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ABSTRACT

A simple two-node, linear, finite strip plate bending element based on Mindlin-
Reissner plate theory for the analysis of very thin to thick bridges, plates,

and axisymmetric shells is presented. The new transverse shear strains are

assumed for constant distribution in the two-node linear strip. The important

aspect is the choice of the points that relate the nodal displacements and
rotations through the locking transverse shear strains. The element stiff-

ness matrix is explicitly formulated for efficient computation and ease in com-

puter implementation. Numerical results showing the efficiency and predictive

capability of the element for analyzing plates with different supports, load-

ing conditions, and a wide range of thicknesses are given. The results show no

sign of the shear locking phenomenon.

*Institute for Computational Mechanics in Propulsion; work funded under

Space Act Agreement C99066G; affiliated with Case Western Reserve University.
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FINITE STRIP VERSUS FINITE ELEMENT

The finite strip method was first introduced by Cheung (1968a) for the analy-

sis of elastic plates. It became well known because of its advantages over the

conventional finite element method in the simplicity of the formulation and

the reduction in size as well as bandwidth of the assembled stiffness matrix.

The combined use of finite elements in one direction and Fourier-series expan-

sions in another direction makes it simple and computationally efficient for

analyzing a wide variety of structures (i.e., bridges, curved plates, sandwich

plates, composite plates, and axisymmetric shells).

In the early stage classical Kirchhoff thin-plate theory, which does not

account for shear deformation, was used (Cheung, 1968a and 1968b) and obviously

restricted to "thin" situations only. Later the transverse shear effect based

on Mindlin-Reissner plate theory (Mindlin, 1951) was included by Mawenya and

Davies (1974), and this was applicable to modeling thin plates as well as mod-

erately thick plates. However, despite its mathematical elegance overstiff

numerical results, often called "shear locking" effect, were detected when

using lower-order elements for analyzing thin and very thin structures. In

this presentation the emphasis is on developing a simple, low-order element

for general-purpose usage in thin and thick structures that will not produce

the shear locking phenomenon.

FINITE ELEMENT METHOD

(CONVENTIONAL)

FINITE STRIP METHOD

FORMULATION

• TOTALPOTENTIALENERGY
• MINDLIN REISSNERPLATETHEORY
• DISPLACEMENTBASE
• INTERPOLATIONIN ALL DIRECTIONS

• TOTAL POTENTIALENERGY
• MINDLIN REISSNERPLATE THEORY
• DISPLACEMENTBASE
• INTERPOLATIONIN XDIRECTION;

FOURIERSERIES IN YDIRECTION

PERFORMANCE

• ALMOSTALL TYPES OF BOUNDARY
CONDITIONS

• LARGEOVERALLMATRIX
• LARGEBANDWIDTH
• NORMALLYREQUIRESVERY FINE

MESH FOR LOW-ORDERELEMENT
• LOCKINGIN THIN SITUATION

• LIMITED TO SOME PARTICULAR
BOUNDARYCONDITION

• MUCH SMALLEROVERALLMATRIX
• MUCH SMALLER BANDWIDTH
• EXCELLENTPERFORMANCEFOR LOW

ORDERELEMENTAND COARSEMESH
• LOCKINGIN THIN SITUATION
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MINDLIN-REISSNERSTRIP ELEMENT FORMULATION

A two-node, linear strip element is formulated for static analysis of plate

structures. The midplane deflection and rotations are interpolated separately

as the products of the sum of the Fourier series in the y-direction and the

polynomial functions in the x-direction. The positive direction is shown

below. Only the simply supported case is considered. The loads are also

resolved into a sine series in the y-direction similar to the deflection. By

using the orthogonality properties of the harmonic series (Cheung, 1976), the

stiffness matrix is uncoupled. Note that the shear term of this stiffness

matrix is derived by using the troublesome transverse shear strains. Next

these strains will be replaced by the new assumed shear strains.
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ASSUMED STRAIN DISTRIBUTIONS

The finite strip formulation has some drawbacks. The element locks when the

structure is thin because it uses two-point Gauss quadrature integration for

both bending and shear stiffness. The shear stiffness terms overwhelm the

bending stiffness terms, and this leads to the overstiff element even though a

very fine mesh is used. Although selective and reduced integration is a well-

established approach, new assumed strain distributions are introduced to cir-

cumvent this locking phenomenon for transverse shear effects (MacNeal, 1982).

Note that these assumed shear strains are evenly distributed across the cross

sections and constrained to equal the troublesome shear strains at prespecified

points. The choice of these points is of paramount importance in evaluating

the predictive capability of the element even though the new assumed strains

are an integral part of the overall performance.
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CASESTUDIES- SHEAR LOCKING INVESTIGATION

The new finite strip element has been implemented into the finite element com-

puter program FEAP (Zienkiewicz, 1982) with relative ease. The subroutines

written in Fortran 77 for the formulation of the element stiffness matrix con-

sist of approximately 200 lines. Results of numerical benchmark problems are

presented to evaluate the performance of the element in different aspects:

mesh size and harmonic term convergence characteristics, shear locking phenome-

non as the thickness decreases, and shear force and bending moment prediction.

The "full" numerical integration is employed.

A benchmark problem is used to detect the shear locking effects. Using eight

strip elements with four nonzero harmonic terms and a Poisson's ratio _ of

0.3, a simply supported square plate subjected to two loading conditions, uni-

form and concentrated loads, is investigated for a range of aspect (span to

thickness) ratios from 5 to 105. The resulting central deflections of the

plate are normalized by the classical thin-plate solution (Timoshenko and

Wionowsky-Krieyer, 1959) and plotted below for both uniform and concentrated

loads. For the entire range of aspect ratios shear locking was not detected.

