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Abstract

Mixed Gaussian and Random-valued impulse noise (RVIN) removal is still a big challenge

in the field of image denoising. Existing denoising algorithms have defects in denoising per-

formance and computational complexity. Based on the improved “detecting then filtering”

strategy and the idea of inpainting, this paper proposes an efficient method to remove mixed

Gaussian and RVIN. The proposed algorithm contains two phases: noise classification and

noise removal. The noise classifier is based on Adaptive center-weighted median filter

(ACWMF), three-sigma rule and extreme value processing. Different from the traditional

“detecting then filtering” strategy, a preliminary RVIN removal step is added to the noise

removal phase, which leads to three steps in this phase: preliminary RVIN removal, Gauss-

ian noise removal and final RVIN removal. Firstly, RVIN is processed to obtain a noisy

image approximately corrupted by Gaussian noise only. Subsequently, Gaussian noise is

re-estimated and then denoised by Block Matching and 3D filtering method (BM3D). At last,

the idea of inpainting is introduced to further remove RVIN. Extensive experimental results

demonstrate that the proposed method outperforms quantitatively and visually to the state-

of-the-art mixed Gaussian and RVIN removal methods. In addition, it greatly shortens the

computation time.

1. Introduction

Noise is everywhere in life, not only in the signal will have noise interference [1, 2], noise

removal in the image is also a big challenge. Noise is an inevitable random phenomenon in

images, which may degrades the visual quality of images, distorts its original content and bur-

dens any preprocessing step that may be undertaken [3]. Meanwhile, the existence of the noise

will also bring adverse effects to image analysis, recognition and interpretation in the later

stage. In practice, the most common types of noise introduced into images can be considered

as Gaussian noise and impulse noise [4]. Impulse noise can be further divided into salt and

pepper noise (SPN) and random-valued impulse noise (RVIN), where RVIN is more general

than SPN because SPN can be converted to RVIN in some cases. There are many studies on

the single noise image denoising of Gaussian noise or RVIN, such as the methods in [5–9] for

Gaussian noise removal and the algorithms in [10–14] for RVIN reduction. However, in most

cases, the noise contained in natural images may not be single, it can be regarded as a mixture
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of Gaussian noise and impulse noise. Based on the generality of RVIN, this paper aims to

study the noise removal of mixed Gaussian and RVIN.

Due to the totally different distributions of Gaussian noise and RVIN, applying the single

noise removal methods directly to remove mixed noise always leads to undesirable results.

Some important denoising methods for mixed Gaussian and RVIN noise removal based on

“detecting then filtering” strategy [4] has been found in recent years [15–22]. “Detecting then

filtering” is a strategy that detecting the impulse noise firstly, then abandoning them and using

the remaining pixels to estimate the original noise-free image. In 2005, Roman Garnett et al.

[15] proposed a trilateral filter (TF) based on this strategy to remove Gaussian and impulse

noise simultaneously. They defined a statistic named rank-ordered absolute differences

(ROAD) to detect impulse noise and further incorporated it into the bilateral filter (BF) for

mixed removal. TF can remove mixed noise effectively. But when the noise level is a bit high,

the denoised image is undesirable due to the lack of useful information in a local filtering

neighbor. Inspired by the “detecting then filtering” strategy, a two-phase approach [16] for

mixed Gaussian and impulse noise removal was proposed in 2008. First, it identifies the pixels

that are likely to be corrupted by the impulse noise, and removes them from the dataset. Then,

the image is deblurred and denoised simultaneously using essentially the noise-free data. How-

ever, the denoised image performs not very well because there are still some Gaussian noises

in the image. In 2011, Li Bing et al. [17] put forward a new method which called non-local

mixed noise filter (NLMNF) for mixed noise removal. Though it can remove Gaussian noise

and RVIN simultaneously, it suffers from unstable results when the images are corrupted with

a high level of mixed noise. In 2012, a method named ROR-NLM [18] was also presented

based on “detecting then filtering” strategy. By using the statistic robust outlyingness ratio

(ROR) to detect noise, the non-local means (NLM) filter [19] is extended to remove mixed

noise. However, due to the use of an iterative framework, this algorithm will take a lot of time.

Zhou et al. [20] proposed their method of restoring the image corrupted by mixed Gaussian

and RVIN in 2013. It used a detector based on Bayesian theory to detect noises and then

trained an adaptive overcomplete dictionary to get the final recovered image. However, this

algorithm is also time consuming due to the training of the structured dictionary. In 2016, a

new method named customized block-wise non-local means filter (CBNLMF) [21] was pro-

posed. This filter is based on block-wise NLM. Unfortunately, this algorithm does not perform

well for images with a lot of texture details. Later, Zhou et al. [21] proposed an image denoising

algorithm combining CBNLMF and sparse representation (SR) technique to remove mixed

Gaussian and RVIN. It used a CBNLMF-based detector to classify mixed noises and then

removed them by SR. Nevertheless, this algorithm still needs some time to operate. Yamagu-

chi, T et al. [22] proposed a new mixed noise removal method in 2017, which utilizing Direc-

tion Weighted Median filter (DWMF) [23] and Block Matching and 3D filtering method

(BM3D) [5]. This method leads to high performance of mixed noise removal. However, the

denoising effect still needs improve, especially at high noise levels.

Due to the limitations of the methods mentioned above [15–22], it is essential to design an

efficient method to deal with the mixed Gaussian and RVIN noise removal problem. Hence,

this paper proposes a new algorithm based on improved “detecting then filtering” strategy and

the idea of inpainting. It effectively addresses the mixed Gaussian and RVIN noise removal

problem and greatly reduces the computation time. In general, the proposed denoising algo-

rithm is divided into two phases: (i) noise classification phase and (ii) noise removal phase. In

the noise classification phase, we put forward a novel mixed noise classifier which based on

adaptive center weighted median filter (ACWMF) [24] and three-sigma rule [25]. In addition,

the extreme values similar to impulse noise are also processed. Compared with classifiers in

directional weighted median filter (DWMF) [23], 2013 Zhou’s [20] and 2016 Zhou’s [21], ours
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is fast and efficient. In the noise removal phase, different from the traditional “detecting then

filtering” strategy, we add a preliminary RVIN removal step to this phase, which leads to three

steps: (i) preliminary RVIN removal step, (ii) Gaussian noise removal step and (iii) final RVIN

removal step. At the first step, the adaptive median filter (AMF) is used on those noisy pixels

corrupted by RVIN for initial processing to obtain a noisy image approximately corrupted by

