is a
connected router or not, defined as follows

αri =

{
1 if ri is a connected router
0 otherwise

(3)

2.2.3. Connected Client

The mesh client ci is a connected client if and only if it is covered by at least one
connected router.

Going back to the example in Figure 2, we can observe that client c9 is a connected
client because it is covered by the connected router r2. The client c20 is also a connected
client because it is covered by the connected router r4. However, clients c1, c5, c6, c8, c15,
c21, c22, c26 and c30 are not connected clients because they are not covered by any connected
router. Although clients c4, c7, c12, c16 and c25 are covered by routers r1 and r7, these clients
are also not connected clients because routers r1 and r7 are not connected routers.

2.2.4. Connected Client Ratio

The connected client ratio is defined as the ratio of the number of connected clients to
the number of clients in a WMN, calculated by

Γ(G) =
∑n

i=1 βci

n
× 100(%) (4)

where n is the number of mesh clients, βci is a variable that indicates whether client ci is a
connected client or not, defined as follows

βci =

{
1 if ci is a connected client
0 otherwise

(5)

The main goal of the RNP-WMN problem is to find the set of locations for m mesh
routers (set {(xri , yri )|∀ri ∈ R}) so that the network performance is the best. In this work,
we focus on optimizing two important performance metrics, namely connected router ratio
(Ψ(G)) and connected client ratio (Γ(G)), as defined in Sections 2.2.2 and 2.2.4, respectively.
Since the larger Ψ(G) and Γ(G) metrics, the better the network performance, the RNP-
WMN problem is formulated as follows:{

Maximize Ψ(G)

Maximize Γ(G)
(6)

subject to the following constraints:

0 < xri < W (7)

0 < yri < H (8)

where W and H are the width and the height of the WMN area, respectively.
The RNP-WMN problem as defined in (6) can be solved by optimization algorithms.

In this work, we apply the Multi-Verse Optimizer Algorithm (MVO) to solve it, and more
information is provided in the following sections.
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3. MVO Algorithm and Its Application to Solve the RNP-WMN Problem
3.1. MVO Algorithm

Mirjalili et al. proposed the Multi-Verse Optimizer Algorithm (MVO), a nature-
inspired algorithm [24]. The MVO method is founded on three cosmological ideas: white
holes, black holes, and worm holes. It employs exploration, exploitation, and local search
to find the best answer among a large number of candidate solutions.

The multi-verse theory, which emerged after the Big Bang theory, inspired MVO. The
Big Bang theory states that there was a massive explosion that resulted in the existence of
the universe we live in. According to the multi-verse theory, there were multiple big bangs,
each of which resulted in the existence of a different universe. As a result, multi-verse
believes that there are other universes besides the one we live in. Furthermore, according
to the multi-verse theory, these universes can interact and collide with one another, and
each universe has its own set of properties.

MVO was primarily inspired by three concepts from multi-verse theory: white holes,
black holes, and wormholes. White holes have never been observed, but physicists believe
they can be explained by the big bang or collisions between parallel universes. Black holes
attract everything due to their strong gravitational pull. Finally, wormholes connect all
parts of the universe and serve as a time/space tunnel through which objects can travel.
The original MVO paper mentioned that every universe has an inflation rate that causes
space to expand.

MVO is a population-based algorithm that searches in two stages: exploration and
exploitation. The MVO algorithm considers solutions to be universes and variables within
a solution to be variables within a universe, where d represents the number of objects,
n represents the number of universes, Xbest

j is the j-th parameter of the best universe
formed so far, the TDR factor is calculated by Equation (10), the WEP factor is calculated
by Equation (9), lbj shows the lower bound of the j-th variable, ubj is the upper bound of

the j-th variable, xj
i indicates the j-th parameter of the i-th universe, and rand2, rand3, rand4

are random numbers in [0, 1]. Equations (11) and (12) are used to update the universes. In
addition, each universe is given an inflation rate (Ui) based on the fitness function value
for that universe, NI(Ui) is the normalized inflation rate of the ith universe. The MVO
algorithm is demonstrated in Algorithm 1.

