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An Efficient Method to Compute Transfer Function
of a Transformer From its Equivalent Circuit
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Abstract—The dynamics of an electrical network can completely
be described from the knowledge of its poles and zeros. Compu-
tation of poles and zeros of the transfer function (TF) of a trans-
former winding, represented as a coupled ladder network, involves
solution of a large-sized equivalent circuit. This paper presents a
novel solution based on state space analysis approach. It is shown,
how the linearly transformed state space formulation, together with
algebraic manipulations, can become useful. In the proposed for-
mulation, symbolic variables (i.e., Laplace variable, ) are suitably
manipulated, so as to render computations purely numerical. With
this feature, there is practically no limit on the size of networks and
topologies (including resistances to model losses) that can be repre-
sented. So, virtually any number of windings of a transformer can
be considered, permitting a comprehensive analysis of winding be-
havior and its interactions, that was until now severely limited, by
the simplifying assumptions imposed by existing methods.

Index Terms—Eigenvalues and diagonalization, poles and zeros,
state space analysis, transfer function, transformer.

I. INTRODUCTION

HV transformers are optimally designed to withstand a va-
riety of overvoltages and short circuit forces. Occurrence

of these events is natural, inevitable, and a main cause of trans-
former failures. Early detection and prevention of failures is
paramount. To this end, diagnostic testing and condition moni-
toring is a means that enables utilities in early detection of in-
cipient fault conditions. Among diagnostic methods that have
evolved, transfer function (TF) has been found suitable to de-
tect dielectric faults and mechanical deformations [1].

However, literature reveals that, improvement in interpreta-
tion of TF is essential, if a more meaningful assessment of the
condition of transformer has to be made using TF tool. One pos-
sibility that appears promising, as shown in [2], is to analyze
the transformer equivalent circuit i.e., poles and zeros of TF, by
considering all windings and its interactions. Further, it is well
known that, dynamics of any system or electrical network can
completely be described, when all the poles and zeros are explic-
itly known. Somehow, the influence of zeros in shaping TF has
so far not been fully unravelled. However, in [2], usefulness of
zeros in interpreting TF was demonstrated. It was shown, how
by knowing all zeros of TF (in addition to poles), occurrence
of a near pole-zero cancellation could be observed. This in turn
was shown responsible for imparting a unique shape to the TF
of an interleaved winding (compared to disc winding). So, in the
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same way, knowledge of zeros is naturally expected to be useful,
especially, when dealing with multiple windings and its interac-
tions [3]. Such an analysis might yield newer insights, based on
which, certain issues in TF and impulse behavior of windings
could be better explained.

In this context, an equivalent circuit representation to accu-
rately describe impulse phenomenon in transformers becomes
a necessity. These matters have extensively been studied and
many representations have been proposed. Amongst them, the
equivalent circuit considering all relevant capacitive and induc-
tive couplings is widely accepted and extensively used, as it is
known to capture most of the subtle aspects of, the transient re-
sponse due to full and chopped lightning impulses. Fig. 1 shows
the equivalent circuit of a two winding transformer. Calculating
its natural frequencies and voltage distribution are two major
topics of interest. The following are instances during such in-
vestigations that necessitate modeling, representation and solu-
tion of large-sized equivalent circuits.

• Increased number of sections (corresponding to even an
individual disk of the winding) might sometimes have to
be considered, with the aim of achieving finer representa-
tion for resolving all the natural frequencies and also for
higher accuracy.

• For an accurate understanding and interpretation of the
measured transfer function of a transformer, it is essential
that, all windings and its mutual interactions be considered
[3]. Further, its TF can naturally be expected to possess a
large number of natural frequencies and a fine structure as
well. To adequately represent these finer aspects, as well
as, to explain the genesis of TF of multi-winding trans-
former, all windings and their interactions need to be con-
sidered.

• Inclusion of losses (as resistances either in series or par-
allel or both) is required to make the terminal response
more realistic. This inclusion only adds to complexity of
solution, but not to network size.

As constants of the lumped parameter model are determined
using quasi-static approximations, they are valid only up to
about 2 MHz (an optimistic upper limit). So, this fundamental
limitation will naturally restrict the number of sections that
needs to be considered. Even if, one considers more number of
sections, the natural frequencies estimated above 2 MHz are
considered unreliable due to this limitation and hence have to
be discarded.

