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Abstract— In bit-interleaved coded modulation (BICM) sys-
tems employing maximum-likelihood decoding, a demodulator
(demapper) calculates a log-likelihood ratio (LLR) for each
coded bit, which is then used as a bit metric for Viterbi de-
coding. In the MIMO case, the computational complexity of
LLR calculation tends to be excessively high, even if the log-
sum approximation is used. Thus, there is a strong demand
for efficient suboptimum MIMO-BICM demodulation algorithms
with near-optimum performance.

Here, we propose an efficient MIMO-BICM demodulator
that is derived by means of a Gaussian approximation for the
post-detection interference. Our derivation results in an MMSE
equalizer followed by per-layer LLR calculation (i.e., LLRs are
calculated separately for each layer). The novel demodulator can
be interpreted as an MMSE analogue of a recently proposed
ZF-equalization based demodulator, as well as an extension of
ZF-equalization based demodulation to correlated post-detection
interference. Because it performs per-layer LLR calculation,
it has the same (low) computational complexity as the ZF-
equalization based demodulator. Simulation results demonstrate
that the performance of our demodulator is close to that of LLR
calculation using all layers jointly, and significantly better than
that of the ZF-equalization based demodulator.

I. INTRODUCTION

Bit-interleaved coded modulation (BICM) [1] is a promising
scheme for multiple-input multiple-output (MIMO) wireless
communications. Specifically, MIMO-BICM has been shown
to outperform space-time trellis coding in fast-fading enviro-
ments [2]. This is important because independent fast-fading
MIMO channels provide a model for the individual subcarriers
of MIMO systems using orthogonal frequency division multi-
plexing (OFDM) with frequency interleaving (e.g., [2, 3]), and
for block-fading channels with temporal interleaving.

In BICM systems employing maximum-likelihood decod-
ing, a demodulator (demapper) has to provide the channel
decoder with bit metrics that are given by a log-likelihood ratio
(LLR) for each coded bit. In the MIMO case, LLR calculation
is usually done by means of a complexity-reducing log-sum
approximation [2]; this will be referred to as optimum log-sum
approximation (OLSA) demodulation. Because the LLRs are
calculated jointly for all layers, OLSA demodulation tends to
be excessively complex [3]. Thus, there is a strong demand
for efficient MIMO-BICM demodulation algorithms whose
performance is close to that of OLSA demodulation.

Funding by FWF grant P15156-N02.

Such a demodulation algorithm with low complexity but
near-optimum performance is proposed in this paper. Our
derivation of the novel demodulator is based on a Gaussian
approximation for the post-detection interference, which is
inspired and motivated by [4]. We obtain a structure that
consists of a minimum mean-square error (MMSE) equalizer
with subsequent per-layer LLR calculation. Thus, in contrast
to OLSA demodulation, calculation of the LLRs is carried
out for each layer separately. The novel demodulator can
be seen as an MMSE analogue of the zero-forcing (ZF)
based demodulator recently proposed in [3], which uses ZF
equalization followed by per-layer LLR calculation.

We will also show that the ZF-based demodulator, too,
can be derived with a Gaussian approximation for the post-
detection interference; however, in contrast to our approach,
the interference has to be assumed uncorrelated. Thus, our
demodulator can also be seen as an extension of ZF-based
demodulation to correlated post-detection interference, which
explains its significant performance advantage over the ZF-
based demodulator. Because of the per-layer LLR calculation
it employs, our demodulator has the same (low) computational
complexity as the ZF-based demodulator.

This paper is organized as follows. In the remainder of
this section, we describe the system model and briefly re-
view existing demodulation schemes. The novel demodulator
is derived and discussed in Section II. Finally, Section III
presents simulation results for fast-fading MIMO channels.
It is demonstrated that our demodulator achieves near-OLSA
performance for different alphabets and a wide range of SNRs,
and that it significantly outperforms ZF-based demodulation.