WEP = min + t× (
max−min
Max_iter

) (9)

TDR = 1− (
t

Max_iter
)

1
p (10)

xj
i(t + 1) =

{ xj
k(t), rand1 < NI(Ui)

xj
i(t), rand1 ≥ NI(Ui)

(11)

xj
i =

{ Xbest
j + TDR× ((ubj − lbj)× rand4 + lbj), rand3 < 0.5

Xbest
j − TDR× ((ubj − lbj)× rand4 + lbj), otherwise

(12)
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Algorithm 1: The pseudo-code of the MVO algorithm
Input: Initial parameters
Output: Optimal solution
Initialize universe population considering upper bound and lower bound
t = 0
while t <= Max_iter do

Calculate the fitness of each universe in the population
Sorted_U is assigned by sorted universes
Update best universe Xbest

for each universe i do
Update WEP and TDR by Equations (9) and (10), respectively.
for each object j do

Generate two random numbers rand1 and rand2 in [0,1]
if rand1 < NI[Ui] then

Obtain While_hole_index by Roulette Wheel Selection operator
Update xj

i using Equation (11)

if rand2 < WEP then
Generate two random numbers rand3 and rand4 in [0,1]
Update xj

i using Equation (12)

t++

3.2. Application of the MVO Algorithm to Solve the RNP-WMN Problem
3.2.1. Solution Presentation

Each solution to the mesh routers placement problem in WMN is a set of m coor-
dinates corresponding to m locations to place m routers. In this paper, we use an array
X = {x1, y1, x2, y2, . . . , xm, ym} to represent the found solution, where the pair (xi, yi) is the
locations of the mesh router ri. For example, consider a solution obtained as in (13):

X = {100, 100, 200, 150, 250, 300, 400, 150, 350, 400}, (13)

This solution is the placement positions of five routers r1, r2, r3, r4 and r5 at coordinates
(100, 100), (200, 150), (250, 300), (400, 150) and (350, 400), respectively. The locations of these
routers are illustrated in Figure 3.

0 100 200 300 400 500
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100
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300

400

500

r1

r2

r3

r4

r5

Figure 3. An example of the solution presentation.

3.2.2. Objective Function

In this work, we focus on optimizing two important performance metrics, namely
CRR and CCR, as defined in Sections 2.2.2 and 2.2.4, respectively. To solve two maximize
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objectives functions, this research combines two maximize objectives functions to minimize
a single objective function by the following formula:

f (X) = 1− (λΨ(G) + (1− λ)Γ(G)) (14)

where λ is a coefficient in the range [0, 1], which is used to control the optimal degree
of metrics.

4. Performance Evaluation by Simulation
4.1. Simulation Scenarios

The performance of the MVO algorithm in solving the mesh router nodes placement
problem is evaluated by a simulation using MATLAB. The setup of the MVO algorithm
to solve this problem is presented in Table 2. The MVO algorithm is compared with the
algorithms of GA [25], WOA [26] and PSO [27] in terms of user coverage, router connectivity,
objective function value and coverage intensity. All experiments are performed on a Core
i7 CPU 3.3 Ghz-CPU machine. Tables 3 and 4 present the simulation assumptions, with
Table 3 presenting the individual parameters for each algorithm and Table 4 presenting the
common parameters for all four algorithms. We set up many different scenarios for cases
where the number of mesh clients and mesh routers is different. Mesh clients are randomly
distributed in the simulation area. In addition, there is a gateway router placed at a given
location. This is the router of the internet service provider, and it acts as the gateway for the
mesh client to access the internet. To ensure the same comparison condition, the position set
of mesh clients and gateway router is the same for all algorithms. Each simulation scenario
is run 30 times, and we use the average results of all times presented in this section.

Table 2. Settings of the MVO algorithm for the RNP-WMN problem.

MVO Algorithm RNP-WMN Problem

Search space WMN deployment area of dimensions W × H

Universe Position of routers

Solution (Xbest) Set of optimal mesh routers locations

Inflation rate of universal Objective function value

The results presented in Figure 4 are examples of the WMN topologies obtained by
applying the GA, PSO, WOA and MVO algorithms for the mesh router’s node placement.
In these cases, the number of mesh routers and mesh clients is 15 and 100, respectively. The
circles with the center of a mesh router represent the coverage of that mesh router. The
solid lines between two mesh routers or a mesh router and a mesh client indicate that these
routers and clients are within the transmission area of each other. The results in Figure 4
have shown that the obtained network topology can be different depending on the optimal
algorithm applied to place the mesh routers.

