
An efficient minimum-distance decoding
algorithm for convolutional error-correcting codes

W.H. Ng, M.S.E.E., Mem.I.E.E.E., and R.M.F. Goodman, B.Sc, Ph.D.

Indexing terms: Decoding, Error correction codes

Abstract

Minimum-distance decoding of convolutional codes has generally been considered impractical for other than
relatively short constraint length codes, because of the exponential growth in complexity with increasing constraint
length. The minimum-distance decoding algorithm proposed in the paper, however, uses a sequential decoding
approach to avoid an exponential growth in complexity with increasing constraint length, and also utilises the
distance and structural properties of convolutional codes to considerably reduce the amount of tree searching
needed to find the minimum-distance path. In this way the algorithm achieves a complexity that does not grow
exponentially with increasing constraint length, and is efficient for both long and short constraint length codes.
The algorithm consists of two main processes. Firstly, a direct-mapping scheme, which automatically finds the
minimum-distance path in a single mapping operation, is used to eliminate the need for all short back-up tree
searches. Secondly, when a longer back-up search is required, an efficient tree-searching scheme is used to minimise
the required search effort. The paper describes the complete algorithm and its theoretical basis, and examples of its
operation are given.

List of symbols

bm = maximum back-up distance in segments that can be per-
formed by direct mapping

V = number of code digits in one branch of a single-generator-
sequence convolutional code

K = constraint length of the code in segments
<& = generator sequence

g(2l) = an arbitrary code segment in ^ where i is a positive integer
0 < / < K - 1

S = initial code tree
«So = upper-half initial code tree
S\ = lower-half initial code tree

d(k) — minimum distance between half-trees of any fc-unit
v = received sequence
w = tentatively decoded sequence
t = test-error sequence

tb = the sequence consisting of the last b segments of t
\t\ = the weight of t

P(i) = the /th permissible path stored in the memory, a code path
selected from Si according to a set of criteria

bt — maximum back-up distance in segments for a given \t\
b0 = maximum back-up distance in segments after the back-up

reduction operation
b* = required back-up distance in segments

1 Introduction
It is well known that convolutional codes are capable of

performing better than block codes in most error-control applications.
For a particular application, the realisation of this superiority depends
on the efficiency and practicability of the decoding algorithm used. In
general, maximum-likelihood decoding (in the minimum-distance
sense) of short constraint length codes can be achieved by using the
Viterbi algorithm. However, to achieve low probabilities of sink bit
error rate (< 10"s) with minimum signal/noise ratio requirements, it is
necessary to use codes with long constraint length, and this renders
the usual Viterbi decoder impractical on the grounds of complexity.
In this case non-maximum-likelihood sequential decoding1 is usually
used, because its complexity is insensitive to constraint length. This
paper presents a minimum-distance decoding scheme whose complexity
does not grow exponentially with constraint length, and which
requires much less decoding effort than normal sequential decoding,
because of the elimination of needless tree searching.

If a convolutional code is represented by its (semi-infinite) tree
structure (Fig. 1), then encoding can be considered as the selection of
a path through the tree, one branch at a time, in accordance with the
message digits. The decoding operation then consists of determining
the correct path through the tree, given that the received digit
sequence, on which this determination is based, may contain errors.

A normal sequential decoder operates by computing the value of a
suitable metric based on the distance between the received sequence
and the (tentative) path being followed. If the metric exceeds some
running threshold, it indicates that the decoder may be following the

Paper 8028 E, first received 10th March and in revised form 30th August 1977'
Mr. Ng and Dr. Goodman are with the Department of Electronic Engineering,
University of Hull, Hull, England

PROC. IEE, Vol. 125, No. 2, FEBRUARY 1978

wrong path and that it is necessary to search for a better one. The de-
coder then backs up in a node-by-node manner, and searches for a
path that has a better metric value. If a better path is found then de-
coding continues along this new path, subject to the threshold con-
ditions being satisfied. If a better path cannot be found then either the
threshold value is loosened or a buffer overflow may occur. Because
the number of branches rises exponentially with depth in the tree.it
can be seen that the maximum decoding effort of such a scheme could
also rise exponentially with back-up distance. Several efficient
decoding algorithms have been proposed,2'3 but even so, the perfor-
mance of a sequential decoder is directly-related to the time available
for searching the tree, that is, the probability of a buffer overflow. In
addition, decoder operation is not maximum likelihood, because any
path that is chosen is not guaranteed to be the path at minimum dis-
tance from the received sequence, but rather a path that satisfies the
threshold conditions.

