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Abstract

Population structure causes genome-wide linkage disequilibrium between unlinked loci, leading to 

statistical confounding in genome-wide association studies. Mixed models have been shown to 

handle the confounding effects of a diffuse background of large numbers of loci of small effect 

well, but do not always account for loci of larger effect. Here we propose a multi-locus mixed 

model as a general method for mapping complex traits in structured populations. Simulations 

suggest that our method outperforms existing methods, in terms of power as well as false 

discovery rate. We apply our method to human and Arabidopsis thaliana data, identifying novel 

associations in known candidates as well as evidence for allelic heterogeneity. We also 

demonstrate how a priori knowledge from an A. thaliana linkage mapping study can be integrated 

into our method using a Bayesian approach. Our implementation is computationally efficient, 

making the analysis of large datasets (n > 10000) practicable.

INTRODUCTION

With the increasing availability of genomic polymorphism data, genome-wide association 

studies (GWAS) are becoming the default method for investigating the genetics of 

quantitative traits. Typically, GWAS are carried out using single-locus tests to identify 

associations between polymorphisms and traits in either case-control populations or cohorts. 

However, both designs are subject to confounding by population structure, leading to an 
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inflation of test statistics and a high false positive rate1,2. Several methods have been 

proposed to deal with this issue, including genomic control3, structured association4, 

principal components analysis5, and mixed linear models6. Genomic control scales the test 

statistics uniformly so that the observed median test statistic equals the expected one. Even 

though this approach reduces the inflation of test statistics globally, it does not change the 

rank of the polymorphisms, as they are subject to the same correction. In the structured 

association and principal component analysis approaches, population structure is taken into 

account by including covariates in the association model representing the cluster 

memberships and principal component loadings of the individuals, respectively. While these 

approaches are expected to perform well when the population structure is simple, they may 

perform poorly when the structure is more complex, e.g., when individuals display a 

continuum of relatedness7. A further improvement has been made with the use of mixed 

linear models, which are based on the insight that confounding will be caused by the genetic 

background of causal variants in the presence of population structure. The mixed model 

controls for this through a random polygenic term having a covariance structure described 

by a relationship matrix so that correlation in phenotype mirrors relatedness8, as predicted 

by Fisher's classical model9. This approach has been shown to perform well in plants, 

animals and humans6,10,11,12 and methods have been developed to allow the analysis of 

large GWAS datasets in a reasonable amount of time11,13,14.

All these approaches are based on single-locus tests combined with some kind of diffuse 

genomic background. For complex traits controlled by several large-effect loci, this may not 

be appropriate, especially in presence of population structure12 (indeed, a substantial 

inflation of single-locus test statistics can be expected for complex traits even in the absence 

of population structure15). Explicit use of multiple cofactors in the statistical model is an 

obvious alternative, and is indeed standard in traditional linkage mapping, where both 

“Multiple QTL Mapping” and “Composite Interval Mapping” have been shown to 

outperform simple interval mapping16,17. In GWAS, the case for including multiple loci is 

arguably even stronger, as the confounding effects of background loci may be genome-wide 

(due to linkage disequilibrium) rather than just local (due to linkage)18. Thus, while 

conditioning on known causative factors in GWAS has typically been done on a local scale, 

to help identify multiple alleles and clarify complex associations12,19,20, we believe that it 

should be done on a genome-wide basis. As illustrated in Fig. 1, a conditional analysis at a 

genome-wide scale may well have higher power and lower false discovery rate (FDR) than 

single-locus approaches. Similarly, in the context of human genetics, it has been suggested 

that conditioning on major effects loci, like the MHC, may improve power11.

