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AN EFFICIENT METHOD OF MOMENTS ESTIMATOR 
FOR DISCRETE CHOICE MODELS 
WITH CHOICE-BASED SAMPLING 

BY GUIDO W. IMBENS1 

In this paper a new estimator is proposed for discrete choice models with choice-based 
sampling. The estimator is efficient and can incorporate information on the marginal 
choice probabilities in a straightforward manner and for that case leads to a procedure 
that is computationally and intuitively more appealing than the estimators that have been 
proposed before. The idea is to start with a flexible parameterization of the distribution 
of the explanatory variables and then rewrite the estimator to remove dependence on 
these parametric assumptions. 

KEYWORDS: Discrete choice models, choice-based sampling, case-control sampling, 
generalized method of moments estimation, semi-parametric efficiency bounds. 

1. INTRODUCTION 

IN THIS PAPER A NEW ESTIMATOR is proposed for discrete choice models with 
choice-based sampling. Discrete choice models, or qualitative response models 
as they are also called, are characterized by the feature that the dependent 
variable is discrete instead of continuous. Examples are modes of transport, 
choices of school types, or participation decisions. 

Sometimes some of the alternatives are very rare while still important to the 
researcher. Incidence of rare diseases, or the choice of a particular school type 
are examples. In that case the researcher might want to oversample that 
particular response to increase the accuracy of his analysis (be it the estimation 
of parameters or the prediction of behavior). Especially in dynamic models it 
often happens that responses, in this case life histories, that contain relatively 
much information, occur relatively infrequently. See for a discussion of choice- 
based sampling in a dynamic context Ridder (1987) and Lancaster and Imbens 
(1990). Another area where this is relevant is that of the evaluation of treatment 
effects and training schemes, discussed in, among others, Hsieh, Manski, and 
McFadden (1985), Breslow and Day (1980), and Heckman and Robb (1984). If 
the conventional econometric practice of specifying the conditional distribution 
of the dependent variable rather than the joint distribution of the dependent 
and the independent or explanatory variables is maintained, standard maximum 
likelihood techniques do not apply. It is this case that is the subject of the 
choice-based, response-based, case-control, or endogenous sampling literature. 

1 This paper is based on the first chapter of my Ph.D. dissertation at Brown University. It was 
largely written while I was at Tilburg University. I wish to thank Tony Lancaster for many 
stimulating discussions during the preparation of this paper and gratefully acknowledge helpful 
comments by Gary Chamberlain, Bertrand Melenberg, Robin Lumsdain, Wilbert van der Klaauw, a 
co-editor, two anonymous referees, and participants in seminars at Brown University, Tilburg 
University, Harvard University, and CREST/ENSAE. All responsibility for errors is mine. 
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In this paper an estimator is proposed that improves on those that have been 
suggested previously. Some of these earlier estimators such as those by Manski 
and Lerman (1977), and Manski and McFadden (1981) are inefficient, while the 
ones that are efficient, notably those proposed by Cosslett (1981a, 1981b) are 
very hard to compute. The new estimator has the same efficiency as those by 
Cosslett but reduces the computational burden. The estimators that have been 
suggested in the literature can be divided into two groups, firstly those that 
assume that the population probabilities of the choices are known and secondly 
those that assume that they are not. The new estimator incorporates these two 
extremes as special cases and can cope with partial knowledge of the probabili- 
ties. If these probabilities are known they give rise to stochastic restrictions on 
the other parameters that can be treated as moment equations. If they are not 
known, they will be treated as additional parameters and estimated using the 
same equations that are used as stochastic restrictions in the other case. 

Both the procedure followed to obtain the estimator and the form that is 
eventually derived are insightful. This procedure is similar to that used by 
Chamberlain (1987) to prove efficiency of method of moments estimators. Here 
we use this procedure to find an estimator, rather than to prove efficiency of an 
estimator motivated on other grounds. It is assumed at first that the explanatory 
variables have a discrete distribution with known points of support. In that case 
one can estimate the parameters of interest by maximum likelihood techniques. 
The next, crucial, step is to change the estimator thus obtained into one that 
does not require a discrete distribution for the explanatory variables. The 
functions that can be interpreted as score functions in the maximum likelihood 
framework will be interpreted as moment functions in the generalized method 
of moments framework. In this approach one interprets the problem as a 
semi-parametric one with the distribution function of the explanatory variables 
viewed as a nuisance function. 

The result is a simpler estimator for the case where the population propor- 
tions are known in the sense that optimization takes place over a space of lower 
dimension. This is important because the computational difficulties with 
Cosslett's estimators are severe as noted by Cosslett (1981b, 1991), Manski and 
McFadden (1981), and Gourieroux and Monfort (1989). The estimator also 
provides some intuition about the way in which information about the marginal 
distribution of the dependent variable can be used efficiently. This line of 
research is further pursued in Imbens and Lancaster (1991b). 

The plan of the paper is as follows: in Section 2 the issues in choice-based 
sampling are formally stated and previous solutions from the literature are 
discussed. In Section 3 the new estimator is developed and its asymptotic 
properties analyzed. A small Monte Carlo experiment is conducted in Section 4 
to analyze the small sample properties, followed by the conclusion in Section 5. 

2. NOTATION AND PREVIOUS ESTIMATORS 

We follow as much as possible the notation of Cosslett (1981b). In a 
population the joint density of a discrete random variable i and a continuous or 
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discrete random vector x is 

(1) f (i, x) = P(i Ix, 0) * r(x), 
for iEC={1,2,...,M), xexc9iP, and 0E&c 9iK. P( I ,) is a known 
function, r(&) is an unknown function, and 6 is an unknown parameter vector. 
The distribution function of x will be denoted by R(x). We are interested in 
the parameter 6 of the conditional probabilities. One might also be interested 
in Q(), the marginal probability or population share of choice i. Even if one is 
not interested in Q(i) itself, it is useful to define it explicitly. This will make it 
easier to incorporate prior information about it and such prior information 
(namely that one of the choices is very rare) is often a motivation for sampling 
in a choice-based manner. In fact, early studies on choice-based sampling such 
as Manski and Lerman (1977) focused exclusively on the case where these 
probabilities are known exactly. The true value of 6 is 0* and the corresponding 
notation for Q(i) is Q*(j): 

Q*(i) = P(ilx,6*)dR(x). 

Observations are not drawn randomly from this population. With probability H, 
an observation is drawn randomly from that part of the population for which 
i E 7(s) c C, 7(s) # 0 for all s = 1, 2,. .., S. The H, satisfy Es=HS = 1, 
H, > 0. At times these probabilities of sampling from the different subpopula- 
tions or strata will be assumed not to be known to the investigator. In that case 
Hs* will denote true values. The S - 1 dimensional vector (H1, H2,... , Hs-,) 
will be denoted by H and the M - 1 dimensional vector (Q(1), Q(2),.... 
Q(M - 1)) by Q. Hs and Q(M) will be used as shorthand for 1 - EsT1-Ht and 
1 - Yi 1 Q(j) respectively. 

The joint density of (s, i, x) is the product of the marginal probability of s, Hs, 
and the conditional density of i and x given the stratum s. The latter is 
(2) g(i,xls) = f(i,x) P(ilx,60) r(x) 

E ff(i',z) dz E JP(i'Iz,0) dR(z) 
it 'E(s) x it'EfSs) 

and the product can be written as 
P(ilx,6) .r(x) P(ilx,0) .r(x) 

E JP(i'Iz ,) dR(z) i'Ef(js) e3'(s)~~~~~~~~~l -Ts 

for i E YXs), s E {1, 2,... , S), and x E X. This is the density function induced by 
the sampling scheme, as opposed to the density function in the population (1). 
As a rule ff() will denote population density and probability functions, and g(*) 
density and probability functions induced by the sampling scheme. The latter 
will sometimes loosely be referred to as sampling densities. 