Therefore, it emerges that, formulations that can give explicit
information about all TF poles and zeros, and be suitable for
large-sized networks, are desirable.
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Fig. 1. Equivalent circuit of a two winding transformer with secondary short
circuited (or opened as the case may be).

II. EXISTING APPROACHES AND MOTIVATION

The equivalent circuit considered is shown in Fig. 1. For sake
of clarity, circuit elements of each section (in the two wind-
ings) are shown to be identical. However, a winding may be
represented by sections, the elements of which have unequal
values, to simulate conditions arising in partially/graded inter-
leaved windings, discontinuity due to tap winding being dif-
ferent from main winding, etc. A brief mention of methods to
solve circuit in Fig. 1, (for voltage distributions and natural fre-
quencies) is made below.

1) Although circuit analysis software can be used, they yield
only a plot of the resultant TF, and not the complete infor-
mation about TF poles and zeros. This is because, from
the TF plot, discrimination of two closely located poles,
very low-height poles, and those pole-zero pairs located
close to each other (resulting in near pole-zero cancella-
tions), will be difficult.

2) In the mid 1950s, a method was presented by Abetti et al.
[4] for the determination of the fundamental frequencies
and wave shapes of the primary winding with short-cir-
cuited secondary (with and without iron core). Nodal
analysis was used for analyzing the equivalent circuit
model of the system with two coupled windings. The
method described an iterative procedure and was shown
to yield natural frequencies for only small-sized circuit
models.

3) Solution methodology developed by Gururaj [5], in
1964, was based on eigenvalue approach. Essentially, the
method initially starts with forming the nodal admittance
matrix for the lossless case. The method described a pro-
cedure for determining natural frequencies and voltage
distributions, wherein, computations are entirely numer-
ical, i.e., without involving Laplace operator , and hence
applicable for large-sized networks. Recent discussions
with him revealed that, the method can also be extended
to cases where losses are included, as shown in Fig. 1.
However, since for each change in topology of the circuit

to be considered, a separate set of closed-form solutions
have to be derived, this approach was not pursued further.

4) In 1977, Degeneff [6] reported a similar approach starting
from the nodal admittance matrix expressed in the form-

(1)

where,
Nodal conductance matrix of dimension
Nodal capacitance matrix of dimension
Nodal reciprocal inductance matrix of dimension

Laplace operator
to obtain a general solution for determining voltage dis-
tribution in transformer windings. In this approach, the
requirement was that, the nodal matrices , and
should be frequency independent (i.e., free from ), a con-
dition that is naturally satisfied when losses are not con-
sidered. But, when losses are included, it is found that
nodal reciprocal inductance matrix will consist of in
it. It was remarked that, computation is cumbersome and
time-consuming when is involved, and so diagonaliza-
tion was suggested to reduce the burden.

5) In 1974, a solution approach based on state-space formu-
lation for calculating voltage oscillations in transformer
windings was presented by Fergestad et al. [7]. In this
work, poles of TF are computed directly as the eigen-
values of the system matrix, while zeros of TF were com-
puted by considering the inverse system, which, was nu-
merically not a straightforward procedure. Further, it was
stated that, the system becomes increasingly ill-condi-
tioned whenever a finer representation of the windings
(i.e., more number of sections) was used. This clearly sets
an upper limit to the size of the circuit model that can be
considered. Also, not all terminal conditions of the cir-
cuit can be easily accommodated, and hence, is another
restriction.

Therefore, from the first two sections, it follows that it is de-
sirable to develop a solution approach that has the following
features.

• Must be entirely numerical in nature and yield values of
TF poles and zeros.

• Impose no restriction on number of windings and sections,
terminal condition of neighboring windings.

• Provide a single formulation suitable for any configuration
of resistance (in series, parallel or both) for including loss.

• Be robust, free from numerical instabilities and ill-condi-
tioned matrices, and unaffected by repeated or large spread
in eigenvalues.

These also happen to be the objectives of this paper.