However, automatically including cofactors is challenging when the number of predictors is 

large compared to the number of observations. This is particularly problematic for GWAS, 

where the number of polymorphisms can reach millions, but the number of phenotyped and 

genotyped individuals is rarely more than tens of thousands. Such “large p, small n” 

problems are very challenging: the model space is usually too large to explore exhaustively, 

and the maximum number of polymorphism that can be fitted at a time must be lower than 

the number of individuals. In addition, identifying the causative polymorphisms by fitting 

more than one polymorphism at a time is complicated by the presence of linkage 
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disequilibrium. Several approaches have been proposed to address these issues, including 

stepwise regression21 and penalized regression with different penalty functions, such as 

ridge regression, normal exponential-, elastic net and LASSO22,23,24,25,26. These approaches 

have been shown to perform better than single locus approaches, but most are either 

computationally infeasible in GWAS27, or do not explicitly address the problems posed by 

population structure. As an alternative, we propose using a simple stepwise mixed-model 

regression with forward inclusion and backward elimination, which, despite being limited in 

terms of exploring the model space, has the advantage of being computationally efficient 

and therefore applicable to GWAS. To handle the population structure issue effectively we 

make use of an approximate version of the mixed model11,14, where re-estimate the genetic 

and error variances at each step of the regression (see Methods). As the variance attributed 

to the random polygenic term decreases when cofactors are added to the model, we propose 

to use the heritable variance estimate as a criterion to stop the forward inclusion; and then to 

perform a backward elimination from the last forward model for a more thorough 

exploration of the model space. We evaluate various model-selection criteria through 

simulations, which also suggest that the proposed multi-locus mixed-model (MLMM) 

method performs well in terms of false discovery rate and power. Finally, we demonstrate 

the utility of our approach by applying it to human and A. thaliana data.

RESULTS

Simulations

GWAS data were simulated by adding phenotypic effects to real genotypic data from A. 

thaliana28 under two different scenarios: a two-locus model, and a 100-locus model. For the 

latter, additivity was assumed, whereas for the former, different types of interactions were 

explored. For details, see Methods.

We compared our proposed MLMM method with three other mapping methods: a single-

locus approximate mixed model that corrects for population structure, but does not take 

other major loci into account (MM)11,14; a stepwise linear model that takes other major loci 

into account, but does not correct for population structure (SWLM); and a single-locus 

linear model that does neither (LM). The four methods were compared in terms of their 

statistical power and their false discovery rate (FDR). For single-locus methods, SNPs were 

considered detected if their p-values were below the defined threshold; while for the multi-

locus methods, the detected SNPs were those belonging to the most complex model whose 

cofactors' marginal p-values were all below the defined threshold.

The results for the 100-locus model are shown in Fig. 2 and Supplementary Figs. 1–4, and 

can be summarized as follows. First, methods that use a kinship term to correct for 

population structure always outperform comparable methods that do not (MM and MLMM 

vs LM and SWLM, respectively). There is simply too much structure in these data for it to 

be ignored without paying a very heavy price in terms of increased FDR (Supplementary 

Fig. 1). Second, multi-locus methods generally outperform comparable single-locus methods 

(SWLM and MLMM vs LM and MM, respectively) as long as the causative sites themselves 

are included in the data (Fig. 2a–c). The advantage increases with increasing heritability 

because, under our simulation scheme, increased heritability implies more loci of large 
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effect, and hence greater confounding (Supplementary Figs. 1–2). If the causative sites 

themselves are excluded from the data, the single-locus mixed-model (MM) may have 

greater power than the multi-locus version (MLMM), but only at the cost of greatly 

increased FDR (Fig. 2d–f).

The 2-locus simulations allowed us to examine the advantages of including cofactors in the 

mixed model under several scenarios of population structure and/or epistasis (for details, see 

Methods). Regardless of the scenario considered, MLMM consistently performed at least as 

well as the other methods when restricted to small FDR (Supplementary Fig. 5, see also Fig. 

1). When there are two random randomly chosen causal sites, the improvement in power 

observed for MLMM compared to the single marker MM is almost entirely attributed to 

increased power to detect the second causal site (Supplementary Fig. 6).