As a simple example consider a model with two choices, i = 1,2, and two 
strata, s = 1, 2. With probability H1 = h an observation is drawn from 7(1) = {1M, 
and with probability H2 = 1 - h it is drawn from 9(2) = {2). The population 
probability of choice 1 is Q1 = q, and that of choice 2 is Q2 = 1 - q. The joint 



1190 GUIDO W. IMBENS 

density of (s, i, x) is 

[h 1[Ai=1] 1 -h I[i=2] 

(4) g(s, i, x) = -P(1 Ix, 0) [ - (1 - P(1 Ix, 0))] r(x) 

compared to P(1 Ix, 0)I[i=1] * (1 - P(1 Ix, 0))I[i=2] * r(x) when the sampling is ran- 
dom. This is the sampling scheme that will be used in the Monte-Carlo 
experiment in Section 4. 

Cosslett (1978, 1981a, 1981b) analyzed a sampling scheme that is slightly 
different from the general one defined above. Instead of fixing the probabilities 
H* with which observations are drawn from the various strata, he assumed that 
the relative number of observations from each subsample, iH = En=' I[s, = t]/N 
is fixed. Under both sampling schemes the conditional density of i and x given s 
is equal to (2). Since s is ancillary under both sampling schemes, knowledge 
of its marginal distribution is immaterial for inference on 0. The fact that 
the estimator that will be proposed here is efficient ensures that it is, 
at least asymptotically, conditional on the ancillary statistic s. Imbens and 
Lancaster (1991a) discussed the differences between these two stratified sam- 
pling schemes, as well as others where the stratum indicators are not necessarily 
ancillary, in more depth. 

The complications in estimation of choice-based sampling models arise be- 
cause maximization of the log likelihood function corresponding to this density 
is not possible without parameterizing the marginal density of x in the popula- 
tion, r(x). If the sampling were random, and consequently the density of the 
data were (1), maximization of the logarithm of the likelihood function would be 
straightforward. As long as the density r(x) does not depend on 0, it would 
disappear after taking derivatives with respect to 0. This can be extended to the 
case where the sampling depends on the regressors x. The density induced by 
the sampling would then be 

(5) g(i, x) = P(ilx, 0) * q(x) 

with q(x) # r(x). In this exogenous sampling case there is still no problem in 
maximizing the logarithm of the likelihood function because the density of x 
still factors out. 

To stress the reciprocal relation between H and Q we also define H(i) and 
Q': 

(6) Qs E Q(i) 
is fT(s) 

(7) H(i) =Q(i) E Hs 
sli e (S) Qs 

If there is no s such that is e(s), then H(i) = 0. H(i) is the marginal 
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probability of choice i induced by the choice-based sampling, or again some- 
what loosely, the sample probability of choice i. It is not to be confused with the 
sample frequency of choice i, H(i) = Y2I[in = i]/N. In the population the 
marginal probability of choice i is Q(i), but the sampling scheme multiplies this 
by the sum of the bias factors HI/Q,. The essence of choice-based sampling is 
that for some i the distortion factor Es,i e 87-(S)Hs/Qs differs from unity, or, 
equivalently, for some i, the population probability Q(i) is not equal to the 
sample probability H(i). The marginal probability that an observation randomly 
drawn from the population is in r(s) is Qs. Note that while the H(i), Hs, and 
the Q(i) add up to one, the sum of the Qs does not have to equal one. 

In the following it will be assumed that the investigator has a sample of N 
independent observations. Ns will denote the number of observations from 
stratum $9(s) and N(i) the number of observations with choice i. In the 
remainder of this paper the following assumptions will be maintained through- 
out. Other assumptions will be introduced when necessary. 

ASSUMPTION 2.1: x EX, X a subset of 91P; i E C,C a finite set with M 
elements; and 0* E int 69, 6 a compact subset of 91 K. 

ASSUMPTION 2.2: P(i Ix, 0) is a twice continuously differentiable function of 0, 
and P and its first two derivatives with respect to 6 are continuous in x for all 
6 E &. P(ilx, 0) > 0 for all i E C, x E X and 6 in an open neighborhood of 0*. 

Several procedures have been proposed for estimating 0 in this setting. We 
will briefly mention two of them because their form will aid the interpretation of 
the new estimator. 

The conditional probability of i given x in the sample is 

( P(ilx, 6*)H*(i)/Q*(i) 
(8) g(itx) -M 

E P(jlx,6*)H*(j)/Q*(j) 
j=1 

Manski and McFadden (1981) proposed maximizing the corresponding condi- 
tional likelihood function as a function of 6 given knowledge of H* and Q*: 

N P(intXn69)H*(in)/Q* (in) 
(9) L(6)= , IIn M 

n =1 EP(ilX O)H*( j)/Q*( j) 
j=1 

The conditional maximum likelihood (CML for short) estimator can be inter- 
preted as a method of moments estimator. That is, the estimator can be defined 
as the solution to the set of equations 

N 

E n=(1 in,Xn 0, 
n=1 
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where the moment vector is the score of the conditional likelihood: 
dP 1 

(10) f(0(,i,X) = -(ix, 0) 
do P(ilix,O0) 

rM 81 H*(j) 1rm H*(j)1 
- E do (ilx9H) (j- [ E P(jlX, 0) la1 o Q10 =1Q*0 

dP 1 

=- (ix,0)P(ilx, 0) 
do~~~a 

- (i'Ix, 0) 
s i'E- t)do 

E Ht* iEgt 

t=1 E ~Q*(jV) 

s ~~P(i' Ix,O0) 

E it* 's(t) 

The method of moments interpretation will later be useful in comparing the 
CML estimator to the new estimator. Cosslett (1981a) showed that a more 
efficient estimator can be obtained by replacing Ht* in this procedure by the 
sample frequency Ht. Lancaster (1990) has an extensive discussion of this in 
terms of ancillarity of the stratum indicators. 

Part of the potential loss of efficiency stems from conditioning on x while the 
parameter of interest, 0, enters the conditional distribution of i given x as well 
as the marginal distribution of x. In fact the marginal distribution of x is 

S Ht 
(11) g(x) == E - 

E: P(Jlx, 0)r(x), 
t= 1 jeQ(t) 

and that clearly depends on 0. Nevertheless, one can still base inference on the 
conditional likelihood function. 

Cosslett (1978, 1981a, 1981b) proposed the pseudo maximum likelihood 
(PML) estimator. Consider the likelihood function based on the density (3). It 
cannot directly be maximized over the parameter space and the space of 
densities r(x). However, if one replaces the density r(xn) by a set of discrete 
weights rn, such that En' IrN = 1 and rn > 0, maximization is possible. One 
would obtain the following program: 

N ~HP 1p' X, )- 
(12) max E in 

P(inlXN subject to 
0,r1, r2,. rnln E E P(jlxnl,0)r rn' 

Lje (ST) n'=l 

N 

E rn = 1 rn > ? 
n= 1 
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The solution of the maximization over r and 6 turns out to be equivalent to the 
solution of the problem EN A n=1(A, 6, in, Sn, Xn) = 0, with OC1 = ('11n, fC12), 

and 

(13) qcll(A, o, s, i, x) 

1 dP 
P(itx,6) (itix, 0) P(i ix, ) do( 

-[ E A(t)E - (tjlx 6)]/[ EA(t) E P(jix,6)], tl j do(t) Lt=l j J 

(14) fC12(A, 0, s,i, x)t 

A(t) t() x,6) E P(jtx, 0) 

for t = 1, 2,..., S - 1 and A(S) = 1. Cosslett proved that the estimator for O* is 
efficient in the class of asymptotically unbiased estimators. 