The algorithm presented in this paper is maximum likelihood in
that at every node the path chosen is guaranteed to be the path at
minimum distance from the received sequence. On the face of it,
such a decoding scheme would appear to be impractical, because every
path in the entire code tree would have to be tested at every forward
node extension to guarantee minimum distance from the received
sequence. However, the advantage to be gained from minimum-distance
decoding is the capability of spotting incorrect decoding paths as early
as possible. This has the effect of halving the number of branch-search
operations for every one segment reduction in back-up distance. The
algorithm presented differs from other convolutional decoding schemes
in that it finds the minimum-distance path, and utilises the distance
and structural properties of the particular convolutional code used, to
eliminate the need for testing the whole tree and also to substantially
reduce the required decoding effort in two main ways. Firstly, all
short searches with a back-up distance of up to bm nodes are
eliminated by a direct mapping scheme which guarantees that the path
chosen is at minimum distance from the received sequence. Thus a
maximum of 2 (6 m + 1)— 2 branch searches is replaced by a single
mapping operation. The value of bm depends on the storage available,
and would typically be in the range 10—20 for a half-rate code.
Secondly, when a back-up is required (because the path we are
searching for diverges at more than bm nodes back and cannot there-
fore be mapped to) we can not only derive a maximum back-up
distance, but also determine the exact nodes at which the divergence
might have occurred. As the number of these nodes is considerably
less than the total number of nodes between bm and the maximum
back-up distance, the number of searches required (which increases
exponentially with every node back) is very significantly reduced.

For reasons of brevity the discussion in this paper is limited to
hard-decision decoding of binary half-rate single-generator con-
volutional codes. The approach used, however, can be extended to
other codes and to soft-decision decoding.

This paper develops in the following way. Firstly we introduce the
distance and structural properties of convolutional codes that are
utilised in the algorithm, and describe the basic decoding strategy.
Next, the concept of decoding with permissible paths is described, and
then this is developed into the direct-mapping scheme for eliminating
all short back-up searches. The technique for minimising the number
of actual back-up searches is then outlined, and finally the algorithm
is summarised and discussed.

97

0020-3270/78/8028-0097 $1-50/0

2 Convolutional codes and their structural properties

In this section we introduce some of the distance and struc-
ture properties of single-generator convolutional codes that are
utilised in the decoding algorithm.

A single-generator convolutional code is one in which each message
digit is encoded individually into V code digits, where V is a positive
integer, giving a maximum information rate of 1/F. The Fcode digits
for each message digit depend on both the present message digit and
the K — 1 previous message digits, where K is the contraint length of
the code in segments. Such a code is generated by a A -̂segment
generator sequence <& = g{2°)g(2l)g(22).. .g(2K~1) and is a
systematic code if the first digit of each code segment is the same as
the corresponding message digit. The code can be represented by its
tree structure, the branches of which can be extended indefinitely
from any node (Fig. 1). Each branch has one segment of code digits
associated with it, and the code digits of the two branches stemming
from an arbitrary node are always ones-complements of each other.
Fig. 2 shows the first five segments of the code tree for the rate one-
half code used as an example in this paper, which has a fifty-segment
generator sequence.

The encoding operation is one of selecting a path through the tree
in accordance with the message digits. At each node the upper branch
is taken if the message digit is a zero, and the lower branch is taken if
it is a one.

g(0)

g(D

g(0)

g(D

g(2)

g(3)=g(2)®g(1)

g(0)

g(D

g(2)

g(3)

g(6)=g(A)©g(2)

g(7)=g(A)®g(3)

g(0)

g(D
g(2)

g(3)

g(5)

g(6)

g(7)

g(8)

g(9) = g(8)©g(1)

g(10)=g(8)©g(2)

g(11)=g(8)(Bg(3)

g(12)=g(8)<Bg(4)

g(13)=g(8)®g(5)

g(K)=g(8)ffig(6)

g(15)=g(8)®g(7)

Fig. 1
The development of a single-generator initial code tree, where
&=g(\)g(2)g(4)g(2*-1)

0

Ii

00

Sf-11

00

11

01""^

10

00

11

01

10

^00

11

01

10.

00

11

01

10

00

11

01

10

10

00

11

01

10

00

11

00
11
01
10
00
11
01
10
01
1 0
00
11
01
10
00
11

, 00
11
01
10
00
11
01
1 0
°110
00
11
01
10
00
11

Fig. 2
The development of the initial code tree for the half-rate code with
&= 11 01 00 01 00 . . .g(2K~l)

Consider, for any node in the infinite tree, all the paths that
extend k segments forward from that node. The resulting subtree is
referred to as a truncated tree, or fc-unit, and is divided into two half-
trees depending on which branch was chosen at the first node. The
initial code tree (S) is the fc-unit stemming from the very first node,
and is divided into the upper- and lower-half initial code trees (So and
Si, respectively).

We may now summarise several useful properties of these codes.
(a) The code is a group code. That is, if w and w' are two equal-

length code paths, belonging to the initial truncated tree 5, it implies
that there is a path x such that x = w ® w' is within S.

(b) If w and w' are paths in opposite halves of any it-unit, then
x = w®w' is a code path in the lower-half initial code tree S^.

(c) The distance between the two half trees of any it-unit is defined
as the minimum Hamming distance between pairs of paths, one from
each half tree. Consider the initial code tree. Because of the group
property, the minimum distance between the two halves of the initial
code tree is equal to the minimum distance between the all-zero
vector and all the paths in S,, that is, the minimum distance equals
the weight of the minimum-weight code path in S,.