Gaussian noise only. At the second step, the Gaussian noise level is re-estimated first and then

the Gaussian noises, which are in the approximate Gaussian noise image obtained at the previ-

ous step, are removed by employing BM3D [5] algorithm. At the last step, the RVIN is

removed for the second time based on the idea of inpainting. Extensive experimental results

show that our proposed algorithm not only work well in mixed Gaussian and RVIN noise

removal, but also has minimal computation time compared with NLMNF [17], CBNLMF [21],

2013 Zhou’s [20], 2016 Zhou’s [21] and 2017 Yam’s [22] methods.

The rest of the paper is organized as follows. Section 2 introduces the noise model of mixed

Gaussian and RVIN. In Section 3, the proposed novel noise classification scheme for classify-

ing mixed noise pixels is described. Then, the proposed noise removal scheme based on the

improved “detecting then filtering” strategy and the idea of inpainting is presented in Section

4. The summary of the whole proposed denoising algorithm is given in Section 5. In Section 6,

experimental results and discussions are shown in the noise classification phase and noise

removal phase, respectively. Finally, the conclusion is drawn in Section 7.

2. Mixed Gaussian and RVIN noise model

The noise removal of a natural image corrupted by mixed Gaussian and RVIN remains a chal-

lenging problem in the field of image denoising. In general, images are destroyed first by

Gaussian noise in the acquisition process, and then by impulse noise in the transmission pro-

cess [3]. Therefore, the noise model of mixed Gaussian and RVIN, which denoted as Y, is

expressed as follows:

Yði; jÞ ¼
Rði; jÞ ; p ¼ p0

Xði; jÞ þ nði; jÞ ; p ¼ 1 � p0

(

ð1Þ

where (i, j) (i = 1, . . ., M. j = 1, . . ., N.) denotes the location of a pixel in the whole image, Y(i, j)
refers to the gray value of noisy image pixel, X(i, j) is the gray value of original noise-free

image, R(i, j) shows gray value of uniformly distributed noise in range [Xmin, Xmax] while p0 is

the probability of the RVIN, and n(i, j) stands for the noisy value which is drawn from a Gauss-

ian distribution with zero mean and σ standard deviation.

In this paper, we use σ&p0 to represent the mixed noise level, where σ denotes the standard

deviation of Gaussian noise and p0 refers to the probability of the RVIN. With the mixed noise

model, the goal of our image denoising method is to restore the unknown true pixels from the

pixels in Y which are corrupted by mixed Gaussian and RVIN. Since the distribution of mixed

noise cannot be described by a fixed function, different noise pixels should be considered dif-

ferently. Therefore, we first propose a noise classification algorithm to separate mixed noise

pixels.

3. Proposed noise classification scheme

The purpose of the noise classification phase is to separate the additive Gaussian noise and the

RVIN in the image, so as to further process the two kinds of noise separately. In our noise clas-

sification scheme, a good initial denoised image is obtained on the basis of ACWMF [24]

firstly. Then, according to the feature of mixed noise, three-sigma rule is employed to get the
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classification result. Finally, the extreme pixel values of similar impulses are processed to

achieve better classification. The proposed noise classifier is efficient and accurate. In Section

3.1, the acquisition of initial denoised image X̂ ðACWMFÞ based on ACWMF is described. The pro-

posed noise classification algorithm is generalized in Section 3.2.

3.1. Acquisition of initial denoised image X̂ ðACWMFÞ based on ACWMF

The first step of our proposed noise classification scheme is to acquire the initial denoised

image X̂ ðACWMFÞ, where the superscript “ACWMF” stands for the adaptive center weighted

median filter. Here, the ACWMF algorithm proposed in [24] is chosen to generate X̂ ðACWMFÞ

from Y. Motivated by the two advantages of ACWMF’s strong noise removal capability and

less time consumption, it can ensure the high efficiency of our mixed noise classifier.

ACWMF devises a novel adaptive operator, which forms estimates based on the differences

between the current pixels and the outputs of center-weighted median filter (CWMF) [24]

with varied center weights. The details are as follows.

Consider a window W defined symmetrically around the image coordinates of the current

pixel, which is described as:

W ¼ fðm; nÞj � a � m � a; � b � n � bg ð2Þ

where a, b are positive integer and the window size is defined as 2L + 1 (L> 0). Throughout

the following discussion, unless otherwise stated, the window size is assumed to be 3 × 3 (i.e.

a = b = 1, 2L + 1 = 9).

Let X(i, j) be the gray value of original noise-free image pixel at position (i, j). The gray

value of mixed noise image pixel Y(i, j) is obtained from the mixed noise model. The output of

CWMF [26], in which a weight adjustment is applied to the target noise image pixel Y(i, j) at

position (i, j) within the sliding window in order to obtain the denoised image, can be

described as:

X̂oði; jÞ ¼ medianðYoði; jÞÞ ð3Þ

where

Yoði; jÞ ¼ fYði � m; j � nÞ;o⬨Yði; jÞjðm;nÞ 2W; ðm;nÞ 6¼ ð0; 0Þ g ð4Þ

In the above equations, Y(i, j) is the gray value of current pixel (i, j) in mixed noise image,

X̂oði; jÞ refers to the output of CWMF which represents the estimated gray value of original

noiseless image X(i, j), ω = 2k + 1 denotes the center weight and k is the nonnegative integer.

When ω = 1, the standard median filter which expressed as X̂1ði; jÞ is obtained. Besides, opera-

tor ^ represents the repetition operation and W is the window defined above.

Define dk as the differences between the output of CWMF and noise pixels, the differences

dk is given by:

dk ¼ jX̂
oði; jÞ � Yði; jÞj ¼ jX̂2kþ1ði; jÞ � Yði; jÞj ð5Þ

where k = 0, 1, . . ., L−1. It is easy to know that dk� dk−1 (k� 1) based upon the derivation

shown in [27]. These differences provide information about the likelihood of corruption for

the current pixel.