A serious problem when employing multi-locus models is knowing how many loci to 

include. We propose two model-selection criteria: the extended Bayesian information 

criteria (EBIC)29, and the multiple-Bonferroni criterion (mBonf) defined as the largest 

model whose cofactors all have a p-value below a Bonferroni-corrected threshold (we used 

0.05). Our simulations show that both criteria are consistent in bounding the FDR for the 

MLMM method regardless of the simulation scenario, EBIC being slightly more stringent 

than mBonf (Fig. 2 and Supplementary Fig. 5). In addition, the genome-wide p-values in the 

models selected by both criteria were uniformly distributed, demonstrating the ability of 

mixed models to control confounding by population structure in a multi-locus setting 

(Supplementary Fig. 1). Furthermore, both criteria perform appropriately in extreme 

scenarios where there is no detectable signal in the data, as when an external confounding 

variable interacts non-linearly with a single causal locus18. In this case, MLMM with one of 

the proposed criteria correctly selects a model without any SNPs whereas the other methods 

tested would identify false positives only (Supplementary Fig. 5). In summary, MLMM, 

with the conservative FDR provided by the proposed model-selection criteria, consistently 

outperforms the other methods in all scenarios we have simulated.

For completeness, we also compared MLMM to other single-locus mixed model 

implementations, the exact mixed-model30 and the approximate mixed-model with 

compression14, as they have been shown to perform better than the approximate method 

used above. These did indeed perform slightly better than the approximate method in our 

simulations, but were still far from the performances achieved by MLMM (Supplementary 

Fig. 7).

Application to humans

To illustrate the feasibility as well as the utility of MLMM, we applied it to a previously 

published dataset of metabolic traits in the Northern Finland Birth Cohort (NFBC1966)31. 

The data were previously reanalyzed to demonstrate the utility of the mixed-model11, and 

we used the same settings for the mixed model estimation here. The SNPs identified using 

MLMM are listed in Table 1. As predicted by our simulations, EBIC was more stringent 

than mBonf, resulting in the selection of models that were either similar to, or nested within, 

the models selected by mBonf. Focusing on the less conservative mBonf criterion, we 

identify all the associations previously detected using the single-locus mixed-model11 and 
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nine additional associations. Of the latter, three were located near genes previously reported 

using the same data31 (two in the TOMM40- APOE cluster for low density lipoprotein 

(LDL) and one in MTNR1B for glucose (GLU), while four were located in gene regions not 

previously reported with this dataset (HNF4A for high density lipoprotein (HDL), SMEK2 

for systolic blood pressure (SBP), and two in the TOMM40-APOE cluster for C-reactive 

protein (CRP)). The remaining two were additional SNPs in genes that had already been 

identified (CETP for HDL, and CRP for CRP). The detected association in HNF4A for HDL 

(rs1800961) — a gene region not previously reported with this dataset — has been 

replicated in two meta-analyses based on 30,714 and 99,900 individuals respectively32,33.

Multiple significant SNPs within or near a single gene suggest either allelic heterogeneity or 

the presence of an untyped causal variant that is partially tagged by multiple SNPs (or both). 

In the case of the associations located in the TOMM40-APOE cluster (for both LDL and 

CRP), we observed a dramatic decrease of the p-values for the two selected SNPs when they 

were both included in the model (Fig. 3 and Supplementary Fig. 8), which presumably 

explains why they were not identified using the single-locus mixed-model. This type of 

situation expected when loci mask each other, for example by when alleles of compensatory 

effect are correlated, as appears to be the case here (R2 = 0.33 and R2 = 0.25 for LDL and 

CRP respectively).

Fig. 3 also shows the percentage of variance explained by the SNPs included into the model 

as well as the percentages of unexplained genetic and residual variance at the different steps 

of MLMM for LDL (for the other phenotypes, see Supplementary Fig. 9). It is notable that 

most of the heritable phenotypic variation remains unexplained.

Application to A. thaliana

Sodium accumulation in the leaves of A. thaliana has been shown to be strongly associated 

with genotype and expression levels of the Na+ transporter AtHKT1;134. In particular, a SNP 

(chr4:6392280) located in the first exon of the gene has a highly significant association (p-

value = 6.33 × 10−14 using an approximate mixed-model). We reanalyzed these data using 

MLMM and found that the sole SNP previously reported34 only explains part of the signal 

in the region (Fig. 4).