III. COMPUTATION OF TF BY STATE SPACE ANALYSIS

A powerful method to describe the dynamic behavior of a
system or network is the state-variable approach. Its universality
has been demonstrated extensively for network analysis by Kuh
and Rohrer [8]. Generality of the state space approach is due to
the fact that, it can be extended to time-variable and nonlinear
systems, where classic approaches would fail. Also, qualitative
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measures of network behavior i.e., passivity, time-invariance,
linearity, reciprocity and stability can be easily explained with
state variable characterization. Another advantage is that, the
system of first order differential equations obtained from this
approach lends itself readily to programming for numerical so-
lution on a digital computer.

A. Definitions

The state of a system may be considered as the least amount
of information that must be known about the given system at
a given time to determine its subsequent dynamics completely.
A suitable selection of the independent variables result in a set
of first order differential equations that are linearly independent
[9]. These variables and equations are known as state variables
and state equations respectively.

The most general form of the state equations of a linear, time-
invariant network is as follows:

(2)

(3)

where,
column vector of the state variables;
time derivatives of the state variables;
excitation or input vector;
response or output vector;
matrices of constant coefficients.

B. Choice of State Variables

For a system to be analyzed, though the selection of state vari-
ables is not unique, they are to be chosen so as to enable formu-
lation of state equations with least effort. A random selection
of state variables may increase the complexity of the solution
methodology and may also result in redundant equations. To
avoid such situations, there exist some guidelines for selecting
the state variables.

In physical terms, the state variables specify the energy stored
in a set of independent energy storage elements. It is thus natural
that, the number of state variables should be equal to the number
of energy storing elements of the network, provided there are
no tie sets of capacitors and cut sets of inductors. As the circuit
model (Fig. 1) has tie sets of capacitors within the winding and
between the windings, the count of state variables is less than the
number of energy storing elements by the number of capacitance
tie sets [10].

Based on this rationale, the currents through inductances and
voltages across shunt capacitances (excluding the capacitance
across the line terminal and datum of the primary winding) are
chosen as the desired set of state variables. Since voltage across
any series or interwinding capacitance can be expressed in terms
of the nodal voltages, voltages across these capacitances are ex-
cluded from the list of state variables.

For the circuit model shown in Fig. 1, the state variables are
assigned as below:

1) Inductor currents of the primary winding

2) Inductor currents of the secondary winding

3) Nodal voltages of the primary winding (excluding the
line end which is energised by the source)

4) Nodal voltages of the secondary winding (excluding
the line end node which is grounded)

Thus, the total number of state variables assigned to the cir-
cuit model is . Since, voltage across an in-
ductor or current through a capacitor is governed by a first order
differential equation, the formulation of the state equations be-
comes straightforward with the choice of these state variables.

C. State Model Formulation

State equations are to be formulated for a two winding trans-
former (Fig. 1) whose secondary is short circuited. Other sec-
ondary terminal conditions can similarly be considered. The ob-
jective here is to express the derivatives of the state variables in
terms of the state variables and the excitation.

1) Time Derivatives of the Inductor Currents: Let
and denote the voltages across the

inductances of the primary and secondary circuits respectively.
Let represent the self and mutual inductance matrix of the
circuit. Since, time derivatives of the inductance currents are
related to the voltages across the inductances as,

...

...

...

...

(4)

where, . Since, the voltage across the inductances
can be expressed in terms of the nodal voltages and with short
circuited secondary , the above gets modified to,

...

...

...

...

(5)

Let be a diagonal matrix such that,

(6)
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and let be constructed from such that,

,
,
, .

(7)

Using (6) and (7) and separating the nodal voltages and the re-
sistive drops, (5) simplifies to,

...

...

...

...

...

...

(8)

Let , and be the matrices relating the time derivatives
of the currents to the inductor currents, the nodal voltages (state
variables) and the input voltage respectively. They are expressed
as,

(9)

(10)

(11)

Hence (8) becomes,

...

...

...

...

...

...

(12)

Thus, the time derivatives of the inductor currents are related
to the inductor currents, the nodal voltages and the input voltage.

2) Time Derivatives of the Nodal Voltages: Applying KCL
for the circuit of Fig. 1, that is, the sum of the currents diverging
from the nodes through the inductances and the capacitances
equals the currents fed to the nodes, results in,

...

...

...

...

...

...