For the case with Q* known, Cosslett proposed maximization of the 
same function, (12), under the additional restriction that for all je C, we 
have Q*(j) = EN rn * P(jXn, 6I). This system is equivalent to solving 
En=1fC2(A, 6 ln, Xn) = 0, with 

1 aP 
(15) OC21(A,k,i,X) = P(ilx) <-(iIx,0) 

PO Ex A( ) dHo l,H| A )(jx )| 

(16) fC22(A, k, x)0 = [P(jIx, 0) -P(MIx, 6)Q*(j)/Q*(M)]/ 

M 

Ea A( j)P( I'X, 0), 

for j=1,2,..., M-1 and A(M)=(1- E]fl1A(j)Q*(j))/Q*(M). If H* were 
known, the probability limit of A(j), H*(j)/Q*(j), also would be known. 
Cosslett proved however that his estimator of 0* is efficient, independent of the 
information on H* available. This is only possible if asymptotically A and 0 are 
uncorrelated, which in fact is the case. The computational difficulties stem from 
the very different nature of the parameters of the optimization program, A and 
0. Most optimization algorithms treat all parameters in the same way and in this 
case that does not work very well. In addition there need not exist any solution 
for 6 that satisfies the restriction Q*(j) = lrn P(jtx, 6) as pointed out by 
Cosslett (1991). 
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3. AN EFFICIENT GMM ESTIMATOR 

In this section the new estimator will be discussed. The strategy is as follows. 
Initially it will be assumed that the regressors x have a discrete distribution with 
known points of support. This is of course restrictive but it enables one to use 
standard maximum likelihood theory. In particular the Cramer-Rao bound can 
be calculated and used as an efficiency bound. Potential restrictions in the form 
of knowledge of the marginal probabilities can easily be incorporated in this 
case. 

The maximum likelihood estimator for the discrete regressor case can be 
written in such a way that knowledge of the points of support is not used 
explicitly. It turns out that the estimator remains valid even if the distribution of 
x is continuous. Efficiency will be proven for this estimator in the general case. 
The theory behind the Cramer-Rao bound is no longer applicable and therefore 
semi-parametric efficiency bounds will be used. 

To give some intuition for the way in which assuming a discrete distribution 
can lead one to estimators that are valid and efficient even if the distribution is 
continuous, consider the following example. It is similar to one in Chamberlain 
(1987). Suppose one is interested in the probability that a random variable z is 
positive, a = Pr (z > 0). If z is known to have a discrete distribution with points 
of support {zW, Z2,..., Z L), and with unknown probabilities {7r,, ir2 ... ,TrL, one 
could efficiently estimate a on the basis of N independent observations 
{Zl, Z2 ... ZN) by maximum likelihood techniques as 

A 
1 

= ~ N i N 

7r = Ei[zn=z']=- EI[Zn >0] 
lIz'>0 lIz>0 n=1 n=1 

In the last representation of the estimator it does not depend explicitly on the 
points of support, only on the realized observations. It also can be used as an 
estimator for a if z does not have a discrete distribution. In fact, whatever the 
distribution of z, a is a very good estimator, and efficient in a sense to be 
defined later. 

The difference with Cosslett's PML estimator is that we go further in 
exploiting the discrete regressor case. This will enable us to use the maximum 
likelihood theory that applies to that case further, simplify the estimator for the 
continuous regressor case, and finally provide more intuition for the general 
estimation problem. 

3.1. The Case with Discrete Exogenous Variables 

The subject of this section is the case where x has a discrete distribution. 
This will allow one to use standard maximum likelihood theory. Few formal 
proofs of consistency and asymptotic properties of estimators will be given in 
this section. The main point here, as indicated earlier in the introduction to 
Section 3, is to use maximum likelihood theory to guide one to an estimator that 
will be used outside the maximum likelihood framework. 
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ASSUMPTION 3.1: x is a discrete random variable with probability 7r, > 0 at xl 
for 1= 1,2,..., L, and the masspoints xi, elements of 9Jl", are known. The 
number of points of support, L, is larger than the number of choices, M. 

An observation (s, i, x) can now be written as (s, i, 1), where 1 indicates the x 
type of the observation. The log likelihood function for the observations 
(S,nil in )N=1 iS 

N 

(17) L(H, 7r, . ) =: I n Hs.+ ln P(n1XZ",@) + In irl 
n=1 

L 
- In E Eiri,P(ilx", ). 

i E= -1(S) I' = 1 

Maximizing this over H, -ir, and 0 subject to the restriction EL1r = 1 leads to 
the following first order conditions or likelihood equations: 

dL A A N) I[ Sn= t] I[Sn =S] 
(18) 0= (H f, XT) EI - A (t= 1,2 ... ,S-1), 

Wt n=1 Hts 

AL AA A N I[xin=xm] 
(19) 0=- (H rr)= E * A 

- Le $-S:) i$E(Sn) P~ = 1P(I" 

(m= 1,2,...,L-1), 

L 

(21) ~ ~ ~ (jM A) A Ej *X,A 

1=1 

where ,u is the Langrangian multiplier for the adding up restriction. Assume 
that the solution (H1, xr, 8) to this system of equations is unique. In this discrete 
regressor framework the maximum likelihood estimator for Q(j) is 

(20) Q(j)= -( *7 * P( jlinXln9 A) 

L 

(21) ~ ~ 1= 
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Note that the derivatives dL/dO and dL/dwr do not depend on H. This implies 
that the asymptotic covariance matrix has a block diagonal structure. Asymptoti- 
cally H and 6 are uncorrelated and knowledge of H does not enhance our 
ability to estimate 6, ir, or functions thereof. This is of course a direct conse- 
quence of the ancillarity of s. 

The next step is to transform the parameter vector into one that includes Q. 
This serves two purposes. Firstly, it will provide an easier framework for 
analyzing estimation with restrictions on Q. In the transformed model it will be 
a conventional maximum likelihood estimation problem with linear restrictions 
on the parameters. Secondly, and most importantly, the estimators for 6* and 
Q* can, after the transformation, be written in a form that does not require 
knowledge of the points of support. They will be written in such a way that their 
consistency can be proven directly, without relying on the maxiinum likelihood 
interpretation. 

Define the (M - 1) x L dimensional matrix V to be the matrix with typical 
element 

vil = P(iIxI, a*). 

Partition V into (VO Vj) with VO a square matrix. The condition that will allow 
us to do the desired transformation is that VO is nonsingular, possibly after 
reordering the points of support. Assume that this condition is satisfied.2 
Partition ir into (Orl, -T2) with dim(O1) = M - 1 and dim(w2) = L - M. The 
Jacobian of the transformation from the vector (H, 6, -71, -72) to (H,Q, 0, 72) is 
nonzero as a consequence of the above condition. 

The step of rewriting the equations characterizing the maximum likelihood 
estimate of 6 is essential to the whole approach. It will therefore be given in 
some detail. First note that the Lagrangian multiplier , is equal to zero. This 
can be seen by multiplying (19) by *jm and summing up over m = 1 to L. 
Alternatively one can arrive at this result by checking that the likelihood 
function is homogenous of degree zero in r. This enables one to obtain a closed 
form solution for *+m as a function of 0, H, and Q. In fact it is a simple sample 
average: 

A ~~~~~~~~~e -I(sn) 

(23) 7+m=[ [EXIn=XM]] A 

= N n= NI[X n=X ][ n=1 Qe i) J 

In the last representation Of *~m the estimated sample design parameter H 

2 This condition is not trivial. In the next section assumptions will be made that guarantee that it 
is satisfied. A case where it is not satisfied is if the conditional probabilities do not depend on x and 
P(ilx;O*)= Q*(j) for all x and j. 
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enters the equation. This is why it is convenient to treat H as a normal 
parameter rather than as a number fixed by the investigator. 