Instead, the optimal model obtained with MLMM (according to both EBIC and mBonf) 

included three SNPs, which together explained 42.3% of the phenotypic variation. This 

model included the previously reported SNP, which explained 27.7% of the variation, and a 

second SNP only 22kb away from the gene, suggesting that there might be multiple causal 

variants in the gene. To further investigate the associations in this particular region, we 

applied our method locally, i.e. using only the 508 SNPs located within 100kb of the gene. 

Using the EBIC, six SNPs were included in the model, all within 25kb of AtHKT1;1, 

explaining 52.6% of the phenotypic variation (Supplementary Fig. 10), leaving 20.5% as 

unexplained heritable fraction of the total variance. As noted above, this suggests either 

allelic heterogeneity or the presence of one or more untyped causal variants. However, since 

largest possible fraction of variance explained by a single binary SNP (which would have a 

minor allele frequency of 0.32) is 47.6%, we conclude that there is evidence for allelic 

heterogeneity.
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DISCUSSION

The problem of population structure in GWAS is best viewed as one of model mis-

specification. When carrying out single-locus tests of association, we are using the wrong 

model unless the trait is actually due to a single locus. Ignoring the genetic background may 

be defensible in some circumstances, but is clearly not when causative alleles are correlated 

across loci due to population structure and/or selection12, resulting in biased estimates of 

effect sizes. The problem has long been recognized by animal breeders, who developed a 

mixed linear model to reduce the bias8. This approach works well, but assumes that the 

phenotypic covariance between individuals can be predicted by their relatedness, as 

estimated by genome-wide SNPs. As demonstrated by Fisher close to 100 years ago9, this 

approximation is reasonable if the genetic background is sufficiently smooth, but it is easy to 

see that loci of relatively larger effect may make it invalid18. We therefore propose to extend 

the mixed model for GWAS to include multiple loci, in parallel to what is routinely done in 

QTL linkage mapping16,17.

Our proposed method includes significant effects in the model via a forward-backward 

stepwise approach, while re-estimating the variance components of the model at each step. If 

the fixed effects included are real, they can reduce the unexplained heritable variance and 

effectively lower the restraints posed by the mixed model on other markers which correlate 

with population structure. As demonstrated by simulations, our implementation (MLMM) 

displays promising performance in terms of power and FDR in comparison with a single 

marker scan and a stepwise linear regression, especially when applying a conservative 

threshold which can be achieved with one of the proposed model-quality criteria. In 

particular, MLMM performed much better than the other methods tested for structured 

samples and traits involving several loci with moderate to large effect.

Applying MLMM to real data from humans and A. thaliana, we identified interesting novel 

associations as well as evidence for allelic heterogeneity. Indeed, as it includes multiple loci 

in the model, MLMM helps identify evidence for allelic heterogeneity as well as 

interactions, although it is difficult to exclude that multiple associated SNPs within a region 

are due to partial linkage disequilibrium with an untyped causal variant12,18,20. However, 

with the rapid development of DNA sequencing35, it is increasingly likely that causal 

variants will be typed. As seen in our simulations, all tested methods, and especially 

MLMM, will benefit greatly from this. While applied here to quantitative traits, MLMM can 

also be applied to diseases. Indeed, it is possible to analyze a disease phenotype with an 

approximate mixed-model by considering a binary quantitative response corresponding to 

the case-control status11. Finally, MLMM partitions the phenotypic variance into genetic, 

random and explained variance at each step, suggesting a natural stopping criteria (genetic 

variance of 0) for including cofactors. This allows the user to obtain estimates of the 

explained and unexplained heritable variance, as well as give insights into the trait 

architecture.