(13)

where, represents nodal capacitance matrix of the circuit.
The above equation can be written as,

...

...

...

...

...

...

(14)

where, is a matrix of dimension and
is expressed as,

(15)

Here, is a matrix of dimension and is expressed as,

...
...

...
...

(16)

and will be of the same form as that of but with a
dimension of . As the secondary is short circuited,

. Hence, (14) becomes,

...

...

...

...

...

...

(17)

where, is extracted from by eliminating its th
column.

As the line end nodes of both the primary and secondary are
clamped to potentials of (input voltage) and 0 (datum poten-
tial) respectively, the application of KCL to these nodes results
in redundant equations. In order to avoid redundancy, the corre-
sponding rows namely 1st and th are eliminated from
the matrix equation formulated so far. Elimination of these two
rows modifies (17) to,

...

...

...

...

...

...

(18)

where, and correspond to the matrices obtained by
eliminating 1st and th rows from and respec-
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tively. Separating the derivatives of the state variables and the
input voltage, the above equation can be modified as,

...

...

...

...

(19)

where, and are derived from such that,

(20)

(21)

Let and be the matrices relating the time derivatives of
the nodal voltages to the inductor currents and the time deriva-
tive of the input voltage respectively, that is,

(22)

(23)

With these assignments (19) can be written as,

...

...

...

...

(24)

Thus, the time derivatives of the nodal voltages are expressed
in terms of the inductor currents and the time derivative of the
input voltage.

3) State Equation: For the circuit model, state equation is
formulated by merging (12) and (24) as,

(25)

where, and represent the state variable vector and its first
derivative respectively, denotes the input vector and is ex-
pressed as,

(26)

and the coefficient matrices and are expressed as,

(27)

(28)

Thus, the time derivatives of the state variables are expressed
in terms of the state variables and the input vector.

Generally, state equations relate the first derivative of the state
variables to the state variables and the excitation, provided there

are no cut sets of inductors and tie sets of capacitors. Since ca-
pacitance tie sets are present in the circuit model shown in Fig. 1,
the state model developed has the input vector (26) consisting
of the first derivative of the input voltage in addition to the input
voltage [11].

4) Output Equation: Neutral current of the primary winding
is chosen as the output variable ’ ’ of the state model, so it is
to be expressed in terms of the state variables and the input

. From Fig. 1, it is obvious that, neutral current is the sum
of the currents through the inductance and the series capacitance
of th section of the primary winding, that is,

(29)

Using the definition of state variables and making use of (25),
the above equation can be rewritten as,

(30)

where, and represent th row of and
respectively. The first two terms of the above equation can

be merged together by assigning and
let, . Now, (30) modifies to,

(31)

Thus, the output variable of the state model is expressed in
terms of the state variables and the input vector. Equations (25)
and (31) together constitute the state model of the network.

IV. DETERMINATION OF TF POLES AND ZEROS

To find an analytical expression for transfer function, the
time domain state equations are to be transformed to -domain.
Applying Láplace transform to (25) and (31), and simplifying
them, leads to,

(32)

where, is an identity matrix of dimension same as that of .
Since,

(33)

Transfer function, which is defined as a ratio of the output
to the input voltage , is obtained as,

(34)

Using the above equation, it is possible to obtain a plot of TF by
assigning numerical values to ( , complex frequency)
over a wide range of frequencies. As already mentioned, such a
plot will not directly yield the complete information of all the
poles and zeros of TF.

A. Mathematical Intricacies in Computing TF

The evaluation of TF as per (34) requires the computation of
the inverse of a symbolic matrix which has symbolic
variable . Finding needs large time, even when
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is small. Hence, a method is explored for circumventing this
bottleneck.

Finding the inverse of a matrix becomes a much simpler op-
eration, if and only if, the matrix is diagonal. It is because the
inverse of such matrix is a diagonal matrix, whose diagonal el-
ements are just the reciprocal of the diagonal elements of the
matrix. With this in mind, the existing state model needs to be
transformed into another state model, where the system matrix
will be diagonal in nature.

B. Diagonalization of System Matrix

Diagonalising the system matrix can be achieved through
linear transformation, a well known technique [12]. It is to be
mentioned that, the transfer function is invariant through linear
transformation. If the basis of the vector space is changed
through a transformation matrix constructed from the eigen-
vectors of the system matrix , then it will result in a state
model, whose system matrix will be diagonal.