Consider four thresholds Tk (k = 0,1,2,3), which are described as:

Tk ¼ s �MADþ dk ð6Þ
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where Tk< Tk−1 (k� 1), and MAD is a robust estimate of dispersion [28], which is given by:

MAD ¼ medianfjYði � m; j � nÞ � X̂1ði; jÞjjðm; nÞ 2Wg ð7Þ

where X̂1ði; jÞ is the output of standard median filter.

In this paper, parameters are set to [δ0, δ1, δ2, δ3] = [40, 25, 10, 5] and s = 0.6, which are

selected following the suggestions in original literature [24]. From the simulation conducted

on a broad variety of images, it has been observed that the selection above yields satisfactory

results.

In a word, the ACWMF can be realized as follows:

X̂ ðACWMFÞði; jÞ ¼
X̂1ði; jÞ; if9k; dk > Tk

Yði; jÞ; otherwise

(

ð8Þ

where X̂ ðACWMFÞði; jÞ denotes the output of ACWMF, Tk refers to a set of thresholds (k = 0, 1,

. . ., L − 1) where Tk< Tk−1 (k� 1), and dk is the difference defined above.

Specifically, if dk< Tk, the pixels are regarded as noise and then treated with SMF. Other-

wise, the current pixel remains unchanged. The algorithm of ACWMF is summarized in Algo-

rithm 1.
Algorithm 1. The algorithm of ACWMF.
Input: a mixed noise image Y corrupted by mixed Gaussian and RVIN
Output: a denoised image X̂ ðACWMFÞ

Step1: Calculate dk value according to Formula (5);
Step2: Calculate corresponding thresholds Tk according to Formulas

(6) and (7);
Step3: For every pixel, we estimate its true gray value X̂ ðACWMFÞði; jÞ

based on Formula (8). After processing all pixels, the denoised image
X̂ ðACWMFÞ is obtained.

3.2. Proposed mixed noise classifier

Based on the output of ACWMF, an absolute difference image between the noisy image Y and

denoised image X̂ ðACWMFÞ is obtained:

Id ¼ absðY � X̂ ðACWMFÞÞ ð9Þ

Here abs(�) represents the operation of getting the absolute value for every element in a matrix.

Since X̂ ðACWMFÞ is an initial estimation of the original noise-free image X, there are two types

of values in Id: One is the absolute value of Gaussian noise and the other is the difference

between impulse noise and the noise-free values. Three-sigma rule [25] is a classical statistical

method through which a simple threshold can use to differentiate the noisy pixels. Let l be a

label matrix corresponding to Y. Then,

lði; jÞ ¼
1; if Idði; jÞ � 3s

0; if Idði; jÞ > 3s

(

ð10Þ

where “1” represents the pixel corrupted by Gaussian noise, and “0” indicates that the pixel is

distorted by RVIN.

For better classification, two kinds of extreme values are processed: the maximum and the

minimum values of the mixed noise image, which can be recognized as impulse noise. It can

be realized as follows:

lði; jÞ ¼ 0; if Y ¼ Ymax or Ymin ð11Þ
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where Ymax and Ymin represent the maximum and minimum value in the mixed noise image

Y, respectively. The proposed novel mixed noise classifier is concluded in Algorithm 2.
Algorithm 2. The proposed mixed noise classifier.
Input: a mixed noise image Y corrupted by mixed Gaussian and RVIN
Output: a label matrix l labeling the type of every pixel in Y
Step1: Operate ACWMF filter for Y as Algorithm 1. and an initial

denoised image X̂ ðACWMFÞ is generated;
Step2: Construct an absolute difference image Id by

Id ¼ absðY � X̂ ðACWMFÞÞ;
Step3: Generate a label matrix l according to Formulas (10) and

(11).

4. Proposed noise removal scheme

After the noise classification phase, we separate the Gaussian noise and RVIN effectively.

Then, a noise removal scheme is needed to remove the mixed noise to restore the image. To

improve the “denoising then filtering” strategy, we added an initial step which named prelimi-

nary RVIN removal in the denoising stage. Therefore, the noise removal phase comprises

three steps: (i) preliminary RVIN removal, (ii) Gaussian noise removal, and (iii) final RVIN

removal.

4.1. Preliminary RVIN removal

Since the RVIN only destroys part of the pixels in the image while Gaussian noise destroys all

the pixels, it is inevitably to use the Gaussian noise in the surrounding neighborhood to esti-

mate the original pixel when removing the RVIN. So that there is still an error in the estima-

tion. Based on the above analysis, the first step that we perform in the noise removal phase is

the preliminary RVIN removal. Since the impulse noise destroys the pixel information, the

purpose of the preliminary RVIN removal step is to provide a pixel value containing image

information to the position of the impulse, which facilitates the Gaussian noise removal in the

next step. In the case of mixed Gaussian and RVIN, it is important to first suppress the RVIN

[29], so an impulse removal filter which is robust to Gaussian noise is need to use. Therefore,

the method applied in the preliminary RVIN removal step needs to meet the following two

conditions:

1. The algorithm is robust to the existence of Gaussian noise;

2. The algorithm is simple with fast speed.

Based on the above two conditions, the adaptive median filter (AMF) algorithm mentioned

in Fig 1 is chosen for preliminary RVIN removal. At this time, the pixel value at the RVIN

position is estimated by using pixels in its neighborhoods, which can be approximately

regarded as Gaussian noise, and then it can be removed as Gaussian noise in the following

steps.

AMF algorithm works with flow A and flow B, the flowchart is in Fig 1:

where W(i, j) is a window centered at (i, j) with (2a + 1)×(2b + 1) as window size. Zmed is

the median of the grayscale value in the window W(i, j). In the same way, we define Zmax as the

maximum and Zmin as the minimum, Z(i, j) represents the grayscale value at coordinate (i, j),
Wmax denotes the maximum allowed window in W(i, j). In this paper, we apply initial window

as W3×3 (i.e. a = b = 1) and Wmax as W5×5 (i.e. a = b = 2) which are selected based on a broad

variety of images simulation. Then, the output of AMF is named as X̂ ðAMFÞ.
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In a word, the proposed preliminary RVIN removal steps can be realized as follows:

X̂ ðpreÞði; jÞ ¼
X̂ ðAMFÞði; jÞ ; if pixelði; jÞ is recoginzed as RVIN

Yði; jÞ ; if pixelði; jÞ is recoginzed as Gaussian

(

ð12Þ

The pixels identified as RVIN in the noise classification phase are processed by AMF algo-

rithm in Fig 1, while the pixels classified into Gaussian noise remain unchanged. Through this

step, we obtain a noisy image approximately corrupted only by Gaussian noise through pre-

liminary processing of RVIN, which named as approximate Gaussian noisy image.

