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Abstract Given a product design and a repair network, a level of repair analysis (LORA)
determines for each component in the product (1) whether it should be discarded or repaired
upon failure and (2) at which echelon in the repair network to do this. The objective of
the LORA is to minimize the total (variable and fixed) costs. We propose an IP model that
generalizes the existing models, based on cases that we have seen in practice. Analysis of
our model reveals that the integrality constraints on a large number of binary variables can
be relaxed without yielding a fractional solution. As a result, we are able to solve problem
instances of a realistic size in a couple of seconds on average. Furthermore, we suggest some
improvements to the LORA analysis in the current literature.

Keywords Maintenance · Supply chain management · Level of repair analysis ·
Mixed integer programming

1 Introduction

Every product that is manufactured, will one day fail. In the case of capital goods, such
as military naval equipment, MRI-scanners, or trains, it will be cost effective to repair the
product upon failure, instead of buying a new one. Customers know this, and they increas-
ingly take total life cycle costs (LCC) into account in their purchasing decisions (Ferrin
and Plank 2002). Sometimes, they even buy a service contract from the original equipment
manufacturer (OEM). OEMs should be willing to provide service and sell service contracts,
since selling services is generally more profitable than selling products (Deloitte 2006;
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Fig. 1 A multi-indenture system

Fig. 2 A multi-echelon repair
network

Murthy et al. 2004; Oliva and Kallenberg 2003). Altogether, this means that more and more,
the OEM should take the costs of maintenance into account when he makes decisions in the
development process of a new product. In an early development stage, the product design
can still be changed in order to lower the expected maintenance costs, and thus the expected
life cycle costs of the system. In the later development stages, the actual maintenance plans
need to be made, and a maintenance organization should be set up.

Generally, capital goods are repaired by replacement, which means that the component
that failed, is removed from the system and replaced by a functioning one. A defective com-
ponent can either be discarded (scrapped) or repaired. If it is discarded, a new component
needs to be purchased. If the component is repaired, the subcomponent that failed will be
replaced by a functioning one. The subcomponent should in turn be repaired or discarded
itself. The system is thus seen as a multi-indenture system such as shown in Fig. 1.

There is also the question of where to perform maintenance. If we consider military naval
equipment, repairs can be performed on board the ship, at its marine base, a central depot,
or even at the OEM. A network that connects all ships, bases, depots, and the OEM is called
a repair network. Figure 2 shows an example of such a multi-echelon repair network.

Some questions related to maintenance received quite a lot of attention already: Much
has been written on the subject of determining when to perform preventive maintenance,
see for example Gertsbakh (2000) or Dekker et al. (1997). The question of where to locate
repair facilities also received quite some attention, see for example Daskin (1995). There
is a vast amount of research on the spare part stock levels that are necessary to achieve a
given availability of the user’s products, given the product design and the repair network;
see for example Sherbrooke (2004) or Muckstadt (2005). However, a related problem did
not receive much attention yet: The level of repair analysis (LORA). Given a product design
and a repair network, a LORA determines for each component in the product (1) whether it
should be discarded or repaired upon failure and (2) where to do that.

To be able to repair a system or component at a certain location, both variable and fixed
costs have to be made. Costs that are variable in the number of failures that occur, include
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costs for working hours of service engineers, usage of spare parts, and transportation costs.
Fixed costs include costs for (test) equipment and spare parts holding costs. The spare part
inventory levels could simultaneously be included in the optimization, which would mean
that spare parts holding costs are not seen as inputs anymore. However, this is generally not
done in the LORA. The objective of the LORA is to minimize the total (variable and fixed)
costs.

Barros (1998) and Saranga and Dinesh Kumar (2006) propose two models for the LORA

problem, which are both integer programming (IP) models. Section 2 discusses the models,
the requirements they pose to problem instances, and other related literature. We think that
the requirements that these models pose to problem instances are so strict that, in general,
these models cannot be used in practice. We base this assumption on cases that we have
seen at Thales Nederland, a manufacturer of naval sensors and naval command and control
systems. Therefore, we generalize the models in this paper. Appendix A shows that the
resulting LORA problem is NP-hard.

Section 3 presents our basic formulation of the LORA problem, which is also an IP model,
and explains how it differs from the models in the literature. Section 3 also shows that, in
general, removing the integrality constraints from the IP model yields a fractional solution in
our basic model. Therefore, Sect. 4 provides an improved version of the model in which the
integrality constraints on most of the variables can be removed, without yielding a fractional
solution.1 This positively influences the time it takes to solve our model.

This improved model is also used to show which integrality constraints can be removed
if we use the model assumptions of the already existing LORA models. Section 4.3 shows
that it is not possible to remove all integrality constraints in the model of Barros (1998)
(or in ours, using her model assumptions), although she claims this. Section 4.4 shows that
if we use the model assumptions of Saranga and Dinesh Kumar (2006) in our model, all
integrality constraints can be removed. This means that a linear programming (LP) problem
remains, which can be solved in polynomial time. Saranga and Dinesh Kumar (2006) use
genetic algorithms to solve problem instances.

Section 5 provides results for computational experiments. We based our tests on cases
that we have seen at Thales Nederland and it turns out that problem instances of a realistic
size can be solved by CPLEX in a reasonable amount of time. The paper ends with conclu-
sions and directions for further research in Sect. 6.

2 Literature review

In the introduction, we mentioned some research that is related to maintenance. We also
mentioned that the LORA did not get a lot of attention. Although it is requested by, for
example, both the United States Department of Defense (MIL-STD-1388-1A, United States
Department of Defense 1993)2 and the United Kingdom Ministry of Defence (DEF STAN 00-
60 (PART 1), United Kingdom Ministry of Defence 1998) that a contractor performs a LORA

during the acquisition phase, only a few papers have been dedicated to it (Alfredsson 1997;
Barros 1998; Barros and Riley 2001; Gutin et al. 2006; Saranga and Dinesh Kumar 2006). It

1In the remainder of the paper, if we say that ‘integrality constraints can (cannot) be removed’, this means
that ‘integrality constraints can (cannot) be removed without yielding a fractional solution’.
2MIL-STD-1388-1A contains requirements. It is superseded by MIL-HDBK-502 (United States Department
of Defense 1997), which is for guidance only. This means that nowadays, LORA is not officially required
anymore. However, it is usually still requested from contractors.
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is even more surprising that LORA received so little attention in the past, since commercial
life cycle cost (LCC) estimation tools generally contain a LORA part, see for example PRICE-
HL (2007) and EDCAS (2007).3

Barros (1998) presents an integer programming model for the LORA problem. She as-
sumes that fixed costs (see Sect. 1) are borne by all the components at one indenture level.
For example, if subsystem A should be repaired at echelon 2, fixed costs are taken into
account. If subsystem B should be repaired at the same echelon, no additional fixed costs
have to be taken into account. She also assumes that the discard option does not incur any
fixed costs and that the variable costs for discard of a certain component are equal at every
echelon.

Barros solves instances of the problem with two indenture levels and two echelons. Fol-
lowing Gutin et al. (2006), we call this type of LORA instances LORA-BR. In her model,
two echelons means that there are three repair options: ‘discard’, ‘repair at echelon 1’ and
‘repair at echelon 2’. Barros states that her model can be used to solve problem instances
with any number of indenture levels and echelons (disregarding the computation time, which
could get very large). However, from Gutin et al. (2006) we know that she only tested on the
LORA-BR.4 Her model needs some small modifications if it is to be used for more indenture
levels and echelons.