(d) Combining properties (b) and (c) above, we can state that the
minimum distance between half trees of any fc-unit is equal to the
weight of the minimum-weight path in Sx. We can then define a
distance function d(.) such that d(k) is the minimum distance
between half trees of any fc-unit, and depends only on it, and not on
the fc-unit chosen. The guaranteed error-correcting capability of any
fc-unit is then T(k), where T(k) is the largest integer such that T(k) <
[d(k)~ I]/2. Table 1 shows the distance function d(.) for the half-
rate code used in this paper.

(e) From properties (b) and (d) we can easily see that \w ® w'\ >
d(k)and\w'\>d(k) — \w\, where \w\ denotes the weight of the
sequence w.

Table 1
DISTANCE FUNCTION d{.) FOR RATE ONE-HALF CODE

k <& d(k) k <g d(k)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

11
01
00
01
00
01
00
01
01
00
00
01
00
01
01
01
00
00
00
01
01
00
00
00
01

2
3
3
4
4
5
5
5
6
6
7
7
7
8
8
9
9
9
9
9
10
10
10
10
11

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

01
01
01
01
01
00
00 .
01
00'
01
01
00
00
01
01
00
01
00
01
00
01
00
01
01
00

11
11
11
12
12
12
12
13
13
13
14
14
14
14
15
15
15
15
16
16
16
16
17
17
17

3 The basic decoding strategy

Consider the notation:

v the received sequence, which differs from the transmitted sequence
due to errors
w the tentatively decoded sequence, a path in the code tree which is
the decoder's tentative version of the transmitted sequence
t = w®v the test-error sequence, which has ones in the positions
where w and v differ
tb the sequence consisting of the last b branches of the sequence t.

Our basic decoding strategy is then as follows. We always seek a
code path w which is at minimum distance |f| from the received
sequence v. In other words, a w is accepted to be the decoded
sequence if and only if for all other paths w' in the corresponding
truncated tree, w has minimum test-error weight. That is

\t\ = \w' ®v\ = \t'\

98 PROC. IEE, Vol. 125, No. 2, FEBRUARY 1978

We define the basic branch operation (b.b.o.) to be the decoding
action of a single branch forward extension which selects the latest
segment w, of w. Whenever a decoded path w is accepted as being the
minimum distance path, the decoder shifts out the earliest segment of
w, which is assumed to be a correct representation of the corre-
sponding segment of the transmitted sequence, and shifts in the newly
received segment vx of v. The b.b.o. then selects W\ to be the segment
closest in distance to vx.

For the half-rate code, the b.b.o. results in a w, that always has a
• test-error weight \tx\ = \wx ®vt\ < 1. Thus | r j is either 0 or 1. If we
assume that the new segment wt results from the extension of a path
that has minimum test-error weight, the following are implied. Firstly,
if |f, 1 = 0, the new path is guaranteed to have minimum test-error
weight, and the decoder returns to the b.b.o. Alternatively, if |f, | = 1,
it is possible that there exists some other path w' with smaller test
error weight \t'\ = \w' ®v\<\t\, and if so Ull = 0 and \t'\ = \t\— 1.
Proof of these assertions is given in Appendix 11.1.

Thus whenever the b.b.o. results in a \tx | = 1 the decoder either
automatically utilises the direct mapping scheme to eliminate the need
to search for w', or else determines whether or not a back up search
for w' is needed, and if so, how far to back up and how to conduct
the search.

4 Permissible path decoding

Let us assume that the decoder needs to search the 6-unit
which spans the last b segments of the code tree, for a w' with smaller
test-error weight. Following sequential decoding practice, this would
require a step-by-step back-up, with the basic branch-by-branch
encoding and examining method being used to calculate test-error
weights. This is obviously a very lengthy process. We now introduce
a systematic procedure for searching the 6-unit, which requires
considerably less effort than the method outlined above.

The procedure is based on property (b) of Section 2. This states
that w' can be directly derived by the modulo-2 operation w =
w ®x, where x is a truncated path in the lower-half initial code tree.
In addition

t' = w'®v = w®x®v = t®x

and so if w and w are in opposite halves of a fc-unit we can derive the
test-error weight of w by direct modulo-2 addition of t and the
fc-segment path x. This is still a cumbersome process, however, if all
2fe — 1 truncated paths with length k < b in the lower-half initial
6-unit have to be used to search for w'. We now introduce several
conditions which the x must satisfy because of the code structure.
This serves to reduce the x required to search the 6-unit to a very
small number in most cases of interest. The reduced set of paths
needed to search the 6-unit are called permissible paths, and denoted
by P.

The conditions are as follows:
(a) \P\ must be odd. Consider the following two cases:

(i) If \t\ is odd, \t'\ = \t\ — 1 implies \t'\ is even.
If |P| is even, then |r'| = \t ®P\ is odd.

(ii) If \t\ is even, \t'\ = \t\ — 1 implies |?'| is odd.
If \P\ is even, then \t'\ = \t®P\ is even.

In both cases \t'\ = |f| — 1 is contradicted when \P\ is even, and there-
fore |P| is odd.
(b) |/»il = l . a s | ^» , |= | r , ©f',| = U , | = l .
(c) \P\ < 2\t\ - 1. Now | r ' | = |f ®P\> \P\ - \t\.

If |P| > 2\t\ this implies |f'| > \t\, which is
a contradiction to \t'\ = \t\ — 1.