To rewrite the crucial equation that characterizes 0, (20), one has to substi- 
tute for +m in the second term. The denominator of this term is equal to 

j_s )Q(j). The key is rearranging the numerator after substitution of (23) 
for vi in such a way that the whole expression can be written as a sample 
average. In doing this we bring in H in the same way it was introduced in the 
step from the first to the second line in (23): 

A 
*m_d (jlXm 0) ] /[ E TmP(jlXm,)l 

n= Cj-eY(sn) m=l j Le(sn) m 

N {L Y3~~~~jI[x'n' =Xm] 

E~~~~~~~~~' YQ(s =N L H 

n= 1 fje.7(sn) N(n= N ) A 

i' E 8(s) 

E Qj 
j E Y(Sn) 

i' P(S)Ixj E ) - 

N 1 ~S Q1 N 

Q W~ - 

= EEdsn))} 

Now oneit N S(eY ) ]t [E 'S 1} 

N N || E Ii'sI E Qt, /|= )) | 

Now bye can characterize the maximum likelihood estimates for 0' H, Q, and 
N 

(24) E j e *2 Nn= X 
P in) = O 

n=l 
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where fi = (q4, q4, fi', qi4Y with Iil an S - 1 vector, q,2 an M - 1 vector, Q3 a K 
vector, and qi4 an L - M vector with typical elements: 

(25) q,1(H, ir2, Q, s, i,l ) = Ht-I[s = t] 

(26) 4'2j(H9o9,v29 Q9 S9,i,) 

s 

P(iIx',0) =Q(j) -P(jlX,0) IiE ,(j,t ] 
t=1 E Q(i' 

-L-(il 6i E) (t) 

(27) 41AH,00r2, Q, S9,i,) 

ao P(ilx' a) 

-j ~ ~ 
a 

E t (@) / t EY(t) ; ] 
if E (t) oi i (t) 

(28) qi4m(H909 729 Q9 S9'9 

I - E P(i'Ix',6) 

=T2m-I[XI=Xm] Fa Ht ifY(t) 

i EY (t) 

The first three parts of the qi vector do not depend on 72. They can therefore 
be solved separately as a function of H, Q, and 6. Since the solution for H is 
trivial, the system that has to be solved to obtain 6 is reduced to a K + M - 1 
dimensional one. Note that the only way in which the moments (25)-(27) 
depend on the mass points is via the observed x values. This is very similar to 
the example in the introduction to Section 3. It implies that the maximum 
likelihood estimators for Q, H, and 6 can be calculated without knowing a 
priori what the masspoints of the random variable x are. It will be seen in 
Section 3.2 that one does not even need the assumption that x has finite 
support. 

The three moments have clear interpretations. When evaluated at Q = Q* 
and H = H*, the third moment if3 is equal to the score for the conditional 
likelihood of i and s given x. Compare (27) with (10). If the sampling scheme 
were random (say S = 1 and $'(1) = C) the second moment would compare the 
marginal probability with the average of the conditional probabilities. The 
choice-based sampling scheme implies that before the comparison can be made 
the conditional probabilities have to be weighted to correct for the sampling 
induced bias. The first moment, qi1, is easy to interpret but it is difficult to 
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explain why it has to be in the moment vector even if H* is known.3 The 
importance is clear from Cosslett's (1981a) result that using sample frequencies 
H instead of the true H* in the CML estimator increases efficiency. 

The other advantage of the transformation referred to earlier is the ease with 
which information about Q can be incorporated. Before the transformation this 
would have amounted to a maximization in a K + T + S - 2 dimensional space 
with M - 1 restrictions. Now it will turn out to involve a maximization in a 
K + S - 2 dimensional space. The following lemma gives an efficient way of 
using restrictions on some parameters if one has the recursive structure we have 
derived above. Note that the structure is very similar to that analyzed by Newey 
(1984) in his discussion of sequential estimators. 

LEMMA 3.1: Suppose the maximum likelihood estimator of a vector 83 with 
18 = (f'1,8, 1,f3'Y, given N independent and identically distributed observations 
{Z1, Z2,..., ZN), can be characterized by 

N 

E hi(f3if32, Zn) = 0 
n=l 

and 
N 

E h2(8 1, I32,f33, Zn)= 
n=1 

with dim (h1) = dim (131) + dim (Q32) and dim (h2) = dim (f33). Then, the optimal 
constrained method of moments estimator for 131 given 132= f32 based on mini- 
mization of 

[ 
N "l1(p1p 

2 Xn)]A[ N. E lp2 Zn)] 

over f31, where AN a. [Eh * h' 1, has the same asymptotic covariance matrix as 
the constrained maximum likelihood estimator. In other words, it achieves the 
Crame'r-Rao lower bound. 

PROOF: See Appendix. 

The relevance for the problem analyzed in this section is clear. If one is 
interested in estimating 0 given knowledge of Q, one does not have to go back 

3An example from SUR (seemingly unrelated regression) might provide some intuition for this. 
Consider the problem of estimating one parameter (a) on the basis of observations (yn, e,),'Z1 with 
the following structure: 

E(e)= 0, Ete)*(e) p1) 

The variance of VN7(a - a) based on the single moment equation E(y - a) = 0 is 1, which can be 
reduced to 1 - p2 if both moment equations are used, despite the fact that the second moment 
equation does not contain any unknown parameters. 
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to the discrete likelihood function in (17). Lemma 3.1 applies with 81 = (0, H), 
p2 = Q, and f33 = 72. It is sufficient to use the moments (25)-(27) in a general- 
ized method of moments framework with the true value for Q substituted in, 
and the moments weighted optimally. 

3.2. The General Case 

In the previous section it was assumed that x had a discrete distribution with 
known, finite support. In that case the maximum likelihood estimators for 0*, 
H*, Q*, and rr* were derived. It turned out that the estimators for the 
parameters of interest 0* and Q* could be calculated by solving a smaller set of 
equations that did not involve wr. In this section it will be shown that these 
equations can be used to give an efficient estimator even if x is not a discrete 
random variable. Assumption 3.1 will be replaced by the following: 

ASSUMPTION 3.2: x is a random vector with distribution function R(x) and 
bounded support X C 9P 

The bounded support assumption is made for convenience in the subsequent 
efficiency argument, and can be relaxed at the expense of more technical 
conditions on the tail behavior of the distribution of x. 

The typical observation is now the triple (s, i, x) E (1, 2, ... ., S} x C x . The 
first step is to rewrite the moments (25)-(27) slightly. Define '/ = (4'/414, 1, )', 
with qf1 an S - 1 vector, '/2 an M - 1 vector, and 413 a K vector with typical 
elements: 

(29) qilt(H, 0,Q. s.i,x) =Ht- I[s =t]9 

Is E P(i'jx9o)~ 

(30) f2j( H,0,Q,s,i,x) =Q() -P(i Ix,0) L H,t ) Q(i') 

j' E- gr(t) 

(31) fr3(H,0,Q,s,i,x) 

dP ~~~1 
--(ilxg0) do P(ilx 0) 

ao 

t=1 E Q(il) t=1 ~~~~Q(i') 
i'EY r(t) i'EY g(t) 
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In Section 3.1 these moments were derived from likelihood equations. There- 
fore it was immediate that they had expectation zero. Here their validity as 
moments suitable for usage in a method of moments procedure has to be 
established directly. For all three of them it is easy to check that the expectation 
over the distribution induced by the sampling scheme (for good order, g(s, i, x) 
in (3)) is zero. 

With these moment equations and a possibly stochastic, positive definite 
weight matrix CN the objective function RN(0, Q, H) can be defined as 

(32) RN(0,Q, H) 

iN iN 

n=1 N n=1 

We will use the following shorthand: y = (H', 0', Q')' and y* accordingly. 
Define 

AO =Ef(H* , 0*, Q*, s, i, x) * fr(H*, 0*, Q*, s, i, x)' 

and 

E r(H* 0* Q* s, i, x) 

?-0=E a(H'O'Q') 

ASSUMPTION 3.3: (i) (H*, 0*, Q*) is the unique solution to E/J(H, 0, Q, s, i, x) 
= 0. (ii) Ao is nonsingular. (iii) 

rO 
has full rank (= K + M + S - 2). (iv) CN CO , 

CO is a positive definite matrix. 