According to Barros (1998), her formulation of the LORA problem “. . . provides a natural
integer solution in its relaxed linear programming version” (p. 409). Although we assume
that this is true for the LORA-BR, we show in Sect. 4.3 that this is not true for the general
case with more than two echelons or more than two indenture levels. Barros might have
realized the same thing, since Barros and Riley (2001) use a branch and bound method
to solve the LORA problem. Barros and Riley also discuss somewhat more general LORA

problems, including more repair options per component and more general restrictions on
repair options for father-son relations between components. However, they do not carry out
numerical experiments for those problems. Our model does not cover those more general
LORA problems either.

Gutin et al. (2006) reduce the LORA-BR problem to the maximum weight independent
set problem on a bipartite graph, and show that the LORA-BR can be solved in polynomial
time. They use the fact that the LORA-BR can be represented as a minimum cost homomor-
phism problem on a monotone bipartite graph and they show that their result is valid for
any monotone bipartite graph. Gutin et al. (2008) extend these results and show for which
graphs the minimum cost homomorphism problem is solvable in polynomial time and for
which it is NP-hard. Our LORA problem is NP-hard, which we show in Appendix A.

Saranga and Dinesh Kumar (2006) present a different integer programming model. The
main difference between the models of Saranga and Dinesh Kumar (2006) and Barros
(1998), is that the former assume that fixed costs are borne by a single component, whereas
the latter assumes that they are borne by all the components at one indenture level. In our
model we generalize this such that fixed costs can be borne by any arbitrary set of compo-
nents, since we found this generalization was needed at Thales Nederland. The other dif-
ference lies in the costs for discard. Saranga and Dinesh Kumar (and we) assume that these
can differ per echelon and that the fixed costs for discard need not be 0. Barros assumes that
variable costs for discard are equal at every echelon and that fixed costs for discard are 0.

3Although it does not become clear from their websites that these tools contain a LORA part, we know this
both from experts who have been using these tools and from the literature (e.g., Barros 1998).
4Gutin et al. know this from private communications with Barros.
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Saranga and Dinesh Kumar (2006) solve their model using a genetic algorithm. As we
already mentioned, we show in Sect. 4.4 that we can solve problem instances that fit their
restrictions in polynomial time. This is due to the fact that in that case, we can remove
all integrality constraints without yielding a fractional solution, which means that an LP

problem remains.
Alfredsson (1997) combines the LORA with the optimization of spare part stock levels

under METRIC-like assumptions (Sherbrooke 1968). He models it as a fairly complicated
IP model, which can solve problems with one indenture level. The model considers buying
more than one tester of the same type if necessary. The waiting time for using a tester is
calculated with an M/M/s-queue; only the mean demand rate is taken into account. Every
component has its own tester and one multi-tester exists. This multi-tester can be used for
one component and adapters can be added in a fixed order, in order to enable the multi-
tester to be used for the repair of additional components. Furthermore, all items that can be
repaired with the same multi-tester have to be repaired at the same location.

The model of Alfredsson (1997) is already quite complicated, but does not take more
than one indenture level into account and restricts the test equipment in a very strict way.
Because our focus is on the LORA of a generic system (any number of indenture levels) and
a generic repair network (any number of echelons), we decided not to base our model on the
model of Alfredsson. Instead, our model is loosely based on the one of Saranga and Dinesh
Kumar (2006).

3 Basic IP model

This section provides our basic IP model. We give the model assumptions (Sect. 3.1), the
notation we use (Sect. 3.2), and the model formulation (Sect. 3.3). Section 3.4 shows why
the integrality constraints cannot be removed in this formulation without yielding a frac-
tional solution. Therefore, Sect. 4 provides an improved version of the model in which most
integrality constraints can be removed.

3.1 Model assumptions

Figure 1 (in Sect. 1) shows a typical multi-indenture system. In the remainder of this paper,
we will use the names as given in the figure, so subsystems are at indenture level 1, modules
are at indenture level 2, and parts are at indenture level 3. We use the term ‘component’
if the indenture level is irrelevant. In a general LORA, components and subcomponents are
considered until a detail level that the user decides not to be relevant, which means that there
can be any number of indenture levels. Figure 2 shows a multi-echelon repair network. In
general, there can be any number of echelons in the repair network. The numbering of the
echelons and indenture levels might be a bit confusing at first sight. However, it is used
both in practice and in the literature (see, e.g., Sherbrooke 2004). The logic is that the repair
of a system starts by finding the subsystem (indenture level 1) that failed, then the module
(indenture level 2), and so on. At the moment the system fails, it is at the system location
(obviously), which is echelon 1. Components that failed can then be moved upwards in the
repair network to higher echelons.

A number of assumptions are generally made, both in the literature and, to the best of
our knowledge, by companies developing and using commercial LORA-software. We also
use these assumptions:
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• Each time a repair is performed, variable costs are made. To be able to perform the repair
of a certain component at a certain echelon, yearly fixed costs are made. For example, if
fixed costs are related to acquiring test equipment, they represent the yearly depreciation
costs.

• The system itself (indenture level 0) is never moved from its location, but is always re-
paired by replacing a subsystem. Therefore, indenture level 0 is not modeled.

• The repair of a component is in principal accomplished by replacing a subcomponent
that failed, with a working one. A component is repaired directly if it is at the highest
indenture level, since there are no subcomponents modeled at that level. It can also be
that the failure in a certain component x is caused by a failure of component y1 in 50%
of the cases, a failure of component y2 in 40% of the cases, and a failure that can be
repaired directly in 10% of the cases. In this last 10% of the cases, no replacement of a
subcomponent is needed.

• A failed component can be moved only from a certain echelon e to echelon e + 1.
• Combining the previous two assumptions means that if, for example, a subsystem is re-

paired at echelon 2, the failed module that was contained in the subsystem, can only be
repaired at echelon e ≥ 2.

• If the choice is made to repair a certain component at a certain echelon, the probability of
a successful repair is 100%.

• All data at a certain echelon is aggregated. This means that the exact structure of the repair
network is not known by the model.

• As a result of the previous assumption, the repair of a certain component x should always
be performed at the same echelon e, independent of the system location from which the
component x originates. This may be suboptimal in practice; for example, if the repair
network is asymmetric.

3.2 Notation

As explained in the previous section, Saranga and Dinesh Kumar (2006) assume that fixed
costs are borne by one component, whereas Barros (1998) assumes that fixed costs are borne
by all the components at one indenture level. At Thales Nederland, these kind of sets are too
restrictive; in our model, fixed costs are allocated to more general sets of components Gg ∈ G
(Gg ⊆ X, Gg �= ∅, where X is the set of all components). Not all components need to be in
one of the sets and components might be in more than one set. To show when this might
happen, suppose there are three components: a blower, a power generator, and a transmitter.
Suppose that a certain tester is needed to test the blower and the power generator. Another
tester is needed to test the power generator and the transmitter. The power generator will
then be in two sets.

If every set contains exactly one component and every component belongs to exactly one
set (|Gg| = 1, |G| = |X|, g1 �= g2 ⇒ Gg1 �= Gg2 ), fixed costs are incurred per component, as
in the model of Saranga and Dinesh Kumar. If every set consists of all components at one
indenture level, the assumptions used in Barros’ model are used.