Eigenvalues of the system matrix are deter-
mined, from which the transformation matrix ( , called
modal matrix) is constructed such that, its columns are the
eigenvectors of . By performing linear transformation,

, (25) and (31) get transformed to,

(35)

(36)

where, , and
.

It is to be mentioned here that, is a diagonal matrix whose
elements are same as the eigenvalues of .
Equations (35) and (36) are now referred as the transformed
state model of the network considered. TF of the system is ob-
tained by using (34) with matrices replaced
by as below,

(37)

is a diagonal matrix. Although is computed
efficiently, the symbolic variable still continues to remain in
the TF expression and poses problems, especially when larger
networks are considered. A means of elimination of from the
actual computation process will be examined next.

C. Algebraic Method of Constructing TF

The procedure of constructing TF by means of extracting the
coefficients of the numerator and denominator polynomials is
explained here. Of the matrices involved in the TF expression,
the only symbolic matrix is , which is diagonal and
the rest of them are numeric in nature. This diagonal form easily
lends itself to algebraic manipulation, yielding the coefficients
of numerator and denominator polynomials of TF. Once the co-
efficients of these polynomials are obtained, then it becomes
straightforward to find their roots (poles and zeros). This ma-
nipulation is a crucial step and is explained below.

The transformed state model is characterized by the matrices
and they are of the form,

...
...

...
...

...

(38)

The inverse of the characteristic matrix becomes,

...
...

(39)

Let and is evaluated as,

...
...

(40)

The above can be simplified to,

(41)

where,

(42)

(43)

with , and expressed as,

(44)

(45)

(46)

Equation (37) can be rewritten as,

(47)

Substituting for and and simplifying the above equa-
tion results in,

(48)

where and represent the numerator and denominator
polynomials of TF respectively.
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Determination of Poles
Poles of TF are the roots of the polynomial . Referring

to (48) and (46) yields,

(49)

Therefore, poles of TF are which are same
as eigenvalues of the system matrix and have already been
determined.

Determination of Zeros
Zeros of TF are the roots of the polynomial . From (48),

(50)

Coefficients of the polynomial can be obtained through
the algebraic manipulation of the coefficients of polynomials

, and , which can be extracted, as illustrated
below.

Referring to (46), since is expressed as the product of
factors (each of the form ), the extraction of coef-

ficients from the polynomial having as its
roots becomes a simple task (a built-in function for extracting
coefficients of a polynomial with known roots, ’poly’ exists
in Matlab). The order of in the polynomial is and
hence the extracted values will correspond to the coefficients
of in the polynomial .

Similarly, coefficients of the polynomials and
can also be extracted from (44) and (45). The order of in these
polynomials is and hence the extracted values will cor-
respond to the coefficients of in both the
polynomials. Therefore, the extracted coefficients of the poly-
nomials can be expressed in a form shown below,

(51)

Coefficients of can be constructed easily from (51).
Summation of the coefficients of like powers of of the poly-
nomials involved in yields the coefficients of . For
doing so, coefficients of the polynomials , are to be
left-shifted by one position so as to have one-to-one correspon-
dence between the polynomials , and the coeffi-
cients representing them. Finally, zeros of TF are the roots of
the coefficients of thus obtained.

Since zeros and poles of TF are computed through manipu-
lation of the matrices which are numeric in nature, without in-
volving any symbol, the process will require lesser computing
time and memory. Thus, an entirely symbol-free computation of
poles and zeros of TF has been achieved.

At this juncture it must be pointed out that, the above de-
scribed method of manipulating matrices of TF equation to ar-
rive at a symbol-free computation, appears to be also applicable
(though not explicitly shown) for the approach described in [5]
and [6].

TABLE I
CPU TIME FOR PROPOSED METHOD

V. RESULTS AND DISCUSSION

The proposed method was implemented in MATLAB (ver-
sion 6). The CPU time (system used was P4, 1.8 GHz, 256 MB
RAM) needed to determine the poles and zeros of TF for the cir-
cuit in Fig. 1, with different number of sections per winding, are
presented in Table I (typical values of circuit parameters were
chosen).