4.2. Gaussian noise removal

As the second step of noise removal phase, Gaussian noise removal is also very important. Due

to the fact that Gaussian noise destroys all pixels in the image, it is a great challenge to

completely remove Gaussian noise. The proposed Gaussian noise removal step is further

divided into two small steps: (i) Gaussian noise level re-estimation and (ii) Gaussian noise

removal by BM3D.

4.2.1. Gaussian noise level re-estimation. Since the approximate Gaussian noisy image is

obtained through the preliminary RVIN removal step, in which the RVIN after preliminary

processing is approximately regarded as Gaussian noise, it is necessary to re-estimate the

Gaussian noise level.

Here, the Gaussian noise level estimation method proposed in [30] is applied to re-estimate

the Gaussian noise level of the approximate Gaussian noisy image obtained in the preliminary

RVIN removal step. The method is described as follows.

When re-estimating Gaussian noise level, it is essential to re-estimate standard deviation σ
of the Gaussian noise. So first divide the whole approximate Gaussian noisy image into four

sub-images(sub-groups), and the sample variances of these four sub-groups are calculated

respectively. Then, the estimation of Gaussian noise variance ŝ2 is re-estimated by averaging

Fig 1. The flowchart of AMF algorithm.

https://doi.org/10.1371/journal.pone.0264793.g001
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all the sample variances:

ŝ2 ¼
1

ðM � NÞ2
XM

i¼1

XN

j¼1

sði; jÞ2 ð13Þ

where M×N refers to the size of approximate Gaussian noisy image and s(i, j)2 represents the

sample variances of sub-groups. At last, the estimation of the standard deviation ŝ we need is

obtained by taking the square root of the ŝ2. For more detailed information about this Gauss-

ian noise level estimation method, please refer to the literature [30].

4.2.2. Gaussian noise removal by BM3D. After re-estimating the Gaussian noise level,

the BM3D algorithm proposed in [5] is used to remove Gaussian noise in this step. BM3D

algorithm is a filtering algorithm based on 3-D transform and block-wise estimation. It con-

sists of two steps: (i) basic estimate and (ii) final estimate. In the first step, the noisy image to

be processed is divided into fixed size sub-groups and each block of image is estimated one by

one. Blocks are grouped according to how similar they are to the currently processed one and

then, they are stacked together in a 3-D array(group). Then, the collaborative hard-threshold-

ing is performed to the formed 3D group and finally the basic estimate of the true original

image from the overlapping blocks is computed by aggregation. The second step is using the

basic estimate, performing improved grouping and collaborative wiener filter. Above all, use

the basic estimate obtained in the first step to estimate each block for the second time. Through

blocking matching (BM), the locations of the blocks similarly to the currently processed one

can be found. After BM, two 3-D arrays (groups) are obtained: one is from the noisy image

and the other is from the basic estimate. Then, perform collaborative Wiener filter on the two

3-D arrays mentioned above. At last, the final estimate is computed by the weighted average of

the overlapping block estimations which obtained by aggregation. More algorithm details are

presented in S1 File. The output of the BM3D algorithm is named as X̂ ðBM3DÞ and the flowchart

of this algorithm is shown in Fig 2:

Fig 2. The flowchart of BM3D algorithm.

https://doi.org/10.1371/journal.pone.0264793.g002
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4.3. Final RVIN removal

The third step of the noise removal phase is the final RVIN noise removal step. It is assumed

that all the Gaussian noises in the image have been removed after the Gaussian noise removal

step. Obviously, the location of the RVIN is already known in the noise classification phase.

Hence, the final RVIN noise removal step only deals with the pixels at the RVIN position,

while the pixels in the neighbors used for estimating the original pixel are all regarded as clean

pixels. Pursuing the denoising performance, the idea of image inpainting is introduced into

this step to remove RVIN. The main idea of image inpainting is to use the observed informa-

tion to reconstruct the damaged or obscured area [31]. In this step, by cleverly combining the

idea of inpainting, the processing of damaged areas is transformed into the processing of the

points of RVIN. The inpainting method based on mixed median [32] is chosen to modify and

perform here. The details are in Algorithm 3.
Algorithm 3. The image inpainting algorithm based on the mixed median.
Input: X̂ ðBM3DÞ & label matrix l
Output: X̂ ðinpaintingÞ

Step1: Initialize the set of RVIN pixels YðRVINÞ ¼ ð1 � lÞ � X̂ ðBM3DÞ. For
every RVIN pixel in Y(RVIN), if there is at least one noise-free pixel
in W3×3 (the window of 3×3 size), eliminate RVIN pixels from W3×3 and
compute the median of the remaining pixels, then update Y(RVIN). Else if
do this process in W7×7 window as the same.
Step2: Initialize a dynamic window whose size starts from 3×3 and

increases by d = 1. For every RVIN pixel in Y(RVIN) obtained from the
step1, when there is at least one noise-free pixel in the considered
dynamic window, compute the maximum repetitive pixels values, and
evaluate the median of it, then update Y(RVIN). End this step until d >
dmax, where dmax = (min{M, N} − 1)/2. Finally, the X̂ ðinpaintingÞ is obtained.

In a word, the proposed final RVIN removal step can be realized as follows:

X̂ ðfinalÞði; jÞ ¼
X̂ ðinpaintingÞði; jÞ ; if pixelði; jÞ is recoginzed as RVIN

X̂ ðBM3DÞ ði; jÞ ; pixelði; jÞ remain

(

ð14Þ

The pixels identified as RVIN in the noise classification phase are processed by inpainting

method in Algorithm 3, while the remaining pixels remain unchanged at the last step.

Through this step, the final denoised image X̂ ðfinalÞ is obtained.

5. Summary of the proposed denoising scheme

In general, the proposed denoising algorithm is divided into two phases: (i) noise classification

phase and (ii) noise removal phase. The proposed novel mixed noise classifier is based on

ACWMF, three-sigma rules and extreme value processing. Based on the improved “detecting

then filtering” strategy, the noise removal phase contains three steps: (i) preliminary RVIN

removal step, (ii) Gaussian noise removal step, and (iii) final RVIN removal step. The idea of

inpainting is introduced to the final RVIN removal step. The flowchart of the whole proposed

denoising algorithm is in Fig 3.