A component (‘parent’) can contain subcomponents (‘children’). If a parent is at inden-
ture level i, its children are at indenture level i + 1. The set �x = {y | y is a child of x} is
used in our model to link parents to children. The set XS (⊆ X) is the set of subsystems, so
the components at indenture level 1. These subsystems do not have any parent component
in the model (remember that the complete system, indenture level 0, is not modeled).

Generally, the repair network consists of multiple echelons. These echelons form the
set E. At each echelon e ∈ E, except for the highest, there are three repair options for each
component x ∈ X:
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• Discard: Component x is scrapped and a new one should be bought.
• Repair: Component x is repaired by replacing its defective child y with an operating one

(or by repairing x directly). One of the repair options should be chosen for component y

at the same echelon e.
• Move: The component is moved to echelon e + 1. At echelon e + 1, a repair option has

to be chosen. Note that the ‘move’ option does not exist at the highest echelon.

Together, these repair options r make up the set R. The set of echelons without the ‘highest’
one, so the set of echelons with three repair options, is called EL.

In practice, not all combinations of e, r , and x are possible. There might not be enough
room on board a ship for certain test equipment, or proprietary knowledge can prohibit the
user from repairing a component. A so-called non-economic LORA is performed to exclude
the combinations that are not possible, after which the (economic) LORA as explained in
this paper is performed. At Thales Nederland, more than half of the combinations may be
excluded already after the non-economic LORA. Furthermore, the very small parts (screws,
transistors, etc.) are excluded from consideration by the non-economic LORA: They are al-
ways discarded.

vce,r,x are the variable costs per repair action of component x at echelon e for repair
option r (discard, repair, or move). As mentioned before, variable costs include costs for
working hours of service engineers, usage of spare parts, and transportation costs. f ce,r,Gg

are the fixed costs related to enabling at echelon e the repair option r for all components
that are part of set Gg . We will also call this ‘opening option r at echelon e for set Gg’.
Fixed costs include spare parts holding costs and costs for (test) equipment. Notice that
if a component x is part of both Gg1 and Gg2 , fixed costs for option r at echelon e for
both these sets need to be taken into account before that repair option can be chosen for
component x.

λx is the yearly demand rate (number of failures) of component x. λx is an input for all
x ∈ X. If

∑
y∈�x

λy > λx for component x, this would mean that the children of x fail more
often than x itself. This can only happen if multiple children fail at the same time. This is not
a problem for the model. We already discussed that

∑
y∈�x

λy can also be smaller than λx .
If a component y ∈ �x1 and y ∈ �x2 (commonality), we will treat y as two different

components y1 and y2, with for all Gg : y1 ∈ Gg ⇐⇒ y2 ∈ Gg . This means that two different
repair options may be chosen for y1 and y2. If, for example, x1 is repaired at echelon 1 and
x2 is repaired at echelon 2, it can be optimal to discard y1 at echelon 1 and discard y2 at
echelon 2.

The model uses two types of decision variables:

Ne,r,x =
{

1, if at echelon e ∈ E repair option r ∈ R is selected for component x ∈ X

0, otherwise

Me,r,Gg =
{

1, if at echelon e ∈ E repair option r ∈ R is selected for set Gg ∈ G

0, otherwise

3.3 Model formulation

We propose the following model formulation:

minimize
∑

e∈E

∑

r∈R

∑

x∈X

vce,r,x · λx · Ne,r,x +
∑

e∈E

∑

r∈R

∑

Gg∈G

f ce,r,Gg · Me,r,Gg (1)
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subject to:

∑

r∈R

N1,r,x = 1, ∀x ∈ XS (2)

Ne,move,x ≤
∑

r∈R

Ne+1,r,x , ∀e ∈ EL, ∀x ∈ X (3)

Ne,repair,x ≤
∑

r∈R

Ne,r,y, ∀e ∈ E, ∀x ∈ X, ∀y ∈ �x (4)

Ne,r,x ≤ Me,r,Gg , ∀e ∈ E, ∀r ∈ R, ∀Gg ∈ G, ∀x ∈ Gg (5)

Ne,r,x,Me,r,Gg ∈ {0,1}, ∀e ∈ E, ∀r ∈ R, ∀x ∈ X, ∀Gg ∈ G (6)

The objective function minimizes the sum of all yearly variable and fixed costs. Con-
straint (2) guarantees that a repair option is chosen for every subsystem on echelon 1. If
‘move’ is chosen for a component x on an echelon e, Constraint (3) assures that a repair
option is chosen for component x on the next higher echelon e + 1. Constraint (4) assures
that if ‘repair’ is chosen at an echelon for a component, a repair option is chosen for all its
child components at that echelon.

The inequalities in both constraints cannot be changed to equalities. Assume that there is
a component x with one child component y:

• If x is moved from echelon 1 to 2, where it is repaired, a repair option needs to be chosen
for y at echelon 2. This means that

∑
r∈R N2,r,y = 1. An equality in Constraint (3) would

then imply that N1,move,y = 1, which is incorrect.
• If x is repaired at echelon 1 and y is moved to echelon 2, a repair option needs to be

chosen for y at echelon 2. This means that
∑

r∈R N2,r,y = 1. An equality in Constraint (4)
would then imply that N2,repair,x = 1, which is incorrect.

If ‘discard’ is chosen for a component, no repair option has to be chosen for its children.
The costs of discard include the costs of discard of the children. This is different from the
model formulations of both Barros (1998) and Saranga and Dinesh Kumar (2006), in which
choosing the discard option for a parent component means that discard should also be chosen
for all its child components. We think that it is intuitively more logical that nothing needs to
be done with the children if the parent is discarded.

Constraint (5) assures that fixed costs are taken into account for set Gg , if a repair option
is chosen for any component x ∈ Gg .

3.4 LP relaxations

Our model contains two types of integer variables: Ne,r,x and Me,r,Gg . In this section, we
give a problem instance that shows that, in general, the integrality constraints on the Ne,r,x

variables cannot be removed without yielding a fractional solution.
It is possible to remove the integrality constraint on Me,r,Gg , since Constraint (5) assures

that Me,r,Gg = 1 if any Ne,r,x = 1 with x ∈ Gg . If Ne,r,x = 0 for all x ∈ Gg , the minimization
in the objective function will cause Me,r,Gg to be 0.5 However, we prefer to remove the
integrality constraint on Ne,r,x (which is possible for the model we give in Sect. 4), since
there are generally more Ne,r,x than Me,r,Gg variables.

5Except when f ce,r,Gg = 0, but in that case, an optimal integer solution exists as well.
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Table 1 Variable costs and
yearly demand for erroneous
instance

Component x y

λx/y 1 1

vc1,discard,x/y 10 10

vc1,repair,x/y 1 1

vc1,move,x/y 0 0

vc2,discard,x/y 10 10

vc2,repair,x/y 1 1

Table 2 Outputs for erroneous
instance Component x y

N1,discard,x/y 0 0

N1,repair,x/y 0.5 0

N1,move,x/y 0.5 0.5

N2,discard,x/y 0 0

N2,repair,x/y 0.5 0.5

Fig. 3 Result of erroneous
instance. Each arc in the graph
represents a repair option
Ne,r,x/y : d = discard, r = repair
and m = move. The bold arcs
represent the options that are
selected in the example
(Ne,r,x/y = 0.5)

To see why the integrality constraint on the Ne,r,x variables cannot be removed in our
basic model, consider a system consisting of components x and y, with x being the parent
of y. The repair system consists of 2 echelons, 1 and 2, and there are no fixed costs for
opening a repair option. Table 1 shows the variable costs and the demand rates.