1) It can be seen from Table I that, the state space anal-
ysis method is computationally very efficient and thus
enables even large-sized networks to be solved within a
reasonable time frame. The reason for considering 250
sections/winding is purely academic, and to show that,
the proposed method can handle networks of even such
huge dimensions without any difficulty. Thus, it implies
that, detailed modeling of transformer windings becomes
practical.

2) Sample results (TF plot, and its pole-zero plot) are shown
in Figs. 2 and 3 corresponding to a circuit (as in Fig. 1)
wherein the primary is interleaved and the secondary
is a disc winding (short circuited). Both neutrals are
grounded. With each winding represented by 10 sections,
the highest natural frequency is about 1.2 MHz. Fig. 2 is
the TF plot obtained by sweeping . Fig. 3 shows the TF
pole-zero plot where occurrence of near pole-zero cancel-
lations can easily be detected (by inspection of numerical
values), whereas the same is not so easy to comprehend
from the TF plot, especially when the incremental fre-
quency used to compute TF is not infinitesimally small.
Those of the zeros that lie closer to the -axis and in
close proximity to a pole will have a greater influence on
the resultant TF shape. Further, the minima of the TF plot
need not necessarily always correspond to the TF zero,
and this fact is evident from the pole-zero plot (zeros
have positive real parts). Thus, benefit of knowing both
poles and zeros is briefly mentioned.

3) Case studies were also carried out by varying the series
capacitance ( or ) so as to simulate different types of
windings (disc, interleaved). No problems were faced in
any of the cases (in spite of the existence of near pole-zero
cancellations), illustrating the robustness of the proposed
method.

4) It is also possible to determine the voltage distributions
at various nodes (since node voltages are the state vari-
ables and known) without much effort. The voltage distri-
bution at node 2 of the primary (for the system in Fig. 3) is
shown in Fig. 4(b) for a 1 p.u standard lightning impulse
(Fig. 4(a)) excitation.

5) The neutral current response to any full or chopped light-
ning impulse can also be easily determined. As an ex-
ample, Fig. 4(c) shows the neutral current response.
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Fig. 2. TF plot.

Fig. 3. TF pole-zero plot.

6) Diagonalization of the system matrix is a crucial
step, and hence it has to be ascertained, whether or not,
it is achievable under all conditions. Diagonalization is
possible, if and only if, there exist independent eigen-
vectors corresponding to eigenvalues. With distinct
eigenvalues, it is possible to find linearly independent
eigenvectors, posing no problem for diagonalization. But,
if an eigenvalue gets repeated ‘ ’ times, it need not
always be possible to find ‘ ’ independent eigenvectors
corresponding to . In such cases, suppose if, there is
a shortage of eigenvectors, then diagonalization will fail.
To find ‘ ’ independent eigenvectors corresponding to
the repeated eigenvalue , the necessary condition to be
satisfied is that, the rank of should be equal to

[12]. In order to verify these possibilities, simu-
lations were carried out for different terminal conditions,
from which the following points emerge.

• With secondary open circuited (with or without loss)
or secondary short circuited (with loss), there al-

Fig. 4. (A) Std. lightning impulse, (B) voltage at node 2, (C) neutral current.

ways existed distinct eigenvalues and hence in-
dependent eigenvectors.

• With secondary short circuited (lossless case), the
solution always results in an eigenvalue of
with a multiplicity of . In such lossless cases,
the rank of always equals , which
satisfies the above requirement.

(Note: An eigenvalue, at the origin, of multiplicity 2 should not
be interpreted as a double pole at the origin. The solution also
includes a zero at the origin cancelling one of the poles, thus
effectively leaving behind only one pole at the origin.)

The above findings demonstrate that, the system matrix is
always diagonalisable, irrespective of the terminal conditions,
thus, validating the solution method to be suitable for all ter-
minal conditions.

VI. CONCLUSIONS

In this paper, a novel method based on state space approach to
compute the poles and zeros of transfer function for an equiva-
lent circuit model of a transformer has been presented. The ver-
satility of the proposed method with reference to the number of
windings, ability to represent very large number of sections and
terminal conditions, require less computational time, and being
free from computational problems reported in earlier methods,
was clearly illustrated.
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