6. Experimental results and discussion

To assess the capability of the proposed algorithm for mixed Gaussian and RVIN noise

removal, comprehensive numerical results and visual quality are compared with other state-

of-the-art methods. Now, the proposed algorithm is tested from two perspectives. One is the
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Fig 3. The proposed algorithm flowchart.

https://doi.org/10.1371/journal.pone.0264793.g003
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performance of noise classification in Section 6.1, the other is the image denoising perfor-

mance in Section 6.2.

6.1. Comparison of noise classification

For good performance, the capability of noise classification is exceedingly important. The per-

formance of the proposed noise classifier is compared with three state-of-the-art ones coping

with mixed Gaussian and RVIN. The compared methods are DWMF [23], 2013 Zhou’s [20]

and 2016 Zhou’s [21].

In this section, four noise classification evaluation indexes are introduced. They are Mis-

s_error [21], False_error [21], Total_error [21] and Computation time. Miss_error is the num-

ber of pixels distorted by RVIN but wrongly classified into Gaussian noise. False_error counts

the number of pixels corrupted by Gaussian noise but wrongly identified as RVIN. Total_error

equals to Miss_error plus False_error. Computation time refers to the running time of the

algorithm. By considering these four evaluation indexes in a comprehensive way, if Total_er-

ror and computation time of the proposed classification algorithm are the minimum among

these comparison methods mentioned above, we have the confidence to employ it into our

whole denoising algorithm.

To test our classifier in the noise classification phase, three standard test images: “House”,

“Boat” and “Barbara” are chosen. The selected images are shown in Fig 4, they are 512 × 512

size which have a dynamic range of pixels varying from 0 to 255. It is reasonable to select these

three images as the test images for they contain different level of edges and textures.

In Tables 1–3, the results of the noise classification evaluation indexes for noisy “House”,

“Boat” and “Barbara” images are presented. These noisy images are corrupted with different

mixed noise levels σ = 15, 20, 25, 30 & p0 = 0.2, 0.3. The simulated additive Gaussian noise is

with zero mean and four standard deviations σ = 15, 20, 25, 30. Meanwhile, the noise densities

p0 of RVIN are 0.2 and 0.3. The bold numbers in the tables are the smallest ones in the related

columns.

From the data in Tables 1–3, it is obvious that our proposed novel mixed noise classifier

can guarantee the lowest classification errors which defined as Total_error and the shortest

computation time at almost all the noise level, even when the noise level is as high as σ = 30 &

p0 = 0.3. So, there is no doubt that the proposed noise classifier is efficient and accurate. The

good noise classification performance benefits from the good initial denoised image obtained

by ACWMF, classical statistical principles of three-sigma rules and the treatment of extreme

values. Hence, we have the confidence to employ the proposed noise classification scheme into

our whole denoising algorithm.

Fig 4. Test images used in this paper.

https://doi.org/10.1371/journal.pone.0264793.g004

PLOS ONE Mixed noise denoising method

PLOS ONE | https://doi.org/10.1371/journal.pone.0264793 March 3, 2022 11 / 20

https://doi.org/10.1371/journal.pone.0264793.g004
https://doi.org/10.1371/journal.pone.0264793


6.2. Comparison of noise removal

6.2.1. Image quality metrics introduction. For quantitative performance evaluation, two

image quality metrics are employed. They are: peak signal to noise ratio (PSNR) and structural

similarity index (SSIM).

PSNR is one of the most classical metrics for image quality assessment (IQA). It is com-

puted as the ratio of the peak intensity value of the reference image to the RMS reconstruction

error relative to the reference. Also, its values are usually given in logarithmic decibel units

(dB). PSNR provides a global statistical similarity over intensity distribution [9]. PSNR is used

as quantitative measurement to compare the proposed method with different well-known

techniques. The PSNR is defined as:

PSNR ¼ 10log
10

255
ffiffiffiffiffiffiffiffiffiffi
MSE
p

� �

ð15Þ

where MSE is mean squared error and is defined as:

MSE ¼
1

M � N

XM

i¼1

XN

j¼1

ðXði; jÞ � X̂ ðfinalÞði; jÞÞ2 ð16Þ

In the above equations, X is the original noise-free image while X̂ ðfinalÞ is the output denoised

image, and M × N is the size of the image. The larger the PSNR value is, the better the denois-

ing effect is.

Table 1. Comparison of classifiers for noisy “House” with σ = 15,20,25,30&p0 = 0.2,0.3.

Classifier σ = 15&p0 = 0.2 σ = 15&p0 = 0.3

Miss_error False_error Total_error Time/s Miss_error False_error Total_error Time/s

DWMF 51850 3001 54851 3.30 76254 9529 85783 3.35

2013zhou’s 1088 2370 3458 121.06 2745 4734 7479 106.07

2016zhou’s 1941 532 2473 31.95 6795 830 7625 31.90

ours 1147 858 2005 0.009 1928 1049 2977 0.008

Classifier σ = 20&p0 = 0.2 σ = 20&p0 = 0.3

Miss_error False_error Total_error Time/s Miss_error False_error Total_error Time/s

DWMF 51783 3046 54829 3.36 76177 9599 85776 4.06

2013zhou’s 2044 2639 4683 143.58 4727 5821 10548 106.18

2016zhou’s 6571 523 7094 32.38 14104 680 14784 74.13

ours 3624 716 4340 0.009 5812 788 6600 0.009

Classifier σ = 25&p0 = 0.2 σ = 25&p0 = 0.3

Miss_error False_error Total_error Time/s Miss_error False_error Total_error Time/s

DWMF 51642 3188 54830 3.32 75964 9771 85735 3.29

2013zhou’s 6423 3254 9677 134.73 10358 6557 16915 137.20

2016zhou’s 13606 518 14124 94.84 24540 558 25098 92.34

ours 12190 609 12799 0.008 18487 583 19070 0.009

Classifier σ = 30&p0 = 0.2 σ = 30&p0 = 0.3

Miss_error False_error Total_error Time/s Miss_error False_error Total_error Time/s