Assumption 3.3(i) is difficult to check in practice. In principle identification 
can come from restrictions on the functional form of the conditional probability, 
or from restrictions on the sampling scheme.4 If Q* is known, this assumption 
can be weakened to: (H*, 0*) is the unique solution to Eqi(H, 0, Q*, s, i, x) = O. 
We will later discuss some conditions that imply that this condition holds. A 
consequence of Assumption 3.3(ii) is that there is no nonzero vector a such that 
EM l'1a(i) * P(i Ix; 0*) = 0 for all x. It therefore excludes cases where the condi- 
tional probabilities do not depend on x. This case is also excluded implicitly by 
Cosslett (1981a) and Manski and McFadden (1981), and analyzed in detail by 

4One of the sampling strata might for instance be equal to the population as a whole, in which 
case identification would be guaranteed by identification of the random sampling model. A case in 
which Assumption 3.3(i) does not hold is the binary logit model if the conditional probabilities can 
be written as P(i = 1lx; 6) = 1/[1 + exp (60 + O' x)] and the strata correspond exactly to the two 
choices. In that case Q and 00 are not identified. 
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Lancaster and Imbens (1991). If Assumption 3.3(iii) does not hold then asymp- 
totic normality will be a problem. This is unlikely to happen in practice. If Q* is 
known, the following weaker form of this assumption is sufficient: the matrix 
E(da(H*, 0*, Q*, s, i, x)/d(H'O')) has rank K + S - 1. 

The estimator 9 of y* is defined as the minimand of RN(y) over the 
Cartesian product of the sets (He 9S- 1 ?H, < 1 -8, 8 < Es-?H, < 1 - 3} 
{Q E MlI < Q() < 18 8< EM 'Q(j) S 1 -8} (for some 8 > 0 such that 
y* is in the interior of the set over which RN(Y) is minimized), and &. The 
following theorem gives its properties. 

THEOREM 3.2: Suppose that Assumptions 2.1-2.2 and 3.2-3.3 hold. Then the 
estimator 5 for y* converges almost surely to y* and satisfies 

(N- _y*) d (o,FA- F6o'ro-). 

If we partition y and 1O in 

7= Yi) ro = (rOl F02) 

then we can estimate y* in the case y* is known with the minimand -Y of 
RN(yl, y*). -j converges almost surely to y* and it satisfies 

v?V( 5 - 'y*) d X(0, (0r,C017Co1) jr,COAOCOFO,(rF,COO,)_j) 

PROOF: See Appendix. 
The optimal method of moments estimator is the one with CO, the limit of the 

weight matrix equal to AJ-'. In that case the covariance matrix reduces to 
(FJolA- 'Fol)' for the restricted case. It is this estimator that will be analyzed 
as a candidate for efficiency. 

In the previous section the estimator had a maximum likelihood interpreta- 
tion and it therefore achieved the Cramer-Rao bound. Here, we are not in a 
maximum likelihood framework so we cannot use this bound directly. Instead, 
we could use an efficiency concept from Hajek (1972), extended by Chamberlain 
(1987) to prove efficiency for generalized method of moment estimators. The 
idea behind this local asymptotic minimax concept is that we look at the 
expected loss for a particular estimator while letting the true value of 
the parameter vary over a small neighborhood. An estimator is efficient in this 
sense if there is no estimator that does better everywhere in this neighborhood. 
In this particular case we should, following Chamberlain, also let the distribu- 
tion of x vary over neighborhoods of the true distribution. Then it can be shown 
that no estimator does better than the one defined in Theorem 3.2 in the 
neighborhood of the true distribution of x and the true parameter values of 0 
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and Q. For an extensive discussion of this efficiency concept, see Chamberlain 
(1987). 

However, in order to stress the connection with the recent statistical litera- 
ture on semi-parametric efficiency bounds we will employ the efficiency concept 
discussed by Begun et al. (1983) and Newey (1990). In this framework we look at 
the least favorable direction from which to approach the distribution. Because 
we already have a candidate for the bound, namely the asymptotic variance 
given in Theorem 3.2, we only have to show that no regular estimator can do 
better. We will do so by constructing a sequence of (fully) parametric models 
that will always include the semiparametric model (3). We will then show that 
the sequence of Cramer-Rao bounds associated with this sequence of paramet- 
ric models converges to the asymptotic covariance matrix for the estimator 
proposed here. This implies that there are fully parametric models with effi- 
ciency bounds arbitrarily close to the asymptotic covariance matrix for the 
estimator of Theorem 3.2. Therefore that estimator is efficient. 

THEOREM 3.3: The asymptotic covariance matrix V for any regular estimator 
for 0, H, and Q satisfies 

V-r F 'A0( O)1 is a positive semi-definite matrix. 

In other words, no regular estimator is more efficient than the estimator in 
Theorem 3.2. 

PROOF: See Appendix. 

The key to the proof is the sequence of parametric submodels. It is con- 
structed by partitioning the set X into mutually exclusive subsets Xi for 1= 
1,2, . . ., L with as unknown parameters the probabilities 81 = P(x E Xj). If the 
partitioning is fine enough the model closely resembles the discrete model of 
Section 3.1 and the covariance matrices will converge. 

3.3. The Connection with Cosslett 's Estimators 

The connection between the estimator proposed in the previous section and 
those proposed by Cosslett can best be seen by comparing the relevant moment 
vectors. In this section we will do so and as a by-product we will show that 
Cosslett's estimator does not do better than the new one and that consistency of 
Cosslett's estimator implies consistency of the new estimator. From the effi- 
ciency results here and in Cosslett (1981a, 1981b) it follows of course directly 
that the two estimators have identical asymptotic covariance matrices. First 
consider the case with known Q. The moment vector for Cosslett's estimator is 
given in (15) and (16). It was argued there that A(j) could be replaced by its 
probability limit H*(j)/Q*(j) without changing the asymptotic covariance 
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matrix of 0. The moment vector would then be q = (41, q4)Y: 

(33) q1(0o,H*,Q*,s,i,x) 
1 aP 

P(ilx, a) do(ilx,) 

r Map1 
-[ E -(jIx,O)H*(j)/Q*(j) I 

E P(j IxE, 0)(H*I(j)/IQ*(/j) , 
Qj=l 

(34) 412(0 H* , Q*,. s, i, x)j = Pf jjX H) -P(MIx9 H) Q*())] 

li-( H*a)Q( j') 

First note that 

i'E EY(t) 

and a similar relation with dP/do(i Ix, 0) substituted for P(i Ix,6). After substi- 
tuting (35) in (33), the latter is, when evaluated at Q = Q* and H = H*, equal 
to (31). Similarly, if we substitute (35) in (34), f2 is equal to Aq,2, 412 as in (30), 
with A equal to 

H(i)Q(M) H( j)Q(M) 
H(M)Q(i)2'- A1 = -for_i__=__j_ 

Aii -H(M)Q(i)2 
9 ij H(M)Q(i)2 

This shows that the moments used in Cosslett's estimator are a linear combina- 
tion of those used in the new estimator. Therefore, the covariance matrix of the 
latter cannot be larger than the covariance matrix of the former. The new 
estimator is easier to compute than Cosslett's estimator in this case. The 
optimization in the known Q and H case is only over the parameter 6 and that 
numerical optimization problem is much better behaved than the one where A 
has to be estimated as well. 