MLMM is far from a panacea, however. The greedy forward-backward inclusion of SNPs is 

clearly limited in exploring the huge model space. More sophisticated algorithms, like 

LASSO36, are worth exploring. However, as other penalized methods, LASSO assumes 
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independence between markers, which is obviously not appropriate for structured data. This 

might cause LASSO to give a large effect size to a marker that is in LD with many other 

markers, whereas a mixed model would down-weight such markers. A potential 

improvement on this would be use LASSO in conjunction with a mixed-model26. While this 

approach is potentially very promising, it is currently too computationally demanding for 

GWAS datasets. Another promising approach is resample model averaging37, which has 

been applied successfully to joint linkage association analysis38. However, it is important to 

realize that the problem is fundamentally very hard. For example, we have previously shown 

that linkage disequilibrium between two known causal alleles of the A. thaliana flowering 

locus FRIGIDA (FRI) and the genomic background give rise to a very complicated pattern 

of association in a GWAS of FLOWERING LOCUS C (FLC) expression12. None of the 

methods tested in this paper identify the causal sites—not surprisingly because there are 

many spurious one- and two-locus models that fit the data better than those involving the 

true causal loci. In cases like this, we think it is unlikely that progress will be made without 

independent data to help us prioritize variants. Since MLMM is based on a linear model it 

can easily be extended for Bayesian analysis39,40 and allow for the integration of prior 

information into the model. Indeed, returning to the FLC example, by placing a 100-fold 

prior on all markers within 10kb of FRI we allow MLMM to include the two known causal 

variation as the first two cofactors in the model, demonstrating how prior knowledge can 

help identifying causal loci, and improving the model (Fig. 5).

METHODS

Data

Both A. thaliana and human data were used for the examples. The genotype data for A. 

thaliana included 1,307 individuals genotyped at 214,051 SNPs using a 250K Affymetrix 

SNP chip28. The two A. thaliana phenotype datasets used were: (i) sodium levels averaged 

over 6 replicates of 342 accessions34, and (ii) FLOWERING LOCUS C (FLC) expression 

measured in 166 accessions12. For FLC expression the genotype data used was the same as 

used by Atwell et al., which is a subset of the 1,307 individuals and contains 216,130 

markers, including three indels within or near the FRIGIDA (FRI) gene. As priors we gave 

every marker which were within 10kb from the FRI gene a 100 fold greater prior over the 

base prior. We then scaled them so that the sum of the priors over all the SNPs was 1.

The human dataset used was the 1966 North-Finland Birth Cohort NFBC1966 composed of 

5,402 individuals having both phenotypic and genotypic data31. Phenotypic data consisted 

of 10 quantitative traits, and genotypic data in 368,177 SNP markers. We were able to 

obtain the exact same dataset, i.e. 5,326 individuals and 331,475 SNPs after filtering, as 

used in11. The proportion of missing genotypes was < 1% which we imputed with its 

corresponding average per SNP to speed up the mixed model computations.

Simulations

Using the A. thaliana genotypic data28, we simulated two types of traits; simple ones 

controlled by one or two causal loci, and complex ones controlled by 100 loci. For the 

simple traits, two randomly chosen SNPs or one randomly chosen SNP and one binary latent 
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variable were used to generate phenotypes using the three phenotypic models (additive, 

“and/or”, “xor”) described in Supplementary Table 1. The latent binary variable was 

designed by splitting the accessions in half on the basis of their latitude of origin, which we 

refer to as the latent north-south variable, to generate some substantial covariance between 

the phenotypes and population structure. An additional random deviation was added, drawn 

from a multivariate normal distribution having a mean of zero and a scaled identity matrix as 

covariance to fix the trait heritability to 0.1. 1,000 phenotypes were simulated for each 

simulation type (i.e., two causative SNPs or one causative SNP and the latent binary 

variable), phenotypic model, and phenotypic heritability. For complex traits, we used an 

additive model with 100 randomly sampled SNPs having effect sizes drawn from an 

exponential distribution with a rate of 1. An additional random deviation was added, drawn 

from a normal distribution with a mean of zero and scaled identity matrix as covariance 

matrix to fix the trait heritability to 0.25, 0.5, and 0.75. For each phenotypic heritability, 500 

phenotypes were simulated. All simulated phenotypes have been analyzed with the four 

methods presented in the main text. For completeness, another single-locus approximate 

mixed-model has been used to analyze the phenotypes simulated under the 100-locus model. 