Table 2 shows the resulting optimal LP solution, which is not an IP solution. The objective
value is 1.5 and is 2 for the optimal IP solution. To understand why the LP solution differs
from the IP solution, and why the LP solution is not feasible, see Fig. 3. The figure shows in
a graph which repair options can be chosen for components x and y. Each displayed arc rep-
resents a repair option Ne,r,x or Ne,r,y . At the top node, only one arc or repair option should
be chosen, so that the associated N1,r,x = 1. If two options are chosen simultaneously, both
associated N1,r,x = 0.5. What happens in the example, is that via two ways6, component y

reaches echelon 2 in need for repair (the bold arcs in the figure). Because Constraint (3) and

6The two ways are: (1) Component x is moved to echelon 2 (1,move, x) and is repaired there (2, repair, x).
Component y results at echelon 2 in need for repair. (2) Component x is repaired at echelon 1 (1, repair, x).
Component y results at echelon 1 in need for repair and is moved to echelon 2 (1,move, y).
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Constraint (4) ensure that the value of N2,repair,y is greater than or equal to N1,move,y(= 0.5)

and N2,repair,x(= 0.5) respectively, N2,repair,y needs to be only 0.5 instead of 1. This means
that half of the amount of y is lost. In Sect. 3.3, we explained that we cannot replace the
inequalities in these constraints with equalities, so we cannot prevent the problem in this
formulation without using the integrality constraints on the Ne,r,x variables.

4 Improved IP model

Because the integrality constraints in the model provided in Sect. 3 could not be removed for
the Ne,r,x variables, we show an improved model in Sect. 4.1. We still use the assumptions
outlined in Sect. 3.1. Section 4.2 shows which integrality constraints can be removed in the
improved model and Sect. 4.3 uses these results to show which integrality constraints can
be removed in the model of Barros (1998). Section 4.4 uses the results of Sect. 4.2 to show
that all integrality constraints can be removed when the assumptions of Saranga and Dinesh
Kumar (2006) are used in our model.

4.1 Model formulation

The improvement in the LORA formulation is inspired by the problem shown in Sect. 3.4.
We show the model below, and explain the differences with the basic model afterwards.

minimize
∑

e∈E

∑

r∈R

∑

x∈X

vce,r,x · λx · Ne,r,x +
∑

e∈E

∑

r∈R

∑

Gg∈G

f ce,r,Gg · Me,r,Gg (7)

subject to:

∑

r∈R

N1,r,x = 1, ∀x ∈ XS (8)

Ne,move,x =
∑

r∈R

Ne+1,r,x , ∀e ∈ EL, ∀x ∈ XS (9)

N1,repair,x =
∑

r∈R

N1,r,y , ∀x ∈ X, ∀y ∈ �x (10)

Ne+1,repair,x + Ne,move,y =
∑

r∈R

Ne+1,r,y, ∀e ∈ EL, ∀x ∈ X, ∀y ∈ �x (11)

Ne,r,x ≤ Me,r,Gg , ∀e ∈ E, ∀r ∈ R, ∀Gg ∈ G, ∀x ∈ Gg (12)

Ne,r,x,Me,r,Gg ∈ {0,1}, ∀e ∈ E, ∀r ∈ R, ∀x ∈ X, ∀Gg ∈ G (13)

There are four differences with the original model:

• Constraint (9) is similar to Constraint (3), but is used only for the subsystems (XS ), instead
of for all components.

• Constraint (10) is similar to Constraint (4), but is used only for echelon 1, instead of for
all echelons.

• Constraint (11) is added to handle the problem shown in Sect. 3.4. It combines the previ-
ous two constraints in that it assures that a repair option is chosen for a child component
if it is moved from a lower echelon, or the parent component is repaired at the current
echelon.
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• Constraints (3) and (4) are inequalities (and cannot be changed to equalities, see Sect. 3.3),
but Constraints (9), (10) and (11) are equalities.

4.2 LP relaxations

The model uses two types of integer variables: Ne,r,x and Me,r,Gg . In this section, we show
that we cannot remove the integrality constraint on both Ne,r,x and Me,r,Gg , without yielding
a fractional solution (Sect. 4.2.1). However, we also show that we can remove the integrality
constraint on Ne,r,x (Sect. 4.2.2).

4.2.1 Removing all integrality constraints

In this section, we give an example of a LORA instance that leads to a non-integer solution
(that cannot be adapted to an integer solution, while keeping the same objective function
value). In the example, there are three subsystems (x1, x2, x3) without child components.
The subsystems are in one set that shares fixed costs, so G1 = {x1, x2, x3}. Table 3 gives the
yearly demand rate per component and the variable costs per repair action. Table 4 gives the
fixed costs.

The optimal LP solution value for this instance is 150, but the optimal IP solution value
is 200. Tables 5 and 6 show the values of Ne,r,x and Me,r,Gg in the optimal LP solution. The

Table 3 Variable costs and
yearly demand for erroneous
instance

Component x1 x2 x3

λx 1 1 1

vc1,discard,x 100 0 0

vc1,repair,x 0 100 0

vc1,move,x 0 0 100

vc2,discard,x 0 0 0

vc2,repair,x 0 0 0

Table 4 Fixed costs for
erroneous instance Set G1

f c1,discard,Gg 100

f c1,repair,Gg 100

f c1,move,Gg 100

f c2,discard,Gg 0

f c2,repair,Gg 0

Table 5 Ne,r,x for erroneous
instance Component x1 x2 x3

N1,discard,x 0 0.5 0.5

N1,repair,x 0.5 0 0.5

N1,move,x 0.5 0.5 0

N2,discard,x 0.5 0.5 0

N2,repair,x 0 0 0
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Table 6 Me,r,Gg for erroneous
instance Set G1

M1,discard,Gg 0.5

M1,repair,Gg 0.5

M1,move,Gg 0.5

M2,discard,Gg 0.5

M2,repair,Gg 0

optimal IP solution can be achieved in multiple ways. Since repair and discard on echelon 2
do not incur any costs, we can focus on the three repair options at echelon 1:

• Opening one repair option leads to fixed costs of 100. Depending on the option we would
open, one component would make variable costs of 100. Fixed costs and variable costs
together would be 200.

• Opening two or more repair options leads to fixed costs of at least 200.

This example shows that, in general, not all integrality constraints can be removed. How-
ever, based on our experiments we conclude that only about 6% of the LORA problem in-
stances leads to a non-integer solution if all integrality constraints are removed.

4.2.2 Removing integrality constraints on the Ne,r,x variables

In this section, we discuss removing the integrality constraints on the Ne,r,x variables and
we consider the resulting optimal solution. We show that all Ne,r,x variables will be integer.

The basic idea of our proof is that we take the costs of the optimal solution for all the
children together, and add these to the parent component. Assume that we have a system
consisting of a component x1 with �x1 = {x2, x3}, and we have a repair network with two
echelons. Figure 4 shows the decision tree for the repair options of the system. If the repair
option ‘repair’ is chosen for x1 at either echelon 1 or 2, a repair option has to be chosen for
both x2 and x3, which is indicated by the bold arcs originating at node 1 and 2 respectively.