A. MIMO-BICM System Model

We consider a flat-fading MIMO channel with MT transmit
antennas and MR ≥ MT receive antennas (briefly termed an
(MT,MR) channel). We assume a spatial multiplexing system
where for any given time instant n, the kth data stream dk[n]
is directly transmitted on the kth transmit antenna (or layer).
This leads to the well-known baseband model

r[n] = H[n]d[n] + w[n] , n = 0, . . . , N−1 , (1)

with the transmitted data symbol vector d[n] �=
(
d1[n] · · ·

dMT [n]
)T

, the MR × MT channel matrix H[n], the received
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Fig. 1. MIMO system using bit-interleaved coded modulation.

vector r[n] �=
(
r1[n] · · · rMR [n]

)T
, and the noise vector

w[n] �=
(
w1[n] · · · wMR [n]

)T
. The data symbols dk[n] are

drawn from a complex symbol alphabet A and are assumed
zero-mean with unit variance. The noise components wk[n]
are assumed independent and circularly symmetric complex
Gaussian with variance σ2

w.
According to the MIMO-BICM system model of [2] (see

Fig. 1), a sequence of information bits b̃[l] is encoded using
a convolutional code and cyclically demultiplexed into MT

layers. The coded bits of the kth layer are interleaved (using an
interleaver Πk) and subsequently mapped (using Gray labeling
[1]) onto complex data symbols dk[n] ∈ A. At the receiver,
the demodulator uses the received vector r[n] and knowledge
of the channel H[n] to calculate an LLR Λ(i)

k for each coded
bit b(i)k of the symbol vector d[n]. The resulting sequences
of LLRs are deinterleaved (using deinterleavers Π−1

k ) and
multiplexed into a single stream, which is then used for soft-in
Viterbi decoding (e.g., [5]).

In the following, we concentrate on the demodulator that
calculates the LLRs for a given symbol time index n. For
simplicity of notation, we will omit the time index and, thus,
write (1) as r = Hd + w. Let b(i)k with i = 1, . . . , log2|A|
denote the coded bits of the kth layer, to which the symbol
dk ∈ A is associated via Gray labeling. We assume that the
code bits b(i)k are equally likely and statistically independent.

B. Review of MIMO-BICM Demodulation Algorithms

OLSA Demodulator. The LLR of b(i)k is given by

Λ(i)
k

�= log

(
f(r|b(i)k =1)

f(r|b(i)k =0)

)

= log


∑d :dk∈Ai

1
e
− 1

σ2
w
‖r−Hd‖2

∑
d :dk∈Ai

0
e
− 1

σ2
w
‖r−Hd‖2


 , (2)

where Ai
b⊂A denotes the set of all symbols a∈A whose label

has b ∈ {0, 1} in bit position i. With OLSA demodulation,

the log-sum approximation is used to calculate the following
approximate LLRs (e.g., [2]):

Λ(i)
k ≈ 1

σ2
w

[
min

d :dk∈Ai
0

‖r−Hd‖2 − min
d :dk∈Ai

1

‖r−Hd‖2

]
, (3)

which form the input to a soft-in Viterbi decoder. OLSA
demodulation achieves near-optimum performance. However,
its computational complexity is exponential in MT because
the LLRs are calculated jointly for all layers, requiring the
computation of |A|MT distances.

ZF-Equalization Based Demodulator. A recently proposed
alternative demodulation scheme [3] uses ZF equalization with
subsequent per-layer LLR calculation (i.e., LLRs are calcu-
lated separately for each layer). The ZF-equalized received
vector is given by

yZF = H#r , (4)

where H# �= (HHH)−1HH is the pseudo-inverse [6] of H.
One obtains

yZF = d + w̃ , (5)

i.e., the transmitted data vector d plus a transformed noise
vector w̃ �= H#w whose covariance matrix is

Rw̃ = σ2
w (HHH)−1. (6)

Motivated by (5) and (6), the ZF-based demodulator was
proposed in [3] in an ad-hoc manner as

Λ(i)
k,ZF

�=
1

σ2
w̃,k

[
min
a∈Ai

0

|yZF,k −a|2 − min
a∈Ai

1

|yZF,k −a|2
]
, (7)

where σ2
w̃,k

�= (Rw̃)k,k denotes the noise variance after ZF

equalization for the kth layer and yZF,k
�= (yZF)k. Because

each layer is treated separately, only MT|A| scalar distances
have to be calculated. Thus, the complexity of (7) is only
O(M3

T ) (due to the calculation of yZF), which is much smaller
than the complexity of the OLSA demodulator in (3). How-
ever, the performance is significantly poorer (see Section III).

II. MMSE-BASED BICM DEMODULATION

We will now derive and discuss the proposed demodula-
tion technique. In our derivation, we will use a Gaussian
approximation for the post-detection interference to calculate
approximate LLR values. This is motivated and inspired by
[4], where an iteratively updated Gaussian approximation
for the post-detection interference was used in the context
of multiuser detection. Furthermore, we previously used a
Gaussian interference approximation for developing a “dy-
namic” nulling-and-cancelling MIMO detector with improved
performance [7].