To compare the estimators for the unknown Q case consider first the 
moments (13)-(14). They are more difficult to compare to (29)-(31) than in the 
previous case since they involve not only different parameters but also parame- 
ters of different dimension. A is of dimension S - 1, Q of dimension M - 1. We 
show that Cosslett's estimator cannot be better than the new estimator by 
changing Cosslett's estimator in several steps, none of which increases the 
asymptotic variance, until we get the new estimator. 
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Consider the method of moments estimator for 0, H, A, and Q based on the 
moments ific given in (13)-(14) and (29) and (30), with the normalization 
ES=, H/A(s) = 1 instead of A(S) = 1. This does not change the covariance 
matrix of 6 compared to the method of moments estimator for 6 and A based 
on just the moments (13)-(14). The only difference is that M + S - 2 parame- 
ters have been added with M + S - 2 additional moment equations. Now we 
add the S - 1 restrictions Hs/A(s) = Ei ? -(s)Q(i). This can only reduce the 
asymptotic covariance matrix of 0. If we also make the substitution based on 
(35) we get the following moment equations, in combination with (29) and (30) 
that do not change: 

(36) if 1(0,Q,H,s,i,x) 
1 ap 

P(ilX,~ 
( 

Ix) 
o) 

ap 

[Eie7~~-(it]x [ 0H) Pei'ixI0) ;H {=t Ht E Ht,, 
] 

t i' E) tt) Q )i' (t) 

(37) f2(0, Q, H, 5, i, X)s 

/-s E 

P(i((x,s( 
i'E Q( ) S) i E [H (s) t =1 1Q() 

L 'e (t) 

Equation (36) is equal to (31), and (37) is a linear combination of elements of 
(30). Therefore the estimator based on moments (36), (37), (29), and (30), which 
is not worse than Cosslett's estimator, does not do better than the new 
estimator. That gives us the desired result that the PML estimator never does 
better than the new estimator. 

This derivation implies in addition that if Cosslett's (1981a) identification 
conditions are satisfied, that is, if the solution (0*, A*) to the equation 
Efic1(0, A, s, i, x) = 0 is unique, then the solution to the equation 
EqI(H, Q, 0, s, i, x) = 0, namely (0*, H*, Q*), is also unique. Therefore Cosslett's 
(1981a) identification conditions imply that Assumption 3.3(i) holds. 

4. A MONTE-CARLO INVESTIGATION 

In this section we will consider a particular example and perform a small 
Monte-Carlo study to investigate the small sample properties of the estimator. 

We use the sampling scheme from the example in Section 2 with probability 
density function given in (4). M, the number of choices, and S the number of 
strata are both equal to 2. Also, S7(1) = {1} and Y(2) = {2}. This sampling 
where each stratum corresponds to exactly one choice is known as pure 
choice-based sampling. To simplify notation we again write q for Q1, with 
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Q2= 1 - q, and h for H1 with H2 = 1 - h. Assume that P(1 Ix, 0) can be written 
as P(x') = P(00 + x101) with derivatives P(x'O) = aP(x'0)/ao and P00,(x'0) = 

a2P(x'0)/1a ao'. We can write the moments (29)-(31) used in the efficient 
procedure as 

frl(h,q,O,s,y,x) =h-I[s= 1], 
- 
-h l - h 

12( h, q, 0, s, y, x) = q - P(x'O)/ -Pf x/0) + 1~ (1 - P(x/0), 

fr3(h, q, 0, s, y, x) 

PO0(x'O) rP0(x'O) Is2 
[P(X'I8) 

= 
1] [lp-f) I[s =2] 

-h 1 -h / h l- h E P(x'0) J - i -P(x'6) + ] (1 - P(x'])) 

Define 

RN,cN(h, q, 0) 

iN iN 

= - ? tfJ(h,q,, Sn, Yn XnCh)'N*CN * N (h,q 09 Sn Yn Xn) 

A 

Let OGMM be the estimator based on minimizing RN, cN(h* q*, 0). CN is esti- 
mated as 

N - 

N, E qi(h*, q*q6 ,Sng Yng Xn) * qi(h*9 q*9 0e sn Yng Xn)f 

where 6 is the minimand of RN (h*,q*,0). We will compare this estimator 
with the following alternatives: 

6WESML: the estimator proposed by Manski and Lerman (1977), here defined 
as the maximand of 

N n( 
L 0 ) = Fa I [Sn = 1] * I* n P(x 0n) 

n=1 

1 q* 
=2] *-h* ln(1-P(xI 0)). +,[Sn 1 -hn 

6CML: the conditional maximum likelihood estimator proposed by Manski and 
McFadden (1981), here defined as the solution for 6 to 

N 

i=13(h* q* OSn Yn Xn) =0o 
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with if3 defined above.5 OCML can also be defined as the minimand of 
RN,t(h*, q*, 6), where C is the diagonal matrix with 1 on its last K diagonal 
elements, and 0 on the others. We did not include Cosslett's efficient estimator 
in this Monte-Carlo investigation because of the computational difficulties 
associated with it. 

We compare these three estimators using two different sampling schemes. 
The first is random sampling (R). In that case the CML and WESML estimators 
both reduce to the standard random sampling maximum likelihood estimator 
(denoted by RSML).6 Formally, the sampling is characterized by h* = q*. The 
second sampling scheme is equal shares sampling (ES). Then h* = 1/S= 1/2. 
This sampling scheme is motivated partly by simulation results in Cosslett 
(1981a) and by theoretical results in Lancaster and Imbens (1991). These 
indicate that an equal shares sampling design, although only optimal in a limited 
number of cases, is close to optimal in a large number of cases. Finally we 
compare the above estimators with the random sampling maximum likelihood 
estimator under equal shares sampling. This estimator is inconsistent and will 
give some indication of the biases resulting from ignoring the sampling scheme. 
* The distribution of x is a mixture of a standard normal distribution and an 
exponential distribution with unit variance, shifted one unit to the left to give it 
zero mean. This mixture is chosen to guard against special results that might 
occur if a normal distribution is used. The first four moments of this distribution 
are 0, 1, 1, and 6 and the distribution function is 1/2 * ?(x) for x < - 1 and 
1/2 ?(x) + 1/2 [1 - exp (-x - 1)] for x > - 1. 

Two choices for the conditional probability function P( ) are employed: 
P(x'6) = ?(x'@) (probit) and P(x')= 1/[1 + exp(x'6)] (logit). In this logit 
model with an intercept, the first part of the third moment is equal to a linear 
combination of the other moments: 4f31 = 4f2 * h/q - if, and Assumption 3.3(i) 
is violated. We therefore drop 1131 from the moment vector if, without loss of 
efficiency, for the logit estimations. In the probit model there is no problem and 
AO is of full rank. 

Given that we have fixed the distribution of x, the choice of 6 implies a value 
for q. For the logit specification we used three combinations for (0, 1S, Q): 
(1.31, 1.00, 0.75), (1.16, 0.50, 0.75), and (2.51, 1.00, 0.90). For the probit 
specification we use the combinations (1.35, 1.73, 0.75), (0.90, 0.87, 0.75), and 
(2.35, 1.87, 0.90). These values were chosen to achieve maximum comparability 
of the logit and probit results. 

The results are given in Table I for probit and Table II for logit. They are all 
based on data sets with 200 observations and 200 replications. In this table sse 
stands for sample standard error and is the standard error of the 200 replica- 

5Cosslett (1981b) showed that one can improve on both the WESML and CML estimator by 
replacing h* by h in the characterizations given above. Because the actual difference in asymptotic 
distribution is small, and because it facilitates comparison with random sampling we will use the 
original version with h*. 