We may further restrict the number of permissible paths by imposing
a rule on the b.b.o. Because of the complement property, a rate one-
half code will always have a |f il < 1. That is, the last segment of t is
either 00, 01, or 10. For convenience, the quaternary digits 0, 1,2, 3
are used to represent branches in this paper from now on. Therefore,
11 is given by the quaternary digits 0,1 and 2, respectively.

When ki I = 1 it does not matter (in terms of distance) whether the
path giving t\ = 1 or tx = 2 has been chosen. Let us then impose the
condition that f, must either by 0 or 1, and eliminate the possibility
of t, = 2 . We may then further restrict the number of P, as the
following conditions now also have to be satisfied.
(d) Pi = l , a sP , = f ! ©f', = f, = 1.
(e) If P is longer than two segments,

Pi =t2 ®f'2 = 0 1 .
This assertion requires further explanation. Under the modified b.b.o,
the only possibilities for the last two segments of t are t2 = 00, 11, or
01. We consider each possibility in turn:

(i) If t2 = 0 0 , the path w must still be at minimum distance from v
since it is the b.b.o. extension from the decoded path having mini-
mum test-error weight. Therefore no search is required.

(ii) If /2 = 11, there exists the possibility of a w' with smaller test-
error weight. An examination of the lower-half initial code tree
(Fig. 3) shows that P= 31 satisfies the conditions for a two-segment
permissible path, these conditions being \P\ = 3 = odd, P{ = 1, and
\P\ = 3 < 2 U 2 | - 1 . Also there exists a t2 = t2 ®P= 11 ®31 = 20,
such that \t'2\ = |Z--21 — 1, and hence \t'\ = |f| — 1. We thus impose the
condition that for any tentatively decoded sequence w which has a |r|
with t2 = 11, we will directly replace w2 by w'2 — w2 ®P, and t2 by
t'i = t2 ©P, where P — 31, and then return to the b.b.o.

(iii) if t2 = 01, then t'2 = 0 0 and P2 = t2 © t'2 = 01. Assume
U'| = U | - 1 and |f'2| = l. Then as |f2| = | / 2 | = i we have [\t'\-
Ifal] = [l f | - | f 2 |] - 1 . Also as |f',| = |f,| - 1 = 0 we have |r'| -
\t\\= \t\ — \ti\. Thus t' should be the test-error sequence resulting
from a b.b.o. extension of a path with minimum test-error weight,
rather than t. Hence \t'2\ = 0 and therefore P2 = 01 for all P longer
than two branches.

Fig. 3 shows the first six segments of the lower-half initial code
tree. Each segment is represented as a quaternary digit, and the
number in the upper right-hand corner gives the weight of the code
path up to that segment. A number in the lower right-hand corner
indicates a permissible path, and gives the sequential order i of the
permissible path Piiy It can be seen that there are only three permiss-
ible paths which satisfy the conditions on P. These are /*(,) = 31,
P(2) = 32201 and P (3) = 310101. It is therefore possible to search
the entire 6-unit without back-up, by making only three test-error
weight comparisons based on | f ' |= \t®P\. In the next Section we
eliminate the need for even this small number of comparisons.

5 Direct-mapping decoding

In this Section we introduce a direct-mapping scheme to
eliminate all short back-up searches. In the Section it was shown pre-
vious that if the last two segments oft are t2 = 11, we can always find a
path with smaller test-error weight, |f'| = \t\ — 1 < |f|, by directly
changing w to w' = w ®/ \ i) . The direct mapping scheme is an
extension of this. In the scheme a set of test error patterns and
corresponding permissible paths are stored, and utilised to directly
change w to w' = w ®/*(,)•

To specify which test-error patterns do not have minimum weight,
and should therefore be replaced by some t' during the decoding
process, we need to build up a minimum test-error pattern tree. The
tree is shown in Fig. 4 and starts with the b.b.o. from the very
beginning. At each node in the tree the length of the test-error pattern
increases by one segment. Also, we know that there are only two
possibilities for f, at each b.b.o. extension, and so two branches stem
from each node in the tree.

Starting from the first node, there are only two possible one-
segment test-error sequences, 0 and 1. After the next b.b.o. extension
there are four possible test-error sequences, 00, 01, 10 and 11.
However, i2 = 11 is not a minimum test-error pattern because there is
a t'2 = t2 ®P(iy = 20 with smaller. weight. We therefore replace
12 = 11 by 12 = 20 in the tree and assume that whenever a 12 = 11 is
encountered, the decoder directly maps t to t' = t®P^ty, and w is
mapped to w' = w®P (i) . We continue building up the tree in a
similar manner, such that each entry is guaranteed to be a minimum
test-error pattern. In this way, we can build up a set of test-error
patterns tb and corresponding permissible paths /*(,), for which
\t'\= I? ®.P(0| = \t\ — 1 < \t\. Note that the test-error patterns in
the upper half of the tree are the same as those in the lower half,
preceded by one or more zeros. The search for the tb can therefore
be confined to the lower-half tree only.