Fig. 4 Decision tree: 3 components, 2 echelons, 2 indenture levels. Each non-bold arc in the graph represents
a repair option Ne,r,x : d = discard, r = repair and m = move. The bold arcs show that below node 1 and 2,
repair options need to be chosen simultaneously for x2 and x3
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Fig. 5 Graph: 2 echelons. Each
arc in the graph represents a
repair option Ne,r,x : d = discard,
r = repair and m = move. An arc
has capacity 1 if the associated
repair option is feasible (given
the values of Me,r,Gg ). The
capacity is 0 otherwise

Fig. 6 Graph: 1 echelon. Each
arc in the graph represents a
repair option Ne,r,x : d = discard,
r = repair and m = move. An arc
has capacity 1 if the associated
repair option is feasible (given
the values of Me,r,Gg ). The
capacity is 0 otherwise

We show below that the optimal repair options for the child components can be chosen
independently of each other. In other words, the parts below nodes 1 and 2 can be solved
independently. After that, these parts can be removed, and the optimal costs of these parts
can be added to the cost of the arcs that end in nodes 1 and 2 (the options ‘repair’ at echelon 1
and 2 respectively).

We consider the optimal solution of the IP model in which the integrality constraints on
the Ne,r,x variables are removed. The Me,r,Gg variables are still binary. Since we are looking
at the optimal solution, it is fixed, for example, at which echelon test equipment is available
and at which echelon it is not. This in turn means that not all repair options may be possible
anymore: In Fig. 4, not all arcs can be chosen.

We need one further observation: Components at the same indenture level can only be
connected to each other by their parent component (or a parent of a parent etc.) and by the
sets of components sharing fixed costs (Gg). It follows that given a repair decision for all
the parents and given the values for Me,r,Gg ∈ {0,1}, decisions for components at the same
indenture level can be made independently. The subsystems do not have a parent component
modeled, so decisions for them can be made independently as well.

We are now ready to show that the repair decision for each component can be seen as
a minimum cost network flow problem. (Refer to Fig. 4 if necessary.) Figure 5 shows the
network for component x2, given that x1 is repaired at echelon 1. If x1 is repaired at ech-
elon 2, the network for x2 is shown in Fig. 6. The capacity of an arc is 1 if the associated
repair option is feasible. In other words, if Me,r,Gg = 1 ,∀Gg ∈ G | x2 ∈ Gg . The capacity is
0 otherwise. The costs of using an arc are equal to the associated variable costs times the
associated yearly demand (vce,r,x2 · λx2 ).

The reasoning for component x3 goes analogous to the reasoning for x2 in the previous
paragraph. What differs (probably) are the capacities of the arcs and the costs for using the
arcs.
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It is well known in the literature that minimum cost network flow problems always have
an optimal integer solution, provided that all capacities, supplies and demands are integer
(see, e.g., Ahuja et al. 1993). Capacities are all 0 or 1 in our example. Supply at the top and
demand at the sink (bottom vertex) is 1. It follows that all Ne,r,x2 ,Ne,r,x3 ∈ {0,1}.

We add the sum of the costs of the best repair options of x2 and x3 at echelon 1 (the
optimal solution for both x2 and x3, see Fig. 5) to the costs of repairing x1 at echelon 1 (the
arc ending in node 1 in Fig. 4). In the same way, we add the sum of the costs of the best
repair options of x2 and x3 at echelon 2 (Fig. 6) to the costs of repairing x1 at echelon 2
(the arc ending in node 2 in Fig. 4). The result is that for component x1, we have the same
network as shown in Fig. 5. Since x1 is a subsystem in our example, Constraint (8) assures
an inflow of 1. With a reasoning analogous to the reasoning in the previous paragraph, this
shows that all Ne,r,x1 ∈ {0,1}, and therefore all Ne,r,x ∈ {0,1}.

It may happen that some of the network flow problems for component x2 or x3 do not
have a feasible solution (Figs. 5 and 6). This happens if no path through the network has a
capacity of more than 0, due to the values of the Me,r,Gg variables. These networks originate
in node 1 or 2 in Fig. 4, which means that the arc ending in that node cannot be chosen in
the optimal solution. This means that if we add the optimal values for x2 and x3 to the arc
corresponding to Ne,repair,x1 (for e is 1 or 2), this arc gets a capacity of 0. However, in the
minimum cost network flow problem for each subsystem (x1), it is still guaranteed that there
is at least one path with capacity 1, since we are discussing the optimal solution.

The extension of our reasoning to more echelons, more indenture levels or more children
per parent is straightforward. This means that in the general LORA problem, we can remove
the integrality constraints on the Ne,r,x variables and it is still guaranteed that there exists
an optimal solution in which all Ne,r,x ∈ {0,1}, provided that Me,r,Gg ∈ {0,1}. If any Ne,r,x /∈
{0,1} in the resulting solution of our mixed integer programming model, we can construct an
integer solution based on the reasoning above (however, we never encountered non-integer
solutions in any of our tests).

4.3 Model of Barros

As we noted before, Barros (1998) mentions that her formulation of the LORA problem “. . .
provides a natural integer solution in its relaxed linear programming version” (p. 409). This
section shows that this is not true for the general case with more than two echelons or more
than two indenture levels. Although Barros states that her model can be used for any number
of echelons and indenture levels, we know from Gutin et al. (2006) that Barros tested her
model for the case of two echelons and two indenture levels only (LORA-BR). We could not
find a counter example for that specific case.

The example used in the current section, resembles the example given in Sect. 4.2.1.
Table 7 shows the yearly demand rate and the variable costs, Table 8 shows the fixed costs.
There are a couple of differences with the previous example, due to differences between our
model and that of Barros:

• The echelon e is incorporated in the repair option r in Barros’ model.
• Barros assumes that no fixed costs need to be made for opening the discard option.
• Barros assumes only one discard option, and not different variable costs for discard at

every level in the repair network.
• Barros does not distinguish the move option. Costs for moving a component are part of

the costs of repairing that component at the higher echelons.



Ann Oper Res (2009) 172: 119–142 133

Table 7 Variable costs and
yearly demand for erroneous
instance

Component x1 x2 x3

λx 1 1 1

vcdiscard,x 200 200 200

vcrepair at 1,x 100 0 0

vcrepair at 2,x 0 100 0

vcrepair at 3,x 0 0 100

Table 8 Fixed costs for
erroneous instance Set G1

f cdiscard,Gi
0

f crepair at 1,Gi
100

f crepair at 2,Gi
100

f crepair at 3,Gi
100

Table 9 Nr,x for erroneous
instance Component x1 x2 x3

Ndiscard,x 0 0 0

Nrepair at 1,x 0 0.5 0.5

Nrepair at 2,x 0.5 0 0.5

Nrepair at 3,x 0.5 0.5 0

Table 10 Mr,Gi
for erroneous

instance Set G1

Mdiscard,Gi
0

Mrepair at 1,Gi
0.5

Mrepair at 2,Gi
0.5

Mrepair at 3,Gi
0.5

• Fixed costs are borne by all the components at one indenture level. In our case, this means
that all components are in the same set G1, because they are all at indenture level 1.

The resulting outputs are shown in Tables 9 and 10. The explanation of the results is
analogous to the explanation of the results in Sect. 4.2.1 and is therefore not repeated.