A. The Gaussian Approximation

We start by reformulating1 the LLR in terms of yZF instead
of r. The exponent in (2) can be written as (e.g., [8])

1The following derivation could also be performed without going into the
ZF domain; however, in that case the calculations would be more involved.
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1
σ2

w

‖r−Hd‖2 = (yZF −d)HR−1
w̃ (yZF −d)

+ ‖r‖2− ‖HyZF‖2,

and we can thus express the LLR (2) as

Λ(i)
k = log


∑d :dk∈Ai

1
e−(yZF−d)HR−1

w̃ (yZF−d)∑
d :dk∈Ai

0
e−(yZF−d)HR−1

w̃ (yZF−d)




= log

(
f(yZF|b(i)k =1)

f(yZF|b(i)k =0)

)
.

Inserting

f(yZF|b(i)k =b) =
1

|Ai
b|
∑

a∈Ai
b

f(yZF|dk=a)

and using the log-sum approximation, we obtain further

Λ(i)
k ≈ max

a∈Ai
1

log f(yZF|dk=a) − max
a∈Ai

0

log f(yZF|dk=a) . (8)

Here, f(yZF|dk=a) can be interpreted as the conditional prob-
ability density function (pdf) of the post-detection interference
for the data symbol of interest, dk. Because of the Gaussianity
of the noise, f(yZF|dk = a) is a multivariate multimodal
Gaussian mixture pdf. To obtain a computationally efficient
approximation to (8), we now approximate f(yZF|dk = a) by
a Gaussian pdf f̃(yZF|dk = a) with the same mean µk

�=
E{yZF|dk=a} and the same covariance Ck

�= cov{yZF|dk=a}:

f̃(yZF|dk=a) =
1

πMT det(Ck)
e−(yZF−µk)HC−1

k (yZF−µk). (9)

To find expressions of µk and Ck, we reformulate yZF =
d + w̃ in (5) as

yZF = dkek +
MT∑
j=1
j �=k

djej + w̃ ,

where ek is the kth MT-dimensional unit vector. We then
obtain (recall that the dk are independent with zero mean and
var{dk} = 1)

µk = aek , Ck = I−ekeT
k + Rw̃ . (10)

The Gaussian pdf f̃(yZF|dk = a) is now completely deter-
mined, and the LLR in (8) is approximated according to

Λ(i)
k ≈ Λ(i)

k,MMSE
�= max

a∈Ai
1

log f̃(yZF|dk=a)

− max
a∈Ai

0

log f̃(yZF|dk=a) . (11)

The subscript “MMSE” in Λ(i)
k,MMSE will be justified presently.

B. Calculation of Λ(i)
k,MMSE

We will next derive a simple expression for Λ(i)
k,MMSE that

can be calculated very efficiently. Inserting (9) and (10) into
(11), we obtain

Λ(i)
k,MMSE = min

a∈Ai
0

Qk(a) − min
a∈Ai

1

Qk(a) , (12)

with the quadratic form

Qk(a) �= (yZF −aek)HC−1
k (yZF −aek)

= yH
ZFC

−1
k yZF − 2 Re

{
yH

ZFC−1
k eka

}
+ |a|2eT

k C−1
k ek . (13)

The first term of the expression (13) does not depend on a
and thus can be disregarded in (12). It remains to develop the
second and third terms.

Applying the matrix inversion lemma [6] to C−1
k =

(
I −

ekeT
k + Rw̃

)−1
and using (6), we obtain

C−1
k = W

[
I +

ekeT
k W

1−Wk,k

]
, (14)

with

W �= (I + Rw̃)−1 =
[
I + σ2

w(HHH)−1
]−1

(this is termed Wiener estimator in [9]) and with Wk,k

denoting the kth diagonal element of W. The Wiener estimator
converts ZF equalization (4) into MMSE equalization [9, 10]:

yMMSE
�= (HHH + σ2

wI)−1HHr = WyZF .

Using this result and (14), we obtain for the second and third
terms in (13)

yH
ZFC−1

k ek = yH
ZFWek

[
1 +

eT
k Wek

1−Wk,k

]
=

y∗MMSE,k

1−Wk,k
,

eT
k C−1

k ek = eT
k Wek

[
1 +

eT
k Wek

1−Wk,k

]
=

Wk,k

1−Wk,k
.

Furthermore, since the eigenvalues of W satisfy 0 ≤ λW,k <
1, the diagonal elements of W must satisfy

0 ≤Wk,k < 1 , 1 ≤ 1
1−Wk,k

<∞ .