Fig. 4 shows the first five segments of the minimum test-error
pattern tree. The underlined sequences show where a tb has been
mapped to t'b = tb ®P(i), and the value of / is given in the lower
right corner of that entry. The weight of each minimum test error
pattern t is given in the upper right corner of each entry. Table 2
shows all the tb for b < 10 segments, together with their correspond-
ing t'b - tb © P{i). TheP (0 used are shown in Table 3.

A direct mapping decoder operating on this principle would there-
fore store the tb and corresponding P(i) in memory. Decoding pro-
ceeds by using the b.b.o., and whenever the tentatively decoded
sequence w has a t whose last b segments exactly match a pattern tb

stored in memory, we directly map t to t' = t®P^y and w to w' =
w © /*(,-). No searching for w' is therefore necessary. If t is such that its
tail sequence does not match any stored tb, then either t has mini-
mum test-error weight, in which case the decoder can return to the
b.b.o., or the required tb and Pu) are ones which have not been
stored. This latter case is dealt with in more detail later.

PROC. IEE, Vol. 125, No. 2, FEBRUARY 1978 99

Table 2
TOTAL tb AND t'b FOR FIRST TEN SEGMENTS OF MINIMUM TEST-ERROR PATTERN TREE

b

2
5
5
5
6
6
8
8
8
8
8
8
8
8
9
9
9
9

10
10
10
10
10
10
10
10
10
10
10
10

11 10

1
2
1
1
2
1
2
3
3
2
2
2

9

1
1
1
1
0
0
1
0
0
1
0
0
0
0
3
3

8

1
2
1
2
1
2
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

7

0
0
2
2
0
0
2
2
0
1
0
2
1
1
0
0
0
0
2
0
0
0
0
0

6

1
2
0
0
0
0
2
2
0
0
1
0
2
0
0
0
0
2
2
0
0
0
0
1
0
0

5

1
2
1
0
0
2
2
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

4

0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
1
1
2
2
2
1
1
1
1
2
1
0
0
0

3

•2
2
1
1
1
1
1
1
1
2
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
2
1
2

2

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

/ o f P (0

1
2
2
3
3
3
4
4
4
4
5
5
5
5
6
7
8
8
7
7
7
8
8
8
8
7
8
9

10
11

12 11 10

3
3
3
2
1
2
2
1
2
1

1
3 3

3 2 0

t'b

9

2
0
0
0
1
1
0
1
1
0
1
1
1
2
0
0

= tb

8

2
1
2
1
2
1
2
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

®PO

7

2
2
0
0
2
2
0
0
0
0
2
0
0
0
1
2
2
2
0
1
2
1
0
0

6

3
2
1
1
1
1
1
0
0
2
2
0
0
0
2
0
0
0
0
0
2
2
0
2
0
0
0

5

2
1
0
1
1
0
0
2
2
0
0
0
0
1
2
0
0
2
2
2
0
0
0
0
2
0
2
0
0

4

2
2
0
0
0
0
0
0
0
2
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2

3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2

2
0

.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Table 3
REQUIRED P{ AND EXPONENTIAL GROWTH OF THEIR APPLICATION

Pa0) (0

12 11 10 9 7 6 5 4 3 2 1 10 7 6 5 4 3 2 1

3 1

3 2 2 0 1

3 1 0 1 0 1
3 2 1 2 0 1 0
3 2 2 0 2 2 0

3 1 0 1 3 0 0 0
3 1 0 1 0 2 2 0 0
3 1 0 2 2 0 1 0 0
3 2 1 1 1 2 0 2 0 1
1 3 0 0 0 0 0 2 0 1
2 3 0 0 0 0 2 1 0 1

83 31 19 11 3 2 2 - 1 -

8 4 2 1 - 2

9 5 4 1 2 1 -
3 - 4 - -r- -
2 - 4 -

_ i _, _
3 1 - -
4 3 -

A [P(i)\ is the number of applications of Pyy used in developing the 6th segment of the minimum test-error
tree

Table 4
COMPARISON OF GROWTH RATES BETWEEN d(k) AND \t(k)max\

d(k)a d(k)min U(k)r

1
2
3
4
5
6
7
8
9

10

2
3
4
5
6
7
8
9

10
11

Table 5
MAXIMUM BACK-UP DISTANCE bt FOR DIFFERENT VALUES OF \t\

U\ d(bt)

3
5
7
9

11
13
15
17

• 2
6

11
16
25
33
40
48

Table 6
THRESHOLD CONDITIONS T*(b) ON BACK-UP DISTANCE b* = b

T*(b) T*(b)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

9
9
9
9
9
9
9
9

10
10

100 PROC. IEE, Vol. 125, No. 2, FEBRUARY 1978

An example of direct mapping decoding is shown in Fig. 5. The
received sequence v has been obtained from an all-zero transmitted
sequence, and contains four errors. The decoder starts by using the
b.b.o., and whenever the tail of the test-error sequence matches one of
the patterns in Table 2 a mapping operation is performed. The lines
show the path taken by the decoder through the code tree. Each
segment of w is given above the path, and the corresponding segment
of f appears below the path. It can be seen that to correctly decode
the 12-segment received sequence, it is necessary only to perform 12
b.b.o.s and four mapping operations. This is considerably less than the
decoding effort required by other sequential decoding schemes to
correct the same pattern of errors.