Note that the range of aspect ratios investigated varies from relatively thick

to very thin situations; therefore this strip element would be useful for a

wide range of applications, including the analysis of bridges, curved plates,
and axisymmetric shells.

.0050

.0045

.0040
CENTRAL

W(Dlqb 4) .003_
.0010

.0005

0

.014

.012

CENTRAL .010

W(Dlqb 4)

.008

.002

UNIFORMLOAD

m _ .0036
.0032

W(Dlqb4) .0028
• AT

\ xlb = 0.25.0024_

%

FINITE STRIP

ELEMENT

BIll "_ NEW

'_ _/_ FULL INTEGRATION

CONCENTRATEDLOAD

%

1 2 3 4 5

.007

W(Dlqb 4)
AT .006

xlb = 0.25 .002

.00

0 1 2 3 4 5

LOGIo (b/t)
CD-88-32475

2-299



CASE STUDIES - CONVERGENCE OF MESH SIZE

To assess the convergence characteristics predicted by the new element, we con-

sider here again the analysis of a simply supported, uniformly loaded square

plate with aspect ratio equal to i00 and _ = 0.3. For mesh convergence the

central deflections and central bending moments in the x- and y-directions are

tabulated for the four meshes as well as for the exact solution. The number of

available degrees of freedom for each mesh is shown as well. This gives a more

realistic view of the numerical computation cost. Graphical representation is

presented by plotting the percentage error of the central deflections and the

central bending moment in the x-direction versus mesh size. The rate of con-

vergence is rapid for both displacement and moment, with no sign of shear lock-

ing. As illustrated below, satisfactory convergence is reached by using four

strips.
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CASESTUDIES- CONVERGENCE OF HARMONIC TERM

For the convergence of the harmonic term an eight-strip element mesh is used.

The numerical results, tabulated with four nonzero harmonic terms, result in

fairly good convergence once again. Errors are less than 0.4 percent when the

third nonzero harmonic term is specified for both quantities. Note that this

element is a low-order, two-node strip. The numerical computation is minimal

but the convergence rate is relatively high.
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CASE STUDIES - PREDICTIONS OF SHEAR FORCE AND BENDING MOMENT

For a low-order element the standard finite strip formulation based on Mindlin-

Reissner plate theory is well recognized to predict accurate displacements and

fairly good bending moments when using the selective and reduced integration

technique (0nate and Suarez, 1983b). However, the shear force predictions are

poor and rarely found in the finite strip literature even though they are

desperately needed in designing structures such as bridges and slabs. There-

fore the shear force predictive capability of this new finite strip element is

presented here. Because of the limited number of cases of the analytical solu-

tion, only four cases for shear forces and one case for bending moment are

compared.

The uniformly loaded square plates involving a variety of support conditions

in the x-direction are investigated. In order to capture the steep gradient

of the dependent variables near the plate edge, a rather fine mesh is used in

the analysis with the new strip element. The resulting variations of shear

forces and bending moments across the center of the plate in the various cases

are plotted along with analytical solutions by Kant and Hinton (1983) and by

Kirchhoff plate theory. These analytical solutions based on Mindlin plate

theory assume transverse displacement and sectional rotations similar to those

for a standard finite strip element. Kant and Hinton (1983) claimed that the

analytical results compared favorably well with the finite strip method.

The results of shear force and bending moment, shown with the pertinent data

and boundary conditions, are in good agreement near the center of the plates.

In the regions further away from the center the differences start to magnify

and are average at 15 percent near the edge of the plate. However, the curves

for both solutions seem to follow the same pattern. Note that this new strip

element is only a simple, two-node linear element and its predictive capabili-

ties are shown to exceed its expectation.
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ylb = 0.5; b/t = 50; J,= 0.3; UNIFORM LOAD; FOUR NONZERO HARMONIC TERMS
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PROPERTIES OF NEW FINITE STRIP ELEMENT

A two-node linear strip element based on Mindlin-Reissner plate theory is

presented for the static analysis of bending plates. The new shear strain dis-

tributions are assumed and connected to the standard shear strains at the

preselected points. These points are chosen by following the guideline of

removing the shear locking phenomenon without the need for the "reduced inte-

gration" technique. Because of the uncoupling nature of the finite strip method
the element stiffness matrix can be explicitly formulated for efficient compu-

tations and computer implementation. On the basis of the results obtained,

the following properties can be stated:

- SIMPLE AND RELIABLE
• COMPUTATIONALLY EFFICIENT
• EASY FOR COMPUTER IMPLEMENTATION
• GOOD CONVERGENCE CHARACTERISTICS
• NO SHEAR LOCKING EFFECT FOR THIN SITUATION
• FAIRLY ACCURATE MOMENT AND SHEAR FORCE PREDICTIONS
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APPLICATIONS AND FUTURE DEVELOPMENT

Because of the simplicity of its formulation the application of the finite

strip method to the analysis of bridges, curved plates, and axisymmetric

shells is straightforward. Onate and Suarez (1983a) demonstrated this in

detail. Since the element stiffness matrix can be explicitly formulated, it

is very convenient for practical engineers to implement this element into

existing conventional finite element computer programs such as NFAP, developed

by Chang (1987). NFAP is available to general users here at the NASA Lewis

Research Center. Future research will involve extending the concept of this

strip element for geometrically nonlinear analysis.
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