To control some potential population structure confounding that was not accounted for by 

the random term, this approach uses as covariates the ten first principal components from a 

principal component analysis of the standardized genotypic data. As no obvious difference 

was observed between this extra approach and the approximate mixed-model, only the latter 

was presented in the results (Supplementary Fig. 11).

Linear mixed model

Following Fisher's9 polygenic model and adopting similar notation as in Yang et al.41, the 

phenotypic value of the i'th individual can be written as

where m is the total number of causal loci, xij is the genotype (re- coded in numerical terms) 

of the j'th causal locus to the i'th individual, aj is the effect size of the j'th locus, and ei is the 

error. If we assume a large number of the independent causal loci are and that their effects 

are drawn from a Gaussian distribution (Fisher's infinitesimal model) we can sum them up 

and approximate them with a Gaussian random variable. We therefore model the trait using 

a mixed model8, where the phenotype can be written in vector notation as

where β are the effect sizes of fixed effects (e.g. SNPs), g is a vector of random polygenic 

effects and has distribution  and e is the residual (error) and has distribution 

. Here K* denotes the adjusted kinship matrix, where the loci included as fixed 

effects are excluded from the kinship matrix estimation. If M ⪢ n, where M is the number of 

causal loci and n is the number of individuals, then K* ≈ K. Different assumptions lead to 
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different kinship matrices that can be used for the mixed model as described in the 

Supplementary Note.

Multiple loci mixed model (MLMM)

We used forward-backward stepwise linear mixed model regression, where the variance 

components , and  are estimated before each step. The variance estimates are used to 

obtain generalized least square (GLS) effect size estimates and F-test p-values for each SNP. 

The most significant SNP is then added to the model as a cofactor for the next step, and the 

p-values for all cofactors are re-estimated together with the variance components. As a 

stopping criteria for the forward regression, we suggest stopping when the 

estimate is close to zero, or when a maximum number of forward step is reached. After 

stopping the forward stepwise regression a backward stepwise regression is performed by 

dropping the least significant cofactor in the model at each step. The variance component 

and p-values of all cofactors again re-estimated at each step. For the variance components 

estimation at each forward and backward step, the markers included as cofactors in the 

model can be excluded from the kinship matrix calculation, although we did not do this 

since their effect on the kinship is arguably negligible.

We make use of the Gram-Schmidt process41 which makes each step as fast as the first one 

when M ⪢ n (i.e. the number of SNPs is much greater the number individuals). At each step 

we obtain the QR-decomposition of the cofactor matrix to obtain the  matrix and use it to 

calculate the marginal inverse variance matrix

where  is the covariance matrix estimated at each step.

We explored several model selection criteria to select the most appropriate model. The 

classic Bayesian information criterion (BIC) is too tolerant in the context of GWAS, 

allowing for too many loci in the model and is therefore not recommended. As an 

alternative, we used the extended BIC, initially defined by Chen and Chen29 as the BIC 

penalized by the model space dimension. We also propose and define a new criterion, the 

multiple Bonferroni criterion (mBonf) which selects the model with most loci for which all 

have p-values below the Bonferroni threshold. This criteria enables the user to specify the p-

value threshold if one wants to allow for a higher false discovery rate (FDR) or restrict to a 

lower one. The computational complexity of our implementation is described in the 

Supplementary Note.