The range over which direct mapping can be operated in a prac-
tical decoder depends on the storage requirements of the tb and P^y
This range, in segments, will be denoted bm. For example, Table 2
shows that 30 tb and 11 P(l) are needed to operate direct mapping
over bm = 10 segments.

An idea of the growth rate of the number of P^ required can be
obtained by considering condition (c) in Section 4, which states that
\P\<2\t\. As P is a path in the lower-half initial code tree, we can
compare the weight of P to that of other paths in the lower-half
initial code tree, as follows, bet d(k)min be the minimum distance of
the code, that is, the weight of the minimum-weight path in the lower-
half initial fc-unit, and d(k)aue be the average weight of paths in the
lower-half initial fc-unit. If \t(k)\max is the maximum weight of
^-segment test-error patterns, then in the worst case \P\ < 2\t(k)\max.
Table 4 compares \t(k)\max, d(k)min, and d(k)me for fc< 10. From
this Table it can be seen that the growth rate of \t(k)\max is not only
less than the growth rate of d{k)me, but also less than that of d{k)min.
This indicates that the growth rate of \P\ with increasing k is very
slow, and also that the number of required P increases slowly with k,
because \P\ must be much less than d(k)ave and only just larger than
d(k)mln.

The slow growth in the number of new P that must be stored as
bm is extended also limits the growth rate of the number of new tb

that must be stored. Thus, although the number of possible mappings
increases exponentially with k, most of these are performed with
permissible paths of length less than k. It is therefore the number of
applications of existing tb (and correspondingly P(i)) that grows
exponentially with k, rather than the number of new tb. This is shown
in Table 3. For example, in developing the minimum test-error pattern
tree from 1 segment to 2 segments deep, /"(i) is used once. However,
when extending the tree from nine segments to 10, P^) is used 83
times.

Note that direct mapping can be used by itself as a sub-optimum
minimum-distance decoding procedure. In this case, if tx = 1 and the
tail sequence of f does not match any pattern in store, we must
consider the possibility that w' (which has |f'| = |f| — 1) diverges
from w at greater than bm nodes back. The earliest segment of w
(which may or may not be in error) is then shifted out of the decoder,
which reverts to the b.b.o. and direct mapping. A sub-optimum direct-
mapping decoder of this type therefore does no searching at all, but
will sometimes accept errors and then recover to the correct path in
time.

The algorithm proposed in this paper, however, uses direct map-
ping to eliminate all short back-up searches, up to a maximum range
of bm nodes. If tx = 1 and no direct mapping is possible, then either
w has minimum test-error weight or else w' diverges from w at greater
than bm nodes back. The next Section deals with the method for
determining whether or not w has minimum test-error weight, and if
not, how to determine the nodes at which it is possible for a w' with
|f'| = If| - 1 < \t\ to diverge from w.

6 Determination of the back-up distance

In this Section we examine the course of action to be taken if
|fil = 1 and direct mapping is not possible. Some of the results
utilised are based on our previous work,4 and are therefore only
summarised here.

The first question to be answered is whether or not a back-up
search is necessary. That is, whether or not there is a possible w with
|f'I = |f| — 1 that diverges from w at greater than bm nodes back. If
the answer to this is no, then w is at minimum distance from the
received sequence v, and the decoder returns to the b.b.o.

To answer this question we utilise an upper bound bt on the
back-up distance. The bound states that when w (with \t\\ = 1) is the
b.b.o. extension of a path having minimum test-error weight, and if
there exists a w' with |f'| < |f|, then w' diverges from w at most bt

nodes back, where bt is the minimum value of i such that

d(i) = 2|f| - 1 0)
Thus if bt < bm no search is necessary. The bound is proved in
Appendix 11.3, and Table 5 shows bt for various |f|. Ubt>bm then
it is still possible that a search for w' will be needed. In this case the
first thing that must be done is to obtain an improved (lower) value of
bt, which is denoted bo. The process of reducing the maximum
required back-up distance from bt to bo is referred to as the back-up
reduction operation (b.r.o.), and is explained as follows.

2

/

/ /

3

\

3

/

Q

• 3

1

\

\
\

2

3

o - ^
y

.•3

4

1

4

2

0

1

2

3

4

,

4

5

7

r.

5

4

6

, . 0 —

3

2

0

3

2

2

0

3

•

2

0

4
_

6

5

5

5

7

8

ft

6

6

5

7

5

5

6

6

. 1
2
0
3
1
2
0
3
C
3
1
2
0
3
1
2
1
2
r

3
1
p

C
3
0
3
1
2
0
3
1
2

©
5
6
R

e
8
5
-7

5
7

e
8
8

10
9

9

7
7

6
8

6
<=

7
9

5
7
6

6
6

8
9

9

P (3

P(1

P
(S

Fig. 3
Selection of permissible paths from the lower-half initial code tree

PROC. IEE, Vol. 125,No. 2, FEBRUARY 1978 101

The maximum back-up distance bt is based on the test-error
weight over the entire sequence t. If some of the test-error weight is
due to errors which have occurred earlier than bt nodes back, that is
|r| > |fbf|, then the value obtained for bt by using eqn. 1 will be too
high. Hence, as we are only interested in the test-error weight over the
last bt segments when searching for a w with smaller test-error
weight, we can replace |r| by \tb(\ in eqn. 1, and determine a new
bx <bt, which corresponds to \tb\ in the same way that bt corre-
sponds to |f|. Similarly, if \tbi\<\tbj\, we can again use eqn. 1 to
determine a new b2 <b\, and so on. At some point the process stops
with a minimum value bo. If bo < bm then we know that w has
minimum test-error weight, and so no back-up search is needed.