6 This would not be true if we used the improved version of the CML or WESML estimator with 
h instead of h*. 
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TABLE I 

PROBIT 

0o = 1.35 01 = 1.73 Q = 0.75 

0o 01 

estimator sampl mean sse ase med mad mean sse ase med mad 

RSML R 1.38 (0.20) (0.20) 1.36 (0.13) 1.78 (0.29) (0.28) 1.74 (0.19) 
GMM R 1.38 (0.19) (0.18) 1.35 (0.13) 1.79 (0.29) (0.28) 1.75 (0.19) 
WESML ES 1.37 (0.16) (0.16) 1.37 (0.09) 1.77 (0.26) (0.25) 1.75 (0.17) 
CML ES 1.37 (0.15) (0.15) 1.37 (0.09) 1.76 (0.25) (0.24) 1.73 (0.16) 
GMM ES 1.36 (0.14) (0.13) 1.36 (0.09) 1.77 (0.25) (0.24) 1.74 (0.16) 
RSML ES 0.77 (0.16) (0.16) 0.76 (0.10) 1.83 (0.25) (0.24) 1.80 (0.16) 

00 = 0.90 01 = 0.87 Q = 0.75 

0o 01 

estimator sampl mean sse ase med mad mean sse ase med mad 

RSML R 0.92 (0.14) (0.12) 0.92 (0.09) 0.89 (0.15) (0.16) 0.87 (0.10) 
GMM R 0.91 (0.09) (0.08) 0.90 (0.05) 0.89 (0.15) (0.16) 0.88 (0.09) 
WESML ES 0.90 (0.10) (0.10) 0.90 (0.07) 0.88 (0.14) (0.14) 0.86 (0.09) 
CML ES 0.90 (0.10) (0.10) 0.90 (0.07) 0.88 (0.13) (0.14) 0.87 (0.08) 
GMM ES 0.90 (0.07) (0.06) 0.89 (0.05) 0.88 (0.13) (0.14) 0.88 (0.08) 
RSML ES 0.27 (0.11) (0.11) 0.26 (0.08) 0.93 (0.14) (0.14) 0.91 (0.08) 

0o = 2.35 01 = 1.73 Q = 0.90 

00 01 

estimator sampl mean sse ase med mad mean sse ase med mad 

RSML R 2.42 (0.37) (0.34) 2.38 (0.21) 1.84 (0.39) (0.36) 1.81 (0.22) 
GMM R 2.42 (0.36) (0.32) 2.39 (0.21) 1.86 (0.41) (0.37) 1.80 (0.23) 
WESML ES 2.43 (0.30) (0.23) 2.40 (0.17) 1.89 (0.42) (0.30) 1.82 (0.27) 
CML ES 2.37 (0.21) (0.20) 2.34 (0.12) 1.82 (0.29) (0.27) 1.77 (0.16) 
GMM ES 2.38 (0.20) (0.19) 2.34 (0.11) 1.82 (0.29) (0.27) 1.77 (0.15) 
RSML ES 1.30 (0.25) (0.22) 1.29 (0.13) 2.06 (0.35) (0.29) 2.05 (0.17) 

tions. Similarly ase is the asymptotic standard error. It is calculated as the 
average over the 200 replications of the asymptotic standard error for each 
replication. If they are far from equal then the asymptotic approximation is not 
a very good one given the particular values of the parameters chosen, for 200 
observations. The median of the 200 replications is denoted by med, and mad 
stands for the median of the absolute deviation from the median. If the 
distribution were exactly equal to a normal distribution with standard deviation 
o-, the median absolute deviation should be equal to 0.68 * o-. If the median 
absolute deviation is smaller than 0.68 * o-, the distribution has thicker tails than 
the normal distribution. 

There were no problems with convergence for any of the estimators. All 
computations were done in fortran on a 386 pc. One run of 200 replications for 
the random sampling maximum likelihood estimator with random sampling 
would take about 70 minutes, depending on the parameters of the optimization 
routine (the precision required, and the manner in which direction and stepsize 
were calculated). The WESML and CML estimators would take slightly less 
time with equal shares sampling, presumably due to the fact that the objective 



CHOICE-BASED SAMPLING 1209 

TABLE II 

LOGIT 

O0 = 1.31 Ol = 1.00 Q = 0.75 

0o 01 

estimator sampl mean sse ase med mad mean sse ase med mad 

RSML R 1.34 (0.21), (0.20) 1.33 (0.14) 1.02 (0.26) (0.24) 0.99 (0.16) 
GMM R 1.33 (0.12) (0.11) 1.31 (0.08) 1.03 (0.26) (0.24) 0.99 (0.17) 
WESML ES 1.31 (0.18) (0.16) 1.31 (0.13) 1.02 (0.22) (0.21) 1.00 (0.14) 
CML ES 1.31 (0.18) (0.16) 1.31 (0.13) 1.03 (0.22) (0.21) 1.01 (0.13) 
GMM ES 1.32 (0.08) (0.08) 1.31 (0.05) 1.03 (0.22) (0.21) 1.01 (0.13) 
RSML ES 0.21 (0.18) (0.16) 0.21 (0.13) 1.03 (0.22) (0.21) 1.01 (0.13) 

00 = 1.16 ol = 0.50 Q = 0.75 

0o 01 

estimator sampl mean sse ase med mad mean sse ase med mad 

RSML R 1.19 (0.18) (0.17) 1.18 (0.11) 0.50 (0.20) (0.20) 0.49 (0.12) 
GMM R 1.17 (0.06) (0.05) 1.15 (0.03) 0.50 (0.20) (0.19) 0.49 (0.12) 
WESML ES 1.17 (0.15) (0.15) 1.17 (0.09) 0.52 (0.16) (0.16) 0.49 (0.10) 
CML ES 1.17 (0.15) (0.15) 1.17 (0.09) 0.52 (0.16) (0.16) 0.50 (0.10) 
GMM ES 1.16 (0.04) (0.04) 1.16 (0.02) 0.52 (0.16) (0.16) 0.50 (0.09) 
RSML ES 0.07 (0.15) (0.15) 0.07 (0.09) 0.52 (0.16) (0.16) 0.50 (0.10) 

O0 = 2.51 Ol = 1.00 Q = 0.90 

00 01 

estimator sampl mean sse ase med mad mean sse ase med mad 

RSML R 2.56 (0.33) (0.31) 2.52 (0.23) 0.99 (0.33) (0.33) 0.97 (0.22) 
GMM R 2.53 (0.19) (0.19) 2.48 (0.11) 0.99 (0.33) (0.32) 0.97 (0.23) 
WESML ES 2.52 (0.18) (0.18) 2.52 (0.12) 1.04 (0.25) (0.22) 1.03 (0.17) 
CML ES 2.51 (0.17) (0.17) 2.51 (0.11) 1.02 (0.21) (0.21) 1.01 (0.13) 
GMM ES 2.52 (0.09) (0.09) 2.51 (0.06) 1.02 (0.21) (0.21) 1.02 (0.13) 
RSML ES 0.32 (0.17) (0.17) 0.31 (0.11) 1.02 (0.21) (0.21) 1.01 (0.13) 

function was less flat. The GMM estimator would take between 1.5 and 2 times 
the time required for the RSML estimator. The increase and the variation were 
due to the second stage of the optimization process, and depended on the 
parameters of the optimization routine. 

In the first combination (60, 01, q) there is little accuracy gained from using 
the efficient estimator under random sampling for the probit model. Using 
equal shares sampling does lead to a significant improvement in the variance of 
the estimates, and it reduces the small sample bias of the estimators. Again 
there is little improvement from using the optimal GMM estimator given the 
sampling scheme, compared with the CML and WESML estimators. 

If 01 is smaller, with q the same, this changes somewhat. The choice of 
estimator, GMM versus RSML under random sampling, and GMM versus CML 
and WESML under equal shares sampling, does matter for the variance of the 
estimator of 00, though not for that of 01. That the efficiency gain for the 
estimator is larger when the slope coefficient is smaller in absolute value is not 
surprising given the result in Lancaster and Imbens (1991) that if 01 = 0, 00 
converges faster than 1NK rate. 
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In the third set of simulations 00 is chosen to give a value of q closer to 1. 
The difference between random sampling and equal shares sampling becomes 
more pronounced. Given the equal shares sampling scheme, the WESML 
estimator performs markedly worse than the CML and GMM estimators, both 
in terms of variance and in terms of the difference between the asymptotic 
variance and the small sample variance. 