4.4 Model of Saranga and Dinesh Kumar

Saranga and Dinesh Kumar (2006) assume that fixed costs are borne by one component.
Therefore, these fixed costs are not really different from variable costs. We can con-
struct ‘new’ variable costs from the ‘old’ variable costs and fixed costs in the follow-
ing way (remember that in our model, fixed costs are the mean fixed costs per year):
vc′

e,r,x = vce,r,x + f ce,r,x

λx
. Using these new variable costs, the new fixed costs are zero. If

all fixed costs are zero, all Me,r,Gg variables can be removed from the model (or set to 1).
Section 4.2 shows that no integrality constraints are needed on the Ne,r,x variables if all
Me,r,Gg ∈ {0,1}. This means that with a little pre-processing, all integrality constraints can
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be removed for problem instances that comply with the assumptions of Saranga and Dinesh
Kumar (2006). Using genetic algorithms for these problem instances, which Saranga and
Dinesh Kumar do, is therefore not necessary with our model formulation.

5 Computational experiments

To test the model, we generated instances of the LORA problem and solved these using
the CPLEX callable library version 11 (with default settings), running under Windows XP,
service pack 2, on a Pentium 4, 3.4 GHz with 1 GB RAM. We used only one core of the
dual core processor.

In Sect. 5.1 we explain how we generated the test instances. Section 5.2 provides the
inputs we used and discusses some issues concerning the actual testing. Section 5.3 shows
and discusses the results of the tests.

5.1 Problem instance generator

In this section, we explain the basic idea of our problem instance generator. More extensive
information can be found in Appendix B.

Our problem instance generator receives as inputs the number of components (|X|), the
number of indenture levels (I ), the number of echelons (|E|), the number of fixed costs
sets (|G|),7 and the maximum number of fixed costs sets in which each component will
be (S). For each number of fixed costs sets s | 0 ≤ s ≤ S, a percentage Ps has to be specified,
such that

∑S

s=0 Ps = 100%. Ps is the percentage of components that will be in s sets of
components sharing fixed costs. For example, if the components may be at maximum in 1
fixed costs set (S = 1), P0 is the percentage of components that will be in no set at all and P1

is the percentage of components that will be in 1 fixed costs set. These percentages should
add up to 100%.

Depending on the number of components and indenture levels, we calculate how many
children every parent component should have approximately in order to get a reasonable
system structure. We use this value to draw the number of components at every indenture
level and construct the system structure using these values. A reasonable system structure
means that we prevent for example that indenture level 1 contains 800 components, and
indenture levels 2 and 3 together contain 200 components.

The last inputs are the minimum and maximum values for vce,r,x , f ce,r,Gg , and λx . The
actual values are drawn from a uniform distribution ranging from the provided minimum to
the provided maximum. We adapt the vce,discard,x and λx by adding the values of the child
components to the values of their parents.

5.2 Inputs and general issues

In each of our tests, we vary only one parameter. The other parameters get their default
values, which are: |X| = 1,000, I = 3, |E| = 3, |G| = 100, and S = 2. Every computation
time shown in the next section, is the mean value of 1,000 test instances.

If the maximum number of fixed costs sets is set to 2 (S = 2), then 10% of the compo-
nents will not be in any fixed costs set, 10% will be in 1 of those sets, and 80% will be in

7In our model, we have sets of components that share fixed costs (Gg ∈ G). We will call these sets from now
on ‘fixed costs sets’.
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2 of those sets. In general: For any number of fixed costs sets s | 0 ≤ s < S, 10% of the
components will be in that number of sets. As a result, 100% − S · 10% of the components
will be in the maximum number of fixed costs sets (S will not be larger than 5 in our tests).

In all the tests, we set the minimum and maximum input values for vce,r,x to 50 and 1,000
respectively, for f ce,r,g to 500 and 10,000, and for λx to 0.05 and 5.

At Thales Nederland (a manufacturer of naval sensors and naval command and control
systems), we did not see components that are in more than two sets of components sharing
fixed costs (e.g., test equipment). The total number of fixed costs sets at Thales Nederland
is in general less than 25, and the number of components is less than 1,000. From the liter-
ature and from cases at Thales Nederland, we know that both the number of echelons and
indenture levels is typically five or less. That is to say, Thales Nederland uses more than
five indenture levels and more than 1,000 components. However, as explained in Sect. 3.2,
some components are removed from consideration during the non-economic LORA that is
performed before the LORA is performed as described in this paper. These components in-
clude small parts such as screws and relays, and parts that cannot be removed, such as cas-
ings. Some repair options for the remaining parts are removed from consideration as well
in the non-economic LORA. There might not be enough room on board a ship for certain
test equipment, or proprietary knowledge can prohibit the user from repairing a component.
In our tests, we did not remove any repair option, so we consider more repair options than
there would be in practice.

As explained in Sect. 3, our model generalizes the models of Barros (1998) and Saranga
and Dinesh Kumar (2006). The former assumes that fixed costs are borne by all the compo-
nents at one indenture level; the latter assumes that fixed costs are borne by one component.
In our model, fixed costs are borne by sets of components that can be defined freely. For
each of these different assumptions about fixed costs, we performed tests with our model.
We call tests with general fixed costs sets ‘Gen.’, tests with fixed costs per indenture level
‘Barros’ and tests with fixed costs per component ‘SDK’ (for Saranga and Dinesh Kumar).
For the ‘SDK’ tests, we solved the model as an LP problem, as explained in Sect. 4.4. In all
other cases, we modeled Me,r,Gg as binary variables.

In some cases, solving the problem instances took so much time, that we restricted
CPLEX; we set a time limit of 120 seconds per 1,000 components for each problem instance.
The tables provide the number of tests that exceeded the time limit, which only happened for
‘Gen.’ tests. We excluded these problem instances from the calculations of the computation
times. At the end of Sect. 5.3, we discuss the problem instances that exceeded the time limit.
For now, it suffices to mention that we found feasible solutions for all of them.

5.3 Results

Table 11 shows the mean computation times for different numbers of components in the sys-
tem. In Tables 12 and 13, we vary the number of indenture levels and echelons respectively.
The run times increase more than linear with the number of components. The run times also
increase, as expected, if the number of indenture levels or echelons increases. The run times
increase strongly if the number of indenture levels increases from 1 to 2. This is logical,
since 1 indenture level means that components are not connected to each other in the prod-
uct structure (they are all subsystems, and the system is not modeled). They are however
connected by sharing fixed costs sets. It is remarkable to see that the average computation
time slightly decreases if the number of indenture levels increases from 2 to 3 for the ‘Gen.’
tests.
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Table 11 Computation times (seconds), varying the number of components

# Components 500 1,000 2,000 5,000 10,000 20,000

Gen. 2.433a 4.061b 12.42c 117.6d – –

Barros 0.101 0.314 1.025 5.033 16.36 55.34

SDK 0.031 0.078 0.205 0.741 2.088 6.122

a2 runs exceeded the time limit of 1 minute

b2 runs exceeded the time limit of 2 minutes
c13 runs exceeded the time limit of 4 minutes

d68 runs exceeded the time limit of 10 minutes

Table 12 Computation times (seconds), varying the number of indenture levels

# Indenture levels 1 2 3 4 5

Gen. 0.256 4.773a 4.061b 5.685c 8.887d

Barros 0.178 0.265 0.314 0.431 0.527

SDK 0.033 0.062 0.078 0.094 0.111

a1 run exceeded the time limit of 2 minutes

b2 runs exceeded the time limit of 2 minutes
c7 runs exceeded the time limit of 2 minutes

d15 runs exceeded the time limit of 2 minutes

Table 13 Computation times (seconds), varying the number of echelons

# Echelons 1 2 3 4 5

Gen. 0.233 1.829 4.061a 6.476b 7.600c

Barros 0.041 0.158 0.314 0.455 0.533

SDK 0.008 0.048 0.078 0.110 0.135

a2 runs exceeded the time limit of 2 minutes

b5 runs exceeded the time limit of 2 minutes
c6 runs exceeded the time limit of 2 minutes