An example of the b.r.o. is as follows. Suppose kl = 8; from
Table 5 this gives bt = 40. If there is a test-error weight of 2 in
front of the last 40 segments of |r| then U^l = 6, and hence 6, = 25.

IfU2sl = 4,then62 = l l . I f | r n | = 4 then no further reduction is
possible and we have bo = 11.

We now consider the situation in which bo>bm. In this case we
examine each node between bm + 1 and bo by means of a simple
threshold value, to see whether or not it is possible that w' diverges
from w at that node. The end result is a small set of nodes, whose
back-up distances are denoted b* at which w may have diverged
from w.

The b*, are found as follows. Property (e) of Section 2 enables
us to write \t'\>d(k) — \t\ (see Appendix 11.2). For a given node at
back-up distance b we may then write \t'b\ >d(b) — \tb\. Because we
are searching for a \t'b\= \tb\ — l, the necessary condition for the
existence of such a \t'b\ is \tb\> [d(b) + 8]/2, where 6 is 1 if d(b)
is odd or 2 if d(b) is even. This gives us a lower found which \tb\
must satisfy for it to be possible that w' diverges from w at b nodes
back.

00

01

10

20

©

000

001

01 0

02 0

100

101

200

201

0000

0001

0010

0 020

01 00

01 01

0200

0201

1 00";

1 001

1 010

1 020^ ©
2 000

2301

2 010

2020

00000
00001
00010
00020
00100
001 01
00200
00201
01000
01 001
01010

01020
02000
02001
02010
02020
10000
10001
10010
10020 © 2
10100
300000 6) 2
10200
22QOO © 2
20000 1
20001
20010
20020 Q 2

20100
20101
20200
12000 © 2

Fig. 4
The minimum test-error pattern tree up to 5 segments

u - . 0 . 2 , 0 . 1 . 0 . 1 . 0

s t a r t

F i g . 5
Direct mapping search of a given received sequence

' obtained from b.b.o.
• a mapping operation

" x obtained by direct mapping with Pt(\

102 PROC. IEE, Vol. 125, No. 2, FEBRUARY 1978

The above bound can be tightened slightly by noting that Uil = 1,
and |f 11 = 0. By using the lower bound on |fb| in conjunction with the
upper bound on back-up distance (eqn. 1), we can establish a new
threshold condition T*(b) which |fb| must satisfy in order for it to be
possible that w' diverges from w at b nodes back. This threshold con-
dition is as follows. It is only possible for w' to diverge from w at
b* = b nodes back if \tb\ > T*(b)= [d(j) + l]/2, where / is the
minimum value such that d(J)>d(b) and d(j) is odd. Table 6 shows
values of b and T*(b).

An example of applying Table 6 is as follows. Suppose the b.r.o.
gives 6 o = ' l l , and f,, = 10010000101. This gives \tb\<T*(b) for
2><10, and |fb| = 7""(&) for 6 = 1 1 . This indicates that the only
possible back-up distance is b* = 11.

The method of specifying the b* given in this Section considerably
cuts down the amount of tree searching needed to find w'. In the next
Section we outline an efficient method of searching for w' with the aid
of direct mapping.

7 Utilising direct mapping in the tree search

Having established the values of b* at which w' may have
diverged from w, we instigate a search of the b* — 1 segment trunc-
ated tree stemming from the complement branch of w, for each value
of b*, starting with the smallest value greater than bm.

Each truncated tree is searched in the following manner. First of all
the current test-error sequence t is put into storage for later use. At
the node b* we force the decoder to take the complement branch to
w, and at the same time start a new test-error sequence f*, which has
|r*| = 0 at the node bt. The search of the truncated tree continues by
using the b.b.o., direct mapping, and the back-up operation, as
follows.

Assume that the decoder has reached a point c segments from the
node b*t, and that the test-error weight |f*| has just become equal to
|fb*|. If c<bm + 1, and the direct-mapping decoder cannot perform
a mapping, then the search of the truncated tree is abandoned because
no path in it can have |f'| = |f| — 1. If c> bm + 1 it is possible that
the path w' diverges from the present path being following somewhere
between bm + 1 and c — 1 nodes back. In this case we can determine
the possible nodes at which w' might have diverged by using the T*(b)
threshold conditions on t*. If the threshold conditions state that the
smallest back-up distance is greater than or equal to c, then the search
of the truncated tree is abandoned. Otherwise, a back-up is instigated,
and we carry out the search using the b.b.o., direct mapping, and the
back-up operation. If each of the possible nodes between bm + 1 and
c — 1 have been searched, and no path of length c = b* with test-error
weight \fc\= \tb*\ — 1 can be found, there is no w' with |f'| = |f| — 1
in the truncated tree corresponding to the present value of b*. In this
case the back-up distance is increased to the next value of b*, and the
search procedure is repeated.