DWMF 51459 3373 54832 3.38 75639 10083 85722 3.38

2013zhou’s 12651 2885 15536 115.55 18971 6749 25720 103.84

2016zhou’s 15602 474 16076 96.67 28771 587 29358 99.51

ours 14402 500 14902 0.008 21935 533 22468 0.009

https://doi.org/10.1371/journal.pone.0264793.t001
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SSIM [33] is based on the computation of three terms, which named as the luminance term,

the contrast term and the structural term. The overall index is a multiplicative combination of

the three terms. The SSIM is defined as:

SSIMðx; yÞ ¼ ½lðx; yÞ�a½cðx; yÞ�b½sðx; yÞ�g ð17Þ

lðx; yÞ ¼
2mxmy þ C1

m2
x þ m

2
y þ C1

ð18Þ

cðx; yÞ ¼
2sxsy þ C2

s2
x þ s

2
y þ C2

ð19Þ

sðx; yÞ ¼
sxy þ C3

sxsy þ C3

ð20Þ

where μx, μy, σx, σy and σxy are the local means, standard deviations, and cross-covariance for

images x, y. If α = β = γ = 1, and C3 = C2 / 2, the SSIM simplifies to:

SSIMðx; yÞ ¼
ð2mxmy þ C1Þð2sxy þ C2Þ

ðm2
x þ m

2
y þ C1Þðs

2
x þ s

2
y þ C2Þ

ð21Þ

Table 2. Comparison of classifiers for noisy “Boat” with σ = 15,20,25,30&p0 = 0.2,0.3.

Classifier σ = 15&p0 = 0.2 σ = 15&p0 = 0.3

Miss_error False_error Total_error Time/s Miss_error False_error Total_error Time/s

DWMF 51267 3750 55017 3.24 75454 10459 85913 3.26

2013zhou’s 3196 5908 9104 101.28 6047 9623 15670 101.10

2016zhou’s 4477 1803 6280 32.69 9958 2325 12283 31.91

ours 3041 3921 6962 0.0090 4561 3918 8479 0.0082

Classifier σ = 20&p0 = 0.2 σ = 20&p0 = 0.3

Miss_error False_error Total_error Time/s Miss_error False_error Total_error Time/s

DWMF 51025 4591 55616 3.37 75047 11187 86234 3.35

2013zhou’s 4392 4944 9336 101.69 8190 8432 16622 141.77

2016zhou’s 6240 1301 7541 58.95 12229 1625 13854 79.66

ours 4385 2395 6780 0.0086 6675 2571 9246 0.0079

Classifier σ = 25&p0 = 0.2 σ = 25&p0 = 0.3

Miss_error False_error Total_error Time/s Miss_error False_error Total_error Time/s

DWMF 50690 5432 56122 3.26 74544 12081 86625 3.26

2013zhou’s 5425 4651 10076 102.08 10153 8636 18789 113.54

2016zhou’s 8221 1104 9325 93.70 18506 1198 19704 106.79

ours 6022 1714 7736 0.0083 9279 1844 11123 0.0086

Classifier σ = 30&p0 = 0.2 σ = 30&p0 = 0.3

Miss_error False_error Total_error Time/s Miss_error False_error Total_error Time/s

DWMF 50388 6343 56731 3.36 74044 12935 86979 3.37

2013zhou’s 6880 4621 11501 188.68 12711 9337 22048 101.62

2016zhou’s 12317 852 13169 126.15 26359 945 27304 96.52

ours 9749 1333 11082 0.0080 15072 1474 16546 0.0077

https://doi.org/10.1371/journal.pone.0264793.t002
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Substitute the images x, y with the original clean image X and the output denoised image

X̂ ðfinalÞ when calculating SSIM. Similarly, the higher the value of SSIM is, the better the denois-

ing effect of the algorithm is.

6.2.2. Numerical results and visual quality. The denoising performance of the proposed

method is tested on three test images mentioned above in Fig 4. Consistent with the noise clas-

sification phase, we add different mixed noise level σ = 15, 20, 25, 30 & p0 = 0.2, 0.3 to the

above three test images in order to obtain mixed noise images. The performance of our whole

denoising algorithm is shown on numerical results and visual quality respectively. To validate

the superiority of the proposed method, its performance is compared in terms of PSNR, SSIM,

computation time and visual quality of the denoised images using the various methods avail-

able in literature such as NLMNF [17], CBNLMF [21], 2013 Zhou’s [20], 2016 Zhou’s [21] and

2017 Yam’s [22]. The parameters in these algorithms are set to values suggested by the authors.

All algorithms have been implemented using MATLAB 2019a (The MathWorks, Inc.,

Natick, MA, USA). Also, data processing was carried out on a Dell workstation system with a

2.80 GHz Intel Core i7 processor and 16 GB memory.

PSNR and SSIM comparisons of the proposed method and other baseline algorithms on

test images corrupted by mixed Gaussian and RVIN with different noise levels are tabulated in

Tables 4–6, respectively.

The bold numbers in Tables 4–6 are the best values in the related columns. It is clear from

the tables that the proposed denoising algorithm always generate the highest PSNR and SSIM.

So, it can demonstrate that the proposed method can generate the best denoised results what-

ever noisy image is and whatever noise level is. Especially in “Barbara” with the most detailed

Table 3. Comparison of classifiers for noisy “Barbara” with σ = 15,20,25,30&p0 = 0.2,0.3.

Classifier σ = 15&p0 = 0.2 σ = 15&p0 = 0.3

Miss_error False_error Total_error Time/s Miss_error False_error Total_error Time/s

DWMF 51663 3190 54853 3.31 75974 9801 85775 3.29

2013zhou’s 4150 6925 11075 164.53 8128 12716 20844 103.20

2016zhou’s 7378 2073 9451 34.07 16121 3250 19371 40.52

ours 4340 9915 14255 0.0078 6702 9107 15809 0.0085

Classifier σ = 20&p0 = 0.2 σ = 20&p0 = 0.3

Miss_error False_error Total_error Time/s Miss_error False_error Total_error Time/s

DWMF 51342 3808 55150 3.30 75445 10544 85989 3.38

2013zhou’s 7278 5228 12506 181.63 12978 11072 24050 173.99

2016zhou’s 10857 1505 12362 33.04 20034 2246 22280 77.79

ours 7364 5472 12836 0.0086 11352 5232 16584 0.0082

Classifier σ = 25&p0 = 0.2 σ = 25&p0 = 0.3

Miss_error False_error Total_error Time/s Miss_error False_error Total_error Time/s