Table 3. The parameters of algorithms.

Algorithm Parameter Setting

MVO
Universes number 50
WEP Increase from 0.2 to 1
TDR Decrease from 0.6 to 0

WOA Search-agent Number 50
a Decrease from 2 to 0

GA
Population size 50
Crossover Rate 0.7
Mutation Rate 0.01
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Table 3. Cont.

Algorithm Parameter Setting

PSO

Population size 50
c1 2
c2 2
Inertia weight 1
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Figure 4. The network topologies of WMN obtained using algorithms MVO, WOA, GA and PSO.
(a) GA. (b) PSO. (c) WOA. (d) MVO.
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Table 4. Simulation parameters.

Parameters Setting

n [100, 300] nodes

m [10, 50] nodes

k 1 node

W 2000 m

H 2000 m

dCR [50, 200] m

λ [0, 1]

Number of run 30

Number of iteration 1000

4.2. Performance Metrics and Network Instances

In our simulation models, the metrics of the connected client ratio (CCR), path loss and
objective function value are used to evaluate and analyze the performance of GA, WOA,
PSO and MVO algorithms in solving the mesh router node placement problem. The CCR is
determined according to (4). Path loss (PL) is the signal power loss over the transmission
medium. In the context of this paper, the free space transmission medium is considered for
WMN, and the PL is defined as follows [28]:

PL (dB) = 10log10

[(4π fcd
c

)2]
(15)

where fc is the carrier frequency, c is the speed of light (' 3× 108 m/s) and d is the distance
between the transmitter and the receiver. In this paper, we focus on analyzing the PL
between the mesh client and the nearest mesh router.

These performance metrics are evaluated through eight network instances (INS-1 to
INS-8), as described in Table 5. The network instances of INS-1 to INS-2, INS-3 to INS-4 and
INS-6 to INS-8 are used to evaluate the effect of the number of mesh routers, the number
of mesh clients and the coverage radius of the mesh routers on network performance,
respectively.

Table 5. Network instance use for simulation

Instance m (Routers) n (Clients) CR (m)

INS-1 [10, 45] 150 200

INS-2 [10, 45] 350 200

INS-3 30 [50, 400] 200

INS-4 45 [50, 400] 200

INS-5 30 150 [100, 300]

INS-6 30 350 [100, 300]

INS-7 45 150 [100, 300]

INS-8 45 350 [100, 300]

4.3. Impact of the Number of Mesh Routers

The results obtained in Figure 5 show the effect of the number of mesh routers on CCR,
where we plot the CCR as a function of the number of the mesh routers. These results are
obtained when executing INS-1 and INS-2. We can observe that the higher the number of
mesh routers, the higher the CCR for all algorithms, where the CDR is the best for the case
of the MVO algorithm. For example, consider the INS-1 (Figure 5a) with 30 mesh routers;
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the CCRs when using algorithms MVO, WOA, GA and PSO are 89.1%, 74.4%, 77.5% and
83.9%, respectively. Thus, the CCR of algorithm MVO is greater than that of algorithms
WOA, GA and PSO by 14.7%, 11.6% and 5.2%, respectively. For the INS-2 (Figure 5a),
the CCR is smaller than INS-1 due to the larger number of clients (350 clients). However,
algorithm MVO always yields higher CCR than other algorithms. The details of the CCR
values when executing INS-1 and INS-2 are shown in Table 6.
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Figure 5. Performance comparison of the CCR versus the number of routers. (a) INS-1. (b) INS-2.

Table 6. Performance comparison of the number of connected clients and CCR when executing INS-1
and INS-2.