(a) Decoding proceeds by means of the b.b.o. and direct mapping,
which guarantees that the path being followed is at minimum distance
from the received sequence. Whenever the b.b.o. extension results in a
1̂ 1 = 0, the decoder returns to the b.b.o.

(6)If |fil = 1 and the direct mapping decoder indicates that no
mapping has taken place, proceed to (c). If a mapping has taken place,
return to the b.b.o.

(c) Determine the maximum back-up distance bo by means of the
upper bound and the b.r.o. If bo < bm no search is needed and the
decoder returns to the b.b.o. If bo > bm proceed to (d).

(d) Determine the values of b* for bm < b* < bo.
(e) For each value of b* utilise the direct mapping decoder to

search for the path with minimum test-error weight, starting with the
lowest value of b*.

if) If no path of length b* with |fj*| = |fb»| — 1 can be found in
the the truncated tree stemming from the complement branch of node
b*, repeat (e) for the next largest value of b*.

(g) If the required path is found, replace tb* with tb* and return to
the b.b.o. and direct mapping.

(h) If we run out of search time, then force the decoder to accept
the earliest segment of w, and return to the b.b.o. and direct mapping.
Thus an error may be accepted, but the decoder will recover to the
correct path in time.

9 Conclusions

In this paper we have presented a new minimum-distance
decoding algorithm for convolutional codes. Initial simulation tests
have confirmed that the amount of decoding effort is considerably
less than other convolutional decoding schemes. The advantages of the
proposed algorithm are best seen in relation to sequential decoding.
Firstly, from the performance point of view: since our algorithm is
minimum-distance decoding, it is clear that for any received sequence
v, the test-error weight obtained by the decoding algorithm will be
always less than or equal to the test-error weight obtained from
sequential decoding. Therefore, the probability of decoding error will
be always less than or equal to that of sequential decoding. Secondly,
from the decoding operations point of view: it is well known that the
probability of buffer overflow ultimately determines the performance
of a sequential decoder. By utilising direct mapping to eliminate all
short back-up searches, by using minimum-distance decoding to catch
possible decoding errors in the earliest possible segment, and by using
the threshold conditions on back-up distance to eliminate unnecessary
back-up searches, it can be seen that the proposed algorithm will
require much less decoding effort than other sequential decoding
schemes. Therefore when the size of buffer is fixed, the proposed
algorithm will always give a lower probability of buffer overflow, and
hence a better performance. Future work will be aimed towards
analytically establishing the distribution of the number of compu-
tations for the algorithm and in obtaining fuller simulated perform-
ance results.

10 References

1 WOZENCRAFT, J.M., and REIFFEN, B.: 'Sequential decoding' (Wiley,
1961)

2 FANO, R.M.: 'A heuristic discussion on probabilistic decoding', IEEE
Trans., 1963, IT-9, pp. 64-67

3 JELINEK, F.: 'A fast sequential decoding algorithm using a stack', IBM J.
Res. & Dev., 1969,13, pp. 675-685

4 NG, W.H.: 'An upper bound on the back-up depth for maximum-
likelihood decoding of convolutional codes', IEEE Trans., 1976, IT-22,
pp. 354-357

11 Appendix

11.1 Proof of | f ' | = | f | - l

Since w is an extension by b.b.o. of an accepted path which
has minimum test-error weight, we have |f| — |ft| < |f'| — If'il. If
| f , | = 1 then \t'\<\t\ if and only if |f| - Uil = |f'| - If'il, and |f',| =
0. Hence |f'| = | f | - l .

8 The final algorithm

The decoding algorithm can be summarised as follows: ~ Proof of \t'\>d(k)-\t\

From property (e) of Section 2, \w®w'\>d(k). As f =
w®v, then \w® v® v® w'\ >d(k). That is, \t®t'\>d(k). Hence
\t\+\t'\>d(k), and \t'\>d(k)-\t\.

11.3 Proof of back-up distance bound

Assume there is a path w' with test-error weight |f ' |<|f|
which diverges from w at a back-up distance of b\ segments. Let
b't>bt. This implies d(b't)>d(bt), from the distance property of the
code.

(a)Ud(b't)>d(bt).
From Appendix 11.2 \t'\>d(b't)-\t\, that is, | f ' |> [d(bt)+l] -
\t\. Also, from Appendix 11.2 \t'\>d(k)-\t\, if |f'|= | f | - l then
d(bt)<2\t\-l. Hence |f'| > [(2|f| - 1) + 1] - | f | > | f | , which is a
contradiction to |f'| < |f|.

Now |f'|= [If'l-lf'il] +|f',|. Substituting for (|f ' |- |f ' , |) gives
\t'\> [d(Z>,)-(k |- | f , l)] + | f ' , l > [(2 U | - l) - U I + l] + 0 > | f | ,
which is a contradiction to |f ' |< |f|.
Thus b't >bt and bt is the minimum integer which satisfies d(bt)<
2\t\-l.

PROC IEE, Vol. 125, No. 2, FEBRUARY 1978 103