The ‘Gen.’ tests take far more time than those of ‘Barros’ and ‘SDK’. These last two
types of problem instances can easily be solved using CPLEX, instead of using genetic al-
gorithms (Saranga and Dinesh Kumar 2006) or branch-and-bound techniques (Barros and
Riley 2001). We solve ‘SDK’ tests as LP problems, so it is not surprising that these are much
faster than ‘Gen.’ tests. In the ‘Barros’ tests, the number of fixed costs sets is equal to the
number of indenture levels. This means that the number of binary variables is much smaller
in the ‘Barros’ tests than in the ‘Gen.’ tests. An additional explanation of the difference in
computation times between the ‘Barros’ and ‘Gen.’ tests is that components are more ‘con-
nected’ in the ‘Gen.’ tests; if x1, x2 ∈ G1 and x2, x3 ∈ G2, a change in the repair option of x1

can change the best option for x3.
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Table 14 Computation times (seconds), varying the maximum number of fixed costs sets of which a com-
ponent can be part of

# Sets 1 2 3 4 5

Gen. 0.636 4.061a 5.940b 7.151c 8.890d

a2 runs exceeded the time limit of 2 minutes

b5 runs exceeded the time limit of 2 minutes
c4 runs exceeded the time limit of 2 minutes

d2 runs exceeded the time limit of 2 minutes

Table 15 Computation times (seconds), varying the total number of fixed costs sets

# Sets 25 50 100 250 500

Gen. 1.628 3.011a 4.061b 11.60c 2.414d

a3 runs exceeded the time limit of 2 minutes

b2 runs exceeded the time limit of 2 minutes
c106 runs exceeded the time limit of 2 minutes

d10 runs exceeded the time limit of 2 minutes

The findings in Table 14, in which we vary the maximum number of fixed costs sets per
component (S), support this assumption. Notice that the computation times increase a lot
if the maximum number of fixed costs sets per component increases from 1 to 2. This is
not surprising, since 1 fixed costs set per component means that components are connected
only to the other components in that one fixed costs set, but they are not connected through
these components to other fixed costs sets, as described in the previous paragraph. Notice
however, that they are still connected to other components in the product structure.

In order to be complete, Table 15 shows how run times change if the total number of
fixed costs sets changes. Run times increase with an increasing number of fixed costs sets.
However, this changes when the number of sets increases from 250 to 500. We tested what
happened with 1,000 sets: The mean optimization time decreases further to 0.564 seconds.
A plausible explanation is that this is due to the components becoming less ‘connected’ to
each other. If there are 1,000 components that are at maximum in 2 sets each and there are
1,000 sets, there will be on average less than 2 components per set. With 250 sets, there will
be a little less than 8 components per set. If x1, x2 ∈ G1 and x2, x3 ∈ G2, a change in the
repair option of x1 can change the best option for x3. This will probably happen more often
if there are 8 components per set than if there are 2 components per set.

In most ‘Gen.’ tests, a small percentage of the problem instances is not solved to opti-
mality, due to the time limit of 120 seconds per 1,000 components we set on solving the
instances. We calculated the gap between the best IP solution that was found at the moment
the solver was stopped, and the best lower bound that CPLEX had found at that moment.
The gap is mostly below 2%, with exceptional cases of gaps upto 6.6%. It also happened 15
times (out of the 20,000 ‘Gen.’ tests that we performed) that no IP solution was found before
the test was stopped. 14 of these tests were problem instances with 5,000 components, the
other test was a problem instance with 250 fixed costs sets. These kind of instances are not
realistic at Thales Nederland.
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If we solve the problem instances that exceeded the time limit (both those for which we
found an IP solution and those for which we did not), and set a new time limit of one hour, all
but three of the problem instances are solved to optimality. The remaining problem instances
are one with 5 echelons, one with 250 fixed costs sets, and one with 5,000 components. If
we solve these three problem instances with a time limit of three hours, they are solved to
optimality. If we focus on the ‘problematic’ problem instance with 5,000 components, we
see that the LP relaxation is solved after 10 minutes. The first IP solution is found a few
seconds later, with a gap of 1.09%. After 20 minutes, the optimal solution is found, but
optimality is not verified yet. After one hour, the gap is below 0.1% and optimality of the
solution is verified in three hours.

At the development stage of a product, we do not think that waiting for one hour is
problematic. We also think that a gap of below 2% is not problematic, since the input data
generally consists of rather rough estimates.

6 Conclusions and directions for further research

We developed a LORA model that generalizes the two LORA models that existed in the lit-
erature (Barros 1998; Saranga and Dinesh Kumar 2006). We did this by using sets of com-
ponents that share fixed costs that can be defined freely, instead of assuming that fixed costs
are shared between all components at a certain indenture level (Barros) or assuming that
fixed costs are borne by one component (Saranga and Dinesh Kumar). This generalization
was needed to be able to model cases we found at Thales Nederland. We presented an IP

formulation and showed when some of the integrality constraints can be removed (without
yielding a fractional solution). Using these results, we were able to show that all integrality
constraints can be removed if the model assumptions of Saranga and Dinesh Kumar (2006)
are used, so that there is no need to solve problem instances using genetic algorithms. We
also showed that it is not possible to remove all integrality constraints in the model of Barros
(1998).

We solved LORA problem instances with sizes that are realistic in practice (Thales Ned-
erland), using CPLEX. Most problem instances could be solved in a couple of seconds. The
most important factor that influences the computation time is the number of components in
the system. The number of components in cases at Thales Nederland does not cause a prob-
lem, but at other companies it might do so. Performing a non-economic LORA could help in
such a case to reduce the problem size. The computation times also increase if any of the
following increases: The number of indenture levels in the system, the number of echelons
in the repair network, or the number of fixed costs sets of which each component is part of.
If the total number of fixed costs sets increases, the computation times increase as well, but
only until a certain number of fixed costs sets is reached (around 250). After that, computa-
tion times decrease. The computation time of the general model is to over 100 times larger
than the computation time for models restricted to the assumptions of Barros or, especially,
Saranga and Dinesh Kumar.

It would be interesting from both a theoretical and practical point of view, to link the
LORA problem to the problem of determining the required number of spare parts to store
at each location in the repair network, given a goal availability of the products. The latter
problem is in general solved with (an extension to) METRIC (Sherbrooke 1968, 2004).

It may be useful to develop fast heuristics for our LORA model first, before the LORA is
coupled to the spare parts optimization problem. Such a fast heuristic may also be useful for
companies that develop much larger systems than Thales Nederland does.

Other interesting extensions to our model would be to:
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• Explicitly model the repair network. This means that one component can be repaired at
different echelons, depending on the system location from which the component origi-
nates.

• Introduce different types of failures per component. For example, in 60% of the cases a
tester is needed, in 40% of the cases the tester is not needed. This might mean that the
latter kind of repairs can be performed on board the ship, whereas the former kind of
repairs should be performed at a higher echelon.

• Introduce a step function in the fixed costs, such that the Me,r,Gg variables are not binary,
but integer. For example, if fixed costs are related to buying a tester, this tester cannot
be used to test an infinite amount of components. If a certain amount of components is
reached, a second, and maybe even a third or fourth tester would be needed.