Employing priors on loci

As described in39 it is possible to employ priors on loci in a Bayesian model, where the 

Bayes factor is calculated for each locus. Calculating the Bayes factor is however not always 

easy, as it requires integrating out the model parameters which have some specified prior 

distributions. In our case the model parameters of interest are the effect sizes of the loci in 

the model. A rough approximation can be achieved using the Schwarz criterion which 
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allows us to avoid having to define priors on the effect sizes and evaluate the integral42. We 

define the approximate Bayes factor (ABF) as

where n in the number of individuals, D is the observed data, Mi is the i'th model and di the 

degree of freedom in the i'th model. Using this approximation together with a prior 

probability π for the locus being causal we define the approximate posterior probability of 

association (APPA) as

We note that this quantity should be treated more as a score than a probability, as it is a 

rough estimate of the actual probability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A GWAS for a simulated trait with two causal SNPs (marked by vertical lines), randomly 

chosen from a real A. thaliana SNP dataset28. Random error was added to the trait to fix the 

heritability at 25%. (a) A single-SNP linear regression scan detects four significantly 

associated SNPs (at a Bonferroni-corrected threshold of 0.05; dashed horizontal line) 

marked in red. Half of these SNPs are false positives and the other half true positives, 

leading to a false discovery rate (FDR) of 50% and a power of 100%. (b) A single-SNP 

mixed-model11,14 scan eliminates one false positive but also one true positive, leading to a 

similar (50%) FDR while decreasing the power to 50%. (c) Adding the most significant SNP 

as a cofactor to the mixed model (marked in orange) recovers the second causal SNP while 

eliminating the last false positive, leading to the perfect case of a FDR of 0% and a power of 

100%.
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Figure 2. 
Power and false discovery rate (FDR) in the 100-locus model simulations for four different 

mapping methods: linear model (LM), stepwise linear model (SWLM), mixed-model (MM), 

and multi-locus mixed-model (MLMM). For the purpose of computing power and FDR, a 

causal SNP was considered detected if a SNP within 25kb on either side was declared 

significant (results for other window sizes are given in Supplementary Fig. 3), and only 

causal SNPs that were in principle detectable (i.e., that were marginally significant at a 

Bonferroni-corrected threshold of 0.05 in a simple linear model were considered. For clarity, 

only the backward path of the multi-locus methods (SWLM and MLMM) is shown: a 

comparison between forward and backward paths is given in Supplementary Fig. 4. Circles 

and triangles denote the best-fitting model according to the Bonferroni and EBIC model-

selection criteria, respectively. Three phenotypic heritabilities were used in the simulations: 

0.25 (a, d), 0.50 (b, e), and 0.75 (c, f). Power and FDR was estimated with (a–c) and without 

(d–f) the causal loci included.
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Figure 3. 
GWAS for low-density lipoprotein (LDL) in the NFBC1966 dataset. (a) A single-locus 

mixedmodel identifies seven SNPs in three genes (marked in red; Bonferroni-corrected 

threshold of 0.05; dashed horizontal line). (b) A multi-locus mixed-model (MLMM) 

identifies five SNPs in four genes (marked in orange, and numbered in the order they were 

included in the model). (c) Partition of variance at each step of MLMM (10 forward and 10 

backward) into variance explained by: the SNPs included in the model (blue); kinship 

(green); and noise (yellow).
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Figure 4. 
GWAS for Na+ accumulation in A. thaliana. (a) A single-locus mixed-model identifies a 

strong peak of significantly associated SNPs on chromosome 4 (marked in red; Bonferroni-

corrected threshold of 0.05; dashed horizontal line). (b) Multi-locus mixed-model (MLMM) 

identifies three SNPs (marked in orange, and numbered in the order they were included in 

the model). (c) Partition of variance at each step of MLMM (8 forward and 8 backward) into 

variance explained by: the SNPs included in the model (blue); kinship (green); and noise 

(yellow).
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Figure 5. 
An example of Bayesian multi-locus mixed-model (MLMM) for the analysis of 

FLOWERING LOCUS C (FLC) expression in A. thaliana. (a) An approximate mixed-model 

scan for FLC expression, marking the FRIGIDA gene with a vertical grey line. (b) The 

posterior probability of association scan after the Bayesian MLMM has included two loci 

into the model, which incidentally are the two previously identified causative indels. (c) 

Partition of phenotypic variance for each forward inclusion (10 steps) and backwards 

elimination (10 steps after the dotted line). The vertical red line marks the model with the 

two causative indels in the model.
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