DWMF 50828 4890 55718 3.39 74615 11842 86457 3.40

2013zhou’s 9448 5277 14725 192.73 16630 9960 26590 173.54

2016zhou’s 13590 1447 15037 92.30 25839 1828 27667 93.34

ours 10180 3361 13541 0.0077 15515 3078 18593 0.0084

Classifier σ = 30&p0 = 0.2 σ = 30&p0 = 0.3

Miss_error False_error Total_error Time/s Miss_error False_error Total_error Time/s

DWMF 50294 6149 56443 3.37 73852 13218 87070 3.39

2013zhou’s 11655 4847 16502 103.17 20217 10013 30230 103.40

2016zhou’s 17632 1120 18752 115.33 32313 1432 33745 93.42

ours 14167 2127 16294 0.0087 21564 2087 23651 0.0121

https://doi.org/10.1371/journal.pone.0264793.t003
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textures, NLMNF, CBNLMF, 2013 Zhou’s, 2016 Zhou’s and 2017 Yam’s do not perform well,

but ours still get best results in the values of PSNR and SSIM.

Now, we discuss the time complexity of our whole mixed noise algorithm. As shown in

Tables 7–9, five other related algorithms are chosen for comparison. Here, we operate the

MATLAB codes of the above six algorithms on the same platform- MATLAB 2019a. The com-

puter is equipped with Dell workstation system with a 2.80 GHz Intel Core i7 processor and 16

GB memory. The data in Tables 7–9 is the CPU consuming time of each algorithm. The bold

numbers are the smallest time in the related columns. Obviously, with the help of improved

“detecting then filtering” strategy and the idea of inpainting, the proposed method consumes

the least time among the six algorithms. In other words, our algorithm obtains the best denois-

ing performance in shortest time.

Table 4. Comparison of PSNR and SSIM for noisy “House” with σ = 15,20,25,30&p0 = 0.2,0.3.

Algorithm σ = 15&p0 = 0.2 σ = 15&p0 = 0.3 σ = 20&p0 = 0.2 σ = 20&p0 = 0.3

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NLMNF 32.19 0.851 26.10 0.722 30.99 0.816 25.14 0.667

CBNLMF 31.75 0.845 25.07 0.669 29.83 0.777 25.55 0.681

2013zhou’s 40.41 0.882 35.42 0.829 39.09 0.858 34.31 0.787

2016zhou’s 38.66 0.885 30.95 0.714 35.37 0.786 30.11 0.619

2017Yam’s 28.21 0.639 27.44 0.747 29.72 0.774 27.85 0.782

ours 42.75 0.925 41.09 0.903 40.55 0.891 38.39 0.845

Algorithm σ = 25&p0 = 0.2 σ = 25&p0 = 0.3 σ = 30&p0 = 0.2 σ = 30&p0 = 0.3

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NLMNF 29.56 0.768 24.14 0.603 28.09 0.714 22.91 0.535

CBNLMF 28.85 0.767 23.13 0.572 27.38 0.702 22.00 0.499

2013zhou’s 36.31 0.792 32.80 0.715 34.49 0.746 31.01 0.645

2016zhou’s 32.93 0.686 27.69 0.477 32.35 0.712 26.85 0.468

2017Yam’s 30.43 0.796 28.15 0.779 31.01 0.796 28.56 0.775

ours 38.05 0.858 35.42 0.798 36.95 0.850 34.25 0.789

https://doi.org/10.1371/journal.pone.0264793.t004

Table 5. Comparison of PSNR and SSIM for noisy “Boat” with σ = 15,20,25,30&p0 = 0.2,0.3.

Algorithm σ = 15&p0 = 0.2 σ = 15&p0 = 0.3 σ = 20&p0 = 0.2 σ = 20&p0 = 0.3

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NLMNF 26.87 0.712 23.09 0.601 26.22 0.685 22.53 0.566

CBNLMF 26.94 0.737 22.68 0.603 26.01 0.696 22.78 0.582

2013zhou’s 34.17 0.767 31.09 0.685 33.43 0.739 30.58 0.660

2016zhou’s 33.51 0.769 28.68 0.638 32.45 0.728 28.54 0.619

2017Yam’s 26.91 0.497 26.06 0.531 27.64 0.550 26.35 0.540

ours 35.86 0.811 34.96 0.794 34.90 0.786 33.89 0.763

Algorithm σ = 25&p0 = 0.2 σ = 25&p0 = 0.3 σ = 30&p0 = 0.2 σ = 30&p0 = 0.3

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NLMNF 25.52 0.654 21.86 0.527 24.78 0.619 21.16 0.486

CBNLMF 25.13 0.656 21.27 0.512 24.37 0.618 20.54 0.466

2013zhou’s 32.79 0.715 29.96 0.631 32.02 0.685 29.36 0.603

2016zhou’s 31.21 0.676 26.70 0.517 29.98 0.620 25.57 0.445

2017Yam’s 27.98 0.551 26.55 0.534 28.22 0.551 26.82 0.531

ours 34.00 0.758 32.84 0.728 32.90 0.726 31.40 0.680

https://doi.org/10.1371/journal.pone.0264793.t005
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Table 6. Comparison of PSNR and SSIM for noisy “Barbara” with σ = 15,20,25,30&p0 = 0.2,0.3.

Algorithm σ = 15&p0 = 0.2 σ = 15&p0 = 0.3 σ = 20&p0 = 0.2 σ = 20&p0 = 0.3

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NLMNF 25.90 0.780 21.51 0.645 25.10 0.743 21.00 0.601

CBNLMF 25.36 0.788 20.94 0.635 24.35 0.735 21.16 0.624

2013zhou’s 34.03 0.840 29.84 0.735 33.09 0.803 29.12 0.693

2016zhou’s 31.68 0.805 26.80 0.641 30.52 0.759 26.80 0.627

2017Yam’s 26.02 0.490 25.29 0.525 26.69 0.552 25.53 0.544

ours 34.51 0.866 33.20 0.837 34.02 0.847 32.51 0.810

Algorithm σ = 25&p0 = 0.2 σ = 25&p0 = 0.3 σ = 30&p0 = 0.2 σ = 30&p0 = 0.3

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NLMNF 24.32 0.700 20.48 0.557 23.54 0.656 19.86 0.511

CBNLMF 23.77 0.696 20.12 0.550 23.05 0.650 19.49 0.503

2013zhou’s 32.17 0.770 28.48 0.657 31.23 0.734 27.89 0.616

2016zhou’s 29.83 0.717 25.69 0.546 28.83 0.662 24.90 0.495

2017Yam’s 26.99 0.560 25.73 0.650 27.21 0.559 25.95 0.542

ours 33.30 0.822 31.61 0.775 32.28 0.784 30.36 0.727

https://doi.org/10.1371/journal.pone.0264793.t006

Table 7. Comparison of Time (seconds) for noisy “House” with σ = 15,20,25,30&p0 = 0.2,0.3.