It is then easily verified that (12) simplifies to

Λ(i)
k,MMSE =

Wk,k

1−Wk,k

[
min
a∈Ai

0

ψ2
k(a) − min

a∈Ai
1

ψ2
k(a)

]
, (15)

with the “unbiased distance”

ψk(a) �=
∣∣∣∣yMMSE,k

Wk,k
− a

∣∣∣∣ . (16)

Here, compared to the conventional distance |yMMSE,k−a|, the
bias after MMSE equalization (defined as E{yMMSE,k−dk| dk}
[11]) is compensated through division of yMMSE,k by Wk,k,
i.e., E

{yMMSE,k

Wk,k
|dk

}
= dk. It is important to note that, similarly

to the ZF-based demodulator in (7) but in contrast to the OLSA
demodulator in (3), the calculation of Λ(i)

k,MMSE from yZF is
performed entirely within the kth layer.

It can furthermore be shown that

Wk,k

1−Wk,k
= SNRMMSE,k .
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Here, SNRMMSE,k is the MMSE post-detection SNR of the kth
layer given by SNRMMSE,k = 1

MSEMMSE,k
−1 (e.g., [12]), where

MSEMMSE,k
�= E

{|yMMSE,k − dk|2
}

is the minimum MSE of
the kth layer (e.g., [13]). Thus, (15) can be rewritten as

Λ(i)
k,MMSE = SNRMMSE,k

[
min
a∈Ai

0

ψ2
k(a) − min

a∈Ai
1

ψ2
k(a)

]
. (17)

C. Constant-Modulus Alphabets

For constant-modulus alphabets, i.e., |a| = 1 for all a∈A,
(17) simplifies to

Λ(i)
k,MMSE =

1
MSEMMSE,k

[
min
a∈Ai

0

|yMMSE,k −a|2

− min
a∈Ai

1

|yMMSE,k −a|2
]
, (18)

which is now formulated in terms of the “biased distance”
|yMMSE,k − a|2. Even more simple expressions for Λ(i)

k,MMSE
are obtained for BPSK and 4-QAM (or QPSK) modulation:

• BPSK with Gray labeling:

Λ(1)
k,MMSE =

4
MSEMMSE,k

Re{yMMSE,k} ; (19)

• 4-QAM with Gray labeling:

Λ(i)
k,MMSE =




2
√

2
MSEMMSE,k

Re{yMMSE,k} , i = 1,
2
√

2
MSEMMSE,k

Im{yMMSE,k} , i = 2 .

A result formally similar to (19) was obtained in a multiuser
context in [14], however using a different approach.

D. Discussion

The proposed MIMO-BICM demodulator was derived by
using a Gaussian approximation for the post-detection inter-
ference in the calculation of the LLRs. Our final expression
(17) (or (18) for constant-modulus alphabets), together with
the expression of ψk(a) in terms of yMMSE,k (see (16)), shows
that the proposed demodulator consists of MMSE equaliza-
tion and subsequent per-layer LLR calculation. Because after
MMSE equalization each layer is processed separately, the
computational complexity of our demodulator is not higher
than that of the ZF-based demodulator in (7).

The structure of our demodulator is similar to both the
OLSA demodulator in (3) and the ZF-based demodulator
in (7). All three demodulators compute a difference of two
distances, where one distance corresponds to the respective
bit being 0 and the other corresponds to that bit being 1.
However, these distances are differently defined for the three
demodulators. Furthermore, the pre-factors in the approximate
LLR expressions are different, too:

• With OLSA demodulation (3), the pre-factor is the recip-
rocal noise variance, 1/σ2

w.

• With ZF-based demodulation (7), the pre-factor is the
reciprocal post-equalization noise variance, 1/σ2

w̃,k. We

note that σ2
w̃,k can be shown to equal the ZF post-

detection MSE, i.e. σ2
w̃,k = MSEZF,k = E

{|yZF,k−dk|2
}

.

• Finally, with our demodulator (17), the pre-factor is the
MMSE post-detection SNR, SNRMMSE,k; in the special
case of constant-modulus alphabets, the pre-factor in the
alternative expression (18) is the reciprocal minimum
post-detection MSE, 1/MSEMMSE,k.

All pre-factors decrease with increasing noise power σ2
w.

For constant-modulus alphabets, our demodulator (18) can
be viewed as an MMSE analogue of the ZF-based demodulator
(7), in which yZF,k is replaced by yMMSE,k and σ2

w̃,k =MSEZF,k

is replaced by MSEMMSE,k but not by the noise variance after
MMSE equalization (note that in contrast to ZF equalization
where σ2

w̃,k = MSEZF,k, the noise variance after MMSE equal-
ization is different from MSEMMSE,k). In fact, using the noise
variance after MMSE equalization instead of MSEMMSE,k in
the pre-factor of (18)—as motivated by the analogy to (7)—
would result in a significant performance degradation.