Instance n
Number of Connected Clients Connected Client Ratio (%)

MVO WOA GA PSO MVO WOA GA PSO

INS-1

10 67.4 55.4 57.0 63.7 44.9 36.9 38.0 42.4
15 91.7 74.0 75.2 87.7 61.1 49.3 50.2 58.5
20 108.4 88.7 93.0 105.0 72.3 59.2 62.0 70.0
25 124.0 103.3 108.4 116.3 82.7 68.9 72.3 77.5
30 133.7 111.6 116.3 125.9 89.1 74.4 77.5 83.9
35 140.1 120.2 129.5 131.8 93.4 80.1 86.3 87.9
40 145.1 129.2 135.4 137.7 96.8 86.1 90.2 91.8
45 147.5 134.0 139.4 139.2 98.4 89.3 93.0 92.8

INS-2

10 146.9 119.3 121.5 136.4 42.0 34.1 34.7 39.0
15 200.9 157.9 163.5 185.9 57.4 45.1 46.7 53.1
20 245.6 197.9 207.9 231.4 70.2 56.6 59.4 66.1
25 285.9 229.8 240.4 261.0 81.7 65.6 68.7 74.6
30 314.3 261.3 270.9 292.0 89.8 74.7 77.4 83.4
35 330.5 279.4 290.3 310.2 94.4 79.8 83.0 88.6
40 341.0 299.5 312.7 326.2 97.4 85.6 89.4 93.2
45 344.9 314.9 325.5 329.9 98.5 90.0 93.0 94.3

Next, we analyze the PL in WMN. As described in the previous section, PL is the signal
power loss between the mesh client and the nearest mesh router, calculated according to (15).
This is an important performance measure that greatly affects the quality of transmission
(QoT) in WMN. The smaller the PL, the better the QoT. The results obtained in Figure 6
show the average PL in the entire network when executing INS-1 and INS-2 simulations.
We can observe that the higher the number of mesh routers, the smaller the average PL
for all algorithms, where the average PL is the best for the case of the MVO algorithm.
This is because the larger the number of mesh routers, the higher the CCR (as analyzed in
Figure 5), leading to a decrease in the average distance from the mesh client to the nearest
mesh router. As a result, the average PL decreases. Comparing INS-1 (Figure 6a) and INS-2
(Figure 6a), we can observe that INS-1 performs better than INS-2 in terms of average PL.
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In other words, when the number of mesh clients is moderate (150 for this case), the QoT in
the whole network is better than that of the case where the number of mesh clients is heavy
(350 for this case). Comparing between four algorithms, MVO algorithm always gives the
best QoT, and the difference in average PLs compared to algorithms WOA, GA and PSO
are about 1.3, 0.9 and 0.6 dB, respectively.

The box plots in Figure 7 show the distribution of PL values for all clients. These results
are obtained through INS-1 and INS-2 simulations with 40 mesh routers. We can observe
that the MVO algorithm gives better PL than other algorithms for both INS-1 and INS-2.
Considering the results of INS-1 (Figure 7a), the PL of the MVO algorithm ranges from
70.4 to 86.1 dB. In addition, there are four outliers of 55.1, 63.5, 68.8 and 69.1 dB. Meanwhile,
the PL of algorithms WOA, GA and PSO range from 70.8 to 89.7 dB, 72 to 92 dB and 72 to
94.7 dB, respectively. There are also some outliers between 60.5 and 71 dB. Thus, the PL of
the MVO algorithm is better than that of the WOA, GA and PSO algorithms.
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Figure 6. Performance comparison of the path loss versus the number of routers. (a) INS-1. (b) INS-2.
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Figure 7. PL comparison of the algorithms MVO, WOA, GA and PSO. (a) INS-1 with 40 mesh routers.
(b) INS-2 with 40 mesh routers.

4.4. Impact of the Number of Mesh Clients

In this section, we analyze the effect of the number of mesh clients on the performance
of the mesh routers placement algorithms in WMN. The charts in Figure 8 show the
CCR when executing INS-3 and INS-4 with 30 and 45 mesh routers, respectively. The
number of mesh clients is varied from 50 to 400. We can observe that for GA and PSO
algorithms, the CCR decreases with the increase in the number of mesh clients. For MVO
and WOA algorithms, as the number of mesh clients increases, the CCR changes only
slightly. Comparing four algorithms, the MVO gives the best CCR for both INS-3 and INS-4.
Consider an example in INS-3 (Figure 8a) with 300 mesh clients, the CCRs when using
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algorithms MVO, WOA, GA and PSO are 89.5%, 74.4%, 78.0% and 83.6%, respectively.
Thus, the CCR of algorithm MVO is greater than that of algorithms WOA, GA and PSO
by 15.1%, 11.5% and 5.9%, respectively. For the INS-4 (Figure 8b), the CCR is greater than
INS-3 due to the larger number of mesh routers (45 routers for this instance). Specifically,
algorithm MVO yields higher CCR than other algorithms. The details of the CCR values
when executing INS-3 and INS-4 are shown in Table 7.
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Figure 8. Performance comparison of the CCR versus the number of clients. (a) INS-3. (b) INS-4.