Algorithm σ = 15&p0 = 0.2 σ = 15&p0 = 0.3 σ = 20&p0 = 0.2 σ = 20&p0 = 0.3 σ = 25&p0 = 0.2 σ = 25&p0 = 0.3 σ = 30&p0 = 0.2 σ = 30&p0 = 0.3

NLMNF 114.9 126.0 101.8 103.8 113.8 107.1 106.7 104.4

CBNLMF 32.1 31.7 32.5 87.1 93.7 93.8 114.1 131.5

2013zhou’s 348.6 263.1 261.1 272.3 289.8 393.2 310.8 286.5

2016zhou’s 53.27 123.2 64.9 155.2 127.7 280.9 135.1 442.9

2017Yam’s 11.0 11.2 10.8 11.2 11.0 11.1 11.0 10.9

ours 2.50 2.45 3.49 2.44 2.64 2.62 3.14 2.68

https://doi.org/10.1371/journal.pone.0264793.t007

Table 9. Comparison of Time (seconds) for noisy “Barbara” with σ = 15,20,25,30&p0 = 0.2,0.3.

Algorithm σ = 15&p0 = 0.2 σ = 15&p0 = 0.3 σ = 20&p0 = 0.2 σ = 20&p0 = 0.3 σ = 25&p0 = 0.2 σ = 25&p0 = 0.3 σ = 30&p0 = 0.2 σ = 30&p0 = 0.3

NLMNF 100.5 126.2 101.1 114.1 99.9 103.3 101.6 102.0

CBNLMF 46.0 48.3 32.5 74.7 96.9 142.0 93.2 145.6

2013zhou’s 459.4 466.5 419.3 341.9 374.3 345.3 387.0 290.9

2016zhou’s 294.9 660.7 484.1 710.5 312.6 738.0 349.7 874.7

2017Yam’s 11.4 11.0 10.9 10.9 10.9 10.9 10.7 11.0

ours 2.26 3.06 2.32 2.31 2.29 3.21 2.41 2.27

https://doi.org/10.1371/journal.pone.0264793.t009

Table 8. Comparison of Time (seconds) for noisy “Boat” with σ = 15,20,25,30&p0 = 0.2,0.3.

Algorithm σ = 15&p0 = 0.2 σ = 15&p0 = 0.3 σ = 20&p0 = 0.2 σ = 20&p0 = 0.3 σ = 25&p0 = 0.2 σ = 25&p0 = 0.3 σ = 30&p0 = 0.2 σ = 30&p0 = 0.3

NLMNF 100.2 112.4 101.8 102.8 103.0 101.4 206.8 103.3

CBNLMF 43.6 37.6 32.2 91.0 91.2 104.4 93.4 95.7

2013zhou’s 274.8 285.2 342.1 335.1 256.7 256.4 257.8 271.7

2016zhou’s 104.7 383.2 178.9 373.5 173.8 530.8 267.2 754.3

2017Yam’s 10.7 10.7 10.9 10.8 11.0 10.8 11.0 10.7

ours 2.30 3.20 2.42 2.39 2.38 2.40 3.17 3.19

https://doi.org/10.1371/journal.pone.0264793.t008
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In order to have a close-up observation to the noise removal images, some typical results

are chosen to show. They are denoised “House”, “Boat” and “Barbara” with the mixed noise

level of σ = 20 & p0 = 0.2. The denoised images compared with NLMNF [17], CBNLMF [21],

2013 Zhou’s [20], 2016 Zhou’s [21] and 2017 Yam’s [22] are shown in Figs 5–7.

Fig 5 shows the comparisons on visual results from the test cases on “House”. It can be

clearly observed that there are more fine structures remained in the “House” of the proposed

denoising algorithm shown in Fig 5e, especially some of the textures on the exterior walls.

However, the “House” images denoised by NLMNF, CBNLMF, 2013 Zhou’s, 2016 Zhou’s and

2017 Yam’s which shown in Fig 5b–5f respectively do not perform well. The denoised images

obtained by CBNLMF and 2016 Zhou’s are distorted a lot. 2017 Yam’s owns fast speed but the

image after denoising is a bit blurry. Furthermore, there are still some noises in these five

“House” images.

Fig 5. Results of different algorithm in denoised “House” with σ = 20&p0 = 0.2: (a) Mixed noise image; (b)

NLMNF; (c) CBNLMF; (d) 2013 Zhou’s; (e) 2016 Zhou’s; (f) 2017 Yam’s; (g) Proposed; (h) Original image.

https://doi.org/10.1371/journal.pone.0264793.g005

Fig 6. Results of different algorithm in denoised “Boat” with σ = 20&p0 = 0.2: (a) Mixed noise image; (b) NLMNF;

(c) CBNLMF; (d) 2013 Zhou’s; (e) 2016 Zhou’s; (f) 2017 Yam’s; (g) Proposed; (h) Original image.

https://doi.org/10.1371/journal.pone.0264793.g006
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Similar conclusions can be drawn from Figs 6 and 7, the texture details and edge structure

of the denoised image obtained by the algorithm in this paper are clearer and the visibility of

our denoised result is better. For instance, the boat and wave in Fig 6g is more clearer than

that in Fig 6b–6f. Especially in Fig 7, although there are most texture details in “Barbara”

image, the proposed algorithm in Fig 7g still preserves these textures well.

7. Conclusion

In this paper, we propose an efficient method for mixed Gaussian and RVIN noise removal.

Experimental results verify that the proposed algorithm performs well not only in noise classi-

fication phase but also in noise removal phase compared with several state-of-the-art methods.

The proposed mixed noise removal method has achieved good denoising performance both in

numerical results and visual quality, and greatly reduced the computation time.
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