For general alphabets, our demodulator calculates the per-
layer distances ψk(a) in (17) using the unbiased MMSE
equalized components yMMSE,k/Wk,k instead of yMMSE,k (cf.
(16)). For alphabets that are not constant-modulus, use of (18)
instead of (17) would cause a slight performance degradation.

If we develop our demodulator by using the Gaussian
approximation for the post-detection interference in (8), how-
ever with the correlations in yZF neglected, the ZF-based
demodulator (7) is obtained. Indeed, it can be verified that with
all nondiagonal elements of Ck = I − ekeT

k + Rw̃ set equal
to zero, (12) becomes equivalent to (7). In this sense, then,
our demodulator is an extension of the ZF-based demodulator
to correlated post-detection interference. This provides an
explanation of the significant performance advantage of our
demodulator over the ZF-based demodulator (as demonstrated
in Section III). Fortunately, this performance advantage is
obtained with no increase in complexity.

III. SIMULATION RESULTS

We now assess the performance of our demodulator by
means of simulation results. We considered a MIMO-BICM
system using a rate-1/2 64-state convolutional code with octal
generators (133, 171) and random interleaving. The MIMO
channel had iid Gaussian matrix entries with unit variance. To
simulate fast fading, the channel was independently generated
for each time instant. We considered the proposed demodu-
lator as well as the ZF-based and OLSA demodulators for
comparison. The Viterbi decoder used a traceback depth of 35
and employed 6 bits for trellis termination.

Fig. 2 shows the bit-error rate (BER) of this MIMO-BICM
system using the various demodulators versus the SNR2 for
a (2, 2) channel and a (3, 3) channel. Each figure part shows
three sets of curves corresponding to BPSK, 4-QAM (QPSK),
and 16-QAM modulation using Gray labeling.

2The SNR is defined as E
{‖Hd‖2

}
/E
{‖w‖2

}
= MT/σ2

w .
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(a)

(b)

Fig. 2. BER performance of the proposed MMSE-based demodulator, the ZF-
based demodulator, and the OLSA demodulator for BPSK, 4-QAM (QPSK),
and 16-QAM modulation: (a) (2,2) channel, (b) (3,3) channel.

The following conclusions can be drawn from these results.

• The performance of the proposed demodulator is very
close to that of OLSA demodulation. For all considered
symbol alphabets, at a target BER of 10−4, our demodula-
tor is within roughly 1 dB and 2 dB of OLSA performance
for the (2, 2) channel and the (3, 3) channel, respectively.

• Our demodulator significantly outperforms ZF-based de-
modulation even though its computational complexity
is the same. The performance gain over ZF-based de-
modulation is up to 4 dB at a target BER of 10−4. In
particular, for the (3, 3) channel, our demodulator for 4-
QAM modulation achieves roughly the same performance
as the ZF-based demodulator for BPSK modulation even
though the data rate (in bits per channel use) is doubled.

• The performance advantage of our demodulator over
the ZF-based demodulator is strongest for small symbol
alphabets. Furthermore, a comparison of the results ob-
tained for the (2, 2) channel and the (3, 3) channel sug-
gests that for an increasing number of antennas, both the

performance advantage over the ZF-based demodulator
and the performance loss relative to the OLSA demod-
ulator grow larger. On the other hand, the complexity
savings achieved with our demodulator relative to the
OLSA demodulator are larger for an increasing number
of antennas and an increasing alphabet size.

IV. CONCLUSIONS

We have presented a novel, efficient demodulator for MIMO
bit-interleaved coded modulation (BICM) systems. Our de-
velopment was based on a Gaussian approximation for the
post-detection interference and resulted in a demodulation
technique consisting of MMSE equalization and subsequent
per-layer log-likelihood ratio (LLR) calculation. The compu-
tational complexity of the novel MIMO-BICM demodulator is
very low due to the per-layer processing it employs.

We showed that the proposed demodulator can be inter-
preted as an extension of a recently proposed ZF-equalization
based demodulator to correlated post-detection interference.
This extension yields a substantial performance improvement
without an increase in computational complexity. We verified
through simulations that the performance of our demodulator
is close to that of LLR calculation using all layers jointly, and
significantly better than that of the ZF-based demodulator.
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