Table 7. Performance comparison of the number of connected clients and CCR when executing INS-3
and INS-4.

Instance n
Number of Connected Clients Connected Client Ratio (%)

MVO WOA GA PSO MVO WOA GA PSO

INS-3

50 46.2 40.3 41.9 42.6 92.3 80.6 83.9 85.2
100 90.8 79.3 83.2 81.9 90.8 79.3 83.2 81.9
150 132.5 113.1 122.0 125.9 88.3 75.4 81.3 83.9
200 178.6 149.9 157.8 169.9 89.3 75.0 78.9 85.0
250 220.7 181.0 190.5 206.7 88.3 72.4 76.2 82.7
300 268.6 223.2 234.0 250.9 89.5 74.4 78.0 83.6
350 314.9 253.4 263.2 292.8 90.0 72.4 75.2 83.6
400 360.1 291.6 292.3 333.1 90.0 72.9 73.1 83.3

INS-4

50 49.8 47.4 48.6 47.4 99.7 94.7 97.2 94.8
100 98.7 93.0 95.3 95.1 98.7 93.0 95.3 95.1
150 146.5 134.9 136.0 138.6 97.7 89.9 90.7 92.4
200 196.4 179.9 189.9 188.5 98.2 89.9 94.9 94.3
250 246.0 221.3 233.8 230.4 98.4 88.5 93.5 92.1
300 294.6 268.0 279.5 270.0 98.2 89.3 93.2 90.0
350 343.9 311.9 325.3 315.1 98.2 89.1 92.9 90.0
400 391.6 353.0 361.1 351.7 97.9 88.3 90.3 87.9

For the impact of the number of mesh clients on the PL, the simulation results are
shown in Figure 9, where we plot the average PL as a function of the number of mesh
clients. These results are obtained when executing INS-3 and INS-4. We can observe that
the average PL does not change much according to the change in the number of mesh
clients for both INS-3 and INS-4. Comparing INS-3 (Figure 9a) and INS-4 (Figure 9b), the
average PL of INS-4 is better than that of INS-3. This is because the number of mesh routers
of INS-4 is larger than that of INS-3 (40 routers for INS-4 and 30 routers for INS-3), resulting
in the CCR of INS-4 being larger than that of INS-3. As a result, INS-4 outperforms INS-3
in terms of average PL. Among the algorithms MVO, WOA, GA and PSO, MVO gives the
highest efficiency.
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Figure 9. Performance comparison of the path loss versus the number of clients. (a) INS-3. (b) INS-4.

4.5. Impact of Coverage Radius of the Mesh Routers

Another metric also has a great influence on the performance of mesh routers place-
ment algorithms in WMN; that is, the coverage radius of the mesh routers. This is more
clearly visible in Figure 10, where we measure the CCR versus the coverage radius of the
mesh routers for INS-6 and INS-8. We can observe that the wider the coverage area, the
higher the CCR. This is obvious because the CCR is directly proportional to the width of
the coverage radius of the mesh routers. Among the algorithms MVO, WOA, GA and PSO,
MVO gives the highest efficiency for both INS-6 and INS-8. For INS-6 (Figure 10a), to be
able to achieve 100% CCR, the required coverage radius for the MVO algorithm is 260 m.
Meanwhile, this value for algorithms WOA, GA and PSO is greater than 300m. For INS-8
(Figure 10b), since the number of mesh routers in this instance is more than INS-6, the
CCR is also better. The coverage radius of the mesh router only needs 220m, and the MVO
algorithm can achieve a CCR of 100%. The details of the CCR values versus the coverage
radius of the mesh routers for INS-6 and INS-8 are shown in Table 8.
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Figure 10. Performance comparison of the CCR versus the coverage radius of the routers. (a) INS-6.
(b) INS-8.
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Table 8. Performance comparison of the number of connected clients and CCR when executing INS-6
and INS-8.