• Relax the assumption of a 100% probability of successful repair. This assumption is not
realistic in practice and is, for example, also not used in METRIC and its successors (Sher-
brooke 2004). It would be better to have a certain probability of successful repair p. The
other percentage of the cases (1 −p) needs another treatment (repair at an higher echelon
or discard).
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Appendix A

In this appendix, we show that the LORA problem is NP-hard in general. We do this by
reducing the uncapacitated facility location problem (UFL problem) in polynomial time to
the LORA problem. The UFL problem is NP-hard, see for example Cornuejols et al. (1990),
and reduction of an NP-hard problem in polynomial time to another problem shows that the
latter problem is NP-hard as well.

The UFL problem can be stated as follows (Cornuejols et al. 1990; Daskin 1995): There
is a set of m clients I = {i1, . . . , im} with a given demand for a single commodity, and a
set of n sites J = {j1, . . . , jn} where facilities can be located. The fixed costs of opening a
facility at site j are fj , and dij are the costs of serving client i from the facility at site j .
The goal is to minimize the costs that have to be made to serve all customer demands.

Let xj = 1 if facility j is open and xj = 0 otherwise; yij = 1 if the demand of client i is
satisfied from facility j and yij = 0 otherwise. The resulting integer programming formula-
tion is:

minimize
∑

i∈I

∑

j∈J

dij · yij +
∑

j∈J

fj · xj (14)

subject to:
∑

j∈J

yij = 1, ∀i ∈ I (15)

yij ≤ xj , ∀i ∈ I, ∀j ∈ J (16)

xj , yij ∈ {0,1}, ∀i ∈ I, ∀j ∈ J (17)
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Constraint (15) guarantees that the demand of every client is satisfied; Constraint (16)
guarantees that clients are supplied only from open locations.

The UFL problem can be modelled as a LORA problem with one indenture level consisting
of m components (number of clients in the UFL problem). Every facility in the UFL problem
is modelled as a possible decision (‘repair’ or ‘discard’) at one of the echelon levels in the
LORA problem. In the LORA problem, there is an even number of decisions, namely both
‘discard’ and ‘repair’ at every echelon level. If there is an odd number of facilities in the
UFL problem, one of the possible repair options should get very high costs associated to it,
so that repair option will never be chosen. As a result, the repair network consists of �n/2
echelon levels (number of facilities divided by 2 and rounded up). The costs of supplying
client i from facility j , dij , are equal to the variable costs of repair option j for component i

(‘move’ has zero costs). The yearly demand per component is 1.
Components can only choose repair options that are available. This is equivalent to the

constraint in the UFL problem that only facilities may be used that are opened. Therefore,
we model one set of components sharing fixed costs G1 that consists of all components. If
any of the components uses a certain repair option, fixed costs related to this repair option
are incurred, so the corresponding Me,r,G1 = 1, which costs f ce,r,G1 . This is equivalent to
opening a facility j in the UFL problem, which costs fj . No resource is needed to choose
decision ‘move’, so all f ce,move,G1 = 0.

We showed in Sect. 4.2 that exactly one repair option j will be chosen in a LORA for
failures in any component i, which means that exactly one facility j is chosen to supply
client i in the UFL problem, so that the integrality constraints will not be violated. It is clear
that the reduction as we have shown it above can be performed in polynomial time.

Figure 7 shows a small instance of a UFL problem with two clients and four possible sites
where facilities can be located. Figure 8 shows the corresponding LORA problem. There are
two components in which failures occur: i1 and i2. The components contain no subcompo-
nents and represent the two clients that need to be supplied from exactly one location. There
are two echelon levels in the repair network, which means that there are four possible re-
pair options for each component (besides the ‘intermediate’ repair option ‘m’ representing
‘move from echelon level 1 to echelon level 2’): ‘repair at echelon level 1’ which represents
facility j1, ‘discard at echelon level 1’ representing j2, ‘repair at echelon level 2’ repre-
senting j3, and ‘discard at echelon level 2’ representing j4. The set of components sharing
fixed costs G1 = {i1, i2}. Choosing a repair option j for a component i in the LORA problem
corresponds to choosing a facility j that supplies a client i in the UFL problem.

Fig. 7 UFL problem

Fig. 8 UFL problem as LORA

problem
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Appendix B

In this appendix, we explain in more detail how we generate problem instances.
As explained in Sect. 5.1, our problem instance generator receives as inputs the number

of components (|X|), the number of indenture levels (I ), the number of echelons (|E|), the
number of fixed costs sets (|G|),8 and the maximum number of fixed costs sets in which each
component will be (S). For each number of fixed costs sets s | 0 ≤ s ≤ S, a percentage Ps

has to be specified, such that
∑S

s=0 Ps = 100%. Ps is the percentage of components that will
be in s sets of components sharing fixed costs. For example, if the components may be at
maximum in 1 fixed costs set (S = 1), P0 is the percentage of components that will be in
no set at all and P1 is the percentage of components that will be in 1 fixed costs set. These
percentages should add up to 100%.

For every component x, we draw a random number to decide in how many fixed costs
sets the component will be. We draw that number of sets Gg , with every set having equal
probability. Component x will be in all of these sets. Notice that the number of components
per set will in general not be the same for all sets.

Depending on the number of components and indenture levels, we calculate how many
children every parent component should have approximately; we call this value c. This c

should be such that
∑I

i=1 ci = |X| (or (c − cI+1)/(1 − c) = |X|). For I ≥ 4 this cannot be
solved exactly. Therefore, we use an approximation (for simplicity, we also use the approx-
imation for I < 4): First, we determine an auxiliary variable c′ such that (c′)I = |X|. Then
we calculate:

c = c′ · |X|
|X| + 1

I
· (∑I

i=1[(c′)i] − |X|)
For |X| = 1,000 and I = 3, this means that c′ = 10 and c ≈ 9.65. This in turn means that∑I

i=1(c
′)i = 1,110 and

∑I

i=1 ci = 1,000.3. This last value is very close to |X|, which was
our goal.

To determine the number of components at indenture level i (|Xi |), we draw a random
number from a uniform distribution ranging from 1

2 c to 1 1
2c and we multiply this value by

the number of components at the next lower indenture level (|Xi−1|, notice that |X0| = 1).
We initialize Xavailable = X and for every i > 0, we subtract |Xi | from Xavailable. If Xavailable <

|Xi |, we set |Xi | = Xavailable. The number of components at indenture level I is not drawn,
but is equal to Xavailable after we have drawn the values for all the lower indenture levels.
Notice that it can happen that |XI | = 0, which would mean that the system consists of I − 1
indenture levels.

For each of the components y ∈ Xi , we draw with an equal probability any one of the
components x ∈ Xi−1. This x is the father component of y. Notice that in general, the num-
ber of children per parent will not be the same for all parents at a certain indenture level.
Notice also that at indenture level 1, so the subsystem level, no father component needs to
be drawn.

The last inputs are the minimum and maximum values for vce,r,x , f ce,r,g , and λx . The
actual values for the vce,r,x , f ce,r,g , and λx are drawn from a uniform distribution ranging
from the provided minimum to the provided maximum. Starting at the components with the
one but highest indenture level and ending with the components with indenture level 1, the
value of all λx will be changed to λx + ∑

y∈�x
λy . We do this, since in practice the demand

8In our model, we have sets of components that share fixed costs (Gg ∈ G). We call these sets ‘fixed costs
sets’.
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for a parent component will generally be about the same as the demand for all its child
components. In the same way, the variable costs of discard for all its child components are
added to the costs of discard for the parent component.
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