The differences between the results for the logit model and the probit model 
are mostly small. For the logit case it has been shown in Manski and Lerman 
(1977) that if the sampling scheme is ignored, the random sampling maximum 
likelihood estimator is still consistent for 01. This shows up in the table in the 
results for the RSML estimator with ES sampling. The estimates for 00 are 
severely biased, but those for 0, are not. For the probit model the bias in 01 is 
not zero, but relatively small. 

In general the conclusion is that it matters a lot for both 00 and 01 which 
sampling scheme is choosen, with equal shares sampling being significantly 
better than random sampling most of the time. For estimating 01, the CML and 
GMM estimator do about equally well. For estimating 00, especially if 01 is 
small, GMM does a lot better. This is important if the aim is not so much 
estimation of parameters but estimation of the conditional probabilities, which 
depend on both 01 and 00. 

5. CONCLUSION 

In this paper an alternative estimation procedure is proposed for choice-based 
samples. In choice-based samples the sampling is conditional on the dependent 
variable. Therefore standard maximum likelihood techniques do not apply if 
only the conditional distribution of the dependent variable given the explana- 
tory variables is parameterized. Various estimators have been proposed to deal 
with this problem. Some of them, the WESML and the CML estimators are not 
efficient. Cosslett's PML estimators are efficient but computationally demand- 
ing. 

In the new estimation procedure some of the problems with the previously 
proposed estimators are solved. The new estimator is efficient while the compu- 
tational burden is reduced compared to Cosslett's estimator. The case where 
the marginal probabilities of the choices are known and that where they are not 
known are both special cases of the general estimator. Efficiency is proven using 
recently developed concepts from semiparametric estimation. 

A small Monte-Carlo study suggests that for moderate values of the marginal 
probabilities the optimal estimator leads to significantly more accurate estimates 
for the intercepts, though there is no real gain for the slope coefficients. 

Dept. of Economics, Harvard University, Cambridge, MA 02138, U.S.A. 

Manuscript received May, 1990; final revision received May, 1992. 
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APPENDIX 

PROOF OF LEMMA 3.1: Suppose the logarithm of the likelihood function with N observations 
ZI, Z21 ... X ZN is L(,3) = E='=1 ln f(z, a]). The asymptotic covariance matrix V of FNQ(13I - *) is 

[ dlnf dlnf 
V=I(13)= E 

d,8 (Z, p*). aP (Z,l3*) 

Partition V and its inverse V-1 according to 81, 182, and 183: 

(V11 V12 V13 (Vll v12 v13 
V= V21 V22 V23 V- 1 V21 v22 v23 

V31 V32 V33 V31 V32 V33 

The variance of the constrained estimator of 13, and 183 given 82= 13* is 

( V1 V ) -1 ( (V11 _ V13(V33)-1V31) ) 
Since we could characterize the maximum likelihood estimates of f1 and f82 by 

N 

E hl(P,p, P2, Zn) = 0, 
n=1 

the asymptotic covariance matrix for 81 and 132 must satisfy 

(V11 V12 ~ r dhl 1 dh, 
V21 V22) = B ) [Ehh E I 

9(pB;B')]J 

The estimator for P1 given f82 = ,8* based on minimization of 

1 N ) N 
N Ehl(1,2* Zn) *CN- N E hj(Pj,P*,Zn 

n=1 n=1 

over f81 with CN _+ (Ehjh')-1 has asymptotic covariance matrix 

[[ 
dhl 

] 
Elh 

t]- 
E dh, 

]]V [(, ,v2v,)] =VIV2 'V21 
E- I [E1h'] I -i [(V11 - V12Vi22) VIIV2V22 

One can show that this is equal to [V1l- V13(V33)-1V31L]-1 by using the following relations that 
follow from the partitioning of V and V-1: 

I= VIIV11 + V12V21 + V13V31, 

O V21= + V22V21 + V23V31, 

0= V11V13 + V12V23 + V13V33, 

0= V21V13 + V22V23 + V23V33. Q.E.D. 

PROOF OF THEOREM 3.2: The assumptions made, (2.1)-(2.2) and (3.2)-(3.3) guarantee the 
conditions needed for standard theorems on generalized method of moments estimation to hold. 
See, for an extensive discussion and reference, Hansen (1982) and Manski (1988). Q.E.D. 

PROOF OF THEOREM 3.3: For ease of notation we will assume that X has density r(x) on X-7 For 
any 6 > 0 partition X into L. subsets X, in such a way that if 1 # m, X, n Xm = 0, and if x, z E Xi, 

7As it has been shown in Section 3.1 that the estimator is exactly maximum likelihood if the 
regressors have a discrete distribution, it is clear that we only have to look at the continuous case. 
The mixed case can be dealt with at the expense of additional notation. 



1212 GUIDO W. IMBENS 

then lix - zIl < e. Define 'lx to be equal to 1 if x E Xi and 0 otherwise, and 

re(X) = r(x)/[ ElixJr(z)dz] 

The sequence of parameterizations we will employ is indexed by e: 
L?_ 

H,P(i Ix, O)r,,(x) Eblolx 

gl(s i, X) L? 

E E 1J P(jIz,O)r?(z)dz 
jG -7(s)l=l Xi 

with re( ) a known function and H, 0, and a the unknown parameters. The dimension of the 
parameter vector (H, 0, S) is S-1 + K + L -1. If we are not interested in the estimator for cS we 
can eliminate it following exactly the same procedure used in Section 3.1 to eliminate 'I. Let 0, S, 
and H be the maximum likelihood estimators for 0, S, and H. Defining the maximum likelihood 
estimator of Q as 

Q( j)= E ?61f P(jIz9 @)r,?(z) dZ, 
1=1 xi 

we can characterize the maximum likelihood estimators for (H,0,Q) as GMM estimators with 
moments 

0Ijt(H, 0, Q, s, i, X) = Ht-I[s =t] 

4'e2j(H9 0,Q. s.i. x) 

-Q(j)- {EkixJ P(jIz9o)rA(z)dz/ 

[s E ElxJ P(i'Iz90)re(z)dz1} 

eH isS()z E Q(')> 
i' = (t) 

d9P 1 
= do-(ilx,0) Ht- a 

s L(t E lxJ P~(i' Iz, 0)r?(z) dz 

t=H i'F,)= Q' ) -(iIX9o) ~ ~ ~ Qi' 

ie$S(t)J 

In order to study the difference between the asymptotic covariance matrix T'? for this estimator and 
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that for the estimator in Theorem 3.2 (V= rF- 1AO(r6)- 1) it is convenient to define 

4P(i ix, 0) =E Eixf P(ilz, O)r(z) dz, 

edo 1=1 Xl 

and d; d2P/dO dO'(i Ix, 0) accordingly. The difference between the moments 'I' and if in (29)-(31) is 
that the latter depend on P(i Ix, 0), dP(i Ix, 0)/dO and d2P(i Ix, 0)/dOdo' while the former depend on 
d;P(i Ix, 0), dP/d0(i Ix, 0), and d d2P/dO dO'(i Ix, 0), with the functional dependence being the 
same. Define now 

Ae =Euie(H, Q,O, s,i, x) ie(H, Q,O, s,i, x)', 

and 

Fe=E- d(H'Q'0') 

Uniform convergence (in x and i) of d;P, P. dP/dO, and d; d2P/dO do' to P, dP/d0, and d2P/dod 0' 
then ensures that the limits of A, and rF equal A0 and ro respectively. This in turn implies that 
V? = f7 1A?(F'Y1 converges to V. Since no regular estimator can have an asymptotic variance lower 
than the Cramer-Rao bound, it cannot improve on the limit of this sequence and therefore it cannot 
improve on the asymptotic variance of the estimator in Theorem 3.2. 

The form of the proof suggests that it might be possible to extend the result to unbounded x. 
Then one would need conditions on P(i Ix, 0) that ensure that it is still possible to construct a 
partitioning of X that leads to uniform convergence of A, and rI to A0 and r respectively. Q.E.D. 
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