Instance
CR Number of Connected Clients Connected Client Ratio (%)

(m) MVO WOA GA PSO MVO WOA GA PSO

INS-6

100 70.0 65.4 64.6 79.2 20.0 18.7 18.5 22.6
120 111.2 95.9 98.0 116.1 31.8 27.4 28.0 33.2
140 163.6 137.2 142.7 160.7 46.7 39.2 40.8 45.9
160 220.5 176.3 183.4 206.0 63.0 50.4 52.4 58.9
180 272.5 216.0 233.0 257.5 77.9 61.7 66.6 73.6
200 315.2 258.2 265.1 275.3 90.1 73.8 75.7 78.7
220 337.5 289.0 307.0 319.0 96.4 82.6 87.7 91.1
240 345.5 314.0 327.9 328.6 98.7 89.7 93.7 93.9
260 349.3 332.6 342.8 321.0 99.8 95.0 97.9 91.7
280 349.8 341.3 343.8 319.5 99.9 97.5 98.2 91.3
300 349.8 346.8 348.6 312.1 99.9 99.1 99.6 89.2

INS-8

100 97.7 91.9 90.0 108.0 27.9 26.3 25.7 30.8
120 160.9 134.2 133.6 153.7 46.0 38.3 38.2 43.9
140 233.2 188.0 190.8 211.3 66.6 53.7 54.5 60.4
160 293.7 239.6 248.7 271.2 83.9 68.4 71.1 77.5
180 330.1 282.1 293.9 300.4 94.3 80.6 84.0 85.8
200 345.3 314.9 322.8 326.1 98.6 90.0 92.2 93.2
220 348.4 333.1 337.6 315.3 99.5 95.2 96.4 90.1
240 349.8 340.8 345.1 314.5 100.0 97.4 98.6 89.9
260 350.0 346.1 348.3 308.1 100.0 98.9 99.5 88.0
280 350.0 349.3 348.9 316.5 100.0 99.8 99.7 90.4
300 350.0 349.7 349.8 314.2 100.0 99.9 99.9 89.8

4.6. Convergence Analysis of Algorithms

Figures 11–14 demonstrate the convergence curves of four algorithms for INS-1 with
40 mesh routers, INS-2 with 40 mesh routers, INS-3 with 150 mesh clients and INS-4 with
150 mesh clients, respectively. These convergence curves demonstrated that MVO is better
than algorithms GA, PSO, and WOA. The algorithms GA, PSO, and WOA accrued early
convergence. Although MVO has slow convergence, it is not stacked in local optima as
with the other algorithms.
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Figure 11. Performance comparison of the objective function value for INS-1 with 40 mesh routers.
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Figure 12. Performance comparison of the objective function value for INS-2 with 40 mesh routers.
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Figure 13. Performance comparison of the objective function value for INS-3 with 150 mesh clients.
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Figure 14. Performance comparison of the objective function value for INS-4 with 150 mesh clients.
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5. Conclusions

The MRP-WMN has attracted many research groups recently. Because this is an NP-
hard problem, approximate optimization algorithms are typically used to solve it. We used
the MVO optimization algorithm to solve the MRP-WMN in this paper. A new objective
function for the MRP-WMN is also proposed, which takes two important performance
metrics into account: connected client ratio and connected router ratio. The simulation
method on Matlab is used to evaluate the performance of the MVO algorithm in solving the
MRP-WMN problem. We ran simulations on a variety of network instances, changing the
number of mesh routers, mesh clients, and coverage area. The simulation results show that
the MVO algorithm outperforms the WOV, GA, and PSO algorithms in terms of connected
client ratio and path loss.

In the next work, we will continue to develop algorithms by considering more con-
straints on quality of transmission and quality of service, such as signal-to-noise ratio
(SNR), bit error rate (BER), and traffic load offered to each mesh router in order to improve
the performance